
Support Vector Machines and Deformable Part Models

Support Vector Machines and Deformable Part Models

I Support Vector Machines were originally designed for binary classification
tasks. But they can be extended to structured support vector machines,
defined over graphical models, and then to latent structured support
vector machines which contain hidden variables.

I Latent structure support vector machines can be used for deformable part
models, which were state of the art for object detection until replaced by
deep networks. Each object is represented by a mixture of models, one for
each viewpoint. These mixtures are learnt automatically in an
unsupervised manner, Each mixture model consists of a holistic model for
the entire object and models for parts/subparts which are allowed to move
relative the holistic model (the amount of movement is learnt). These
parts/subparts are not semantic or easily identifiable. They correspond
roughly to top-right part of object, top-left part, and so on.

I Deformable part models were invented by McAllester, Felzenswalb, and
Ramanan. There were many variants and modifications. Support vector
machines and their extensions were developed in the machine learning
community.

Basic Support Vector Machines

Basic Support Vector Machines

I Support Vector Machine (SVM) is a modern approach to linear separation.
Suppose you have
Data: {(~xµ, yµ) : µ = 1 to N}, yµ ∈ {−1, 1}
Hyperplane: < ~x : ~x · ~a + b = 0 > |~a| = 1

I The signed distance of a point ~x to the plane is ~a · ~x + b.
If we project the line ~x(~λ) = ~x + λ~a, it hits plane when ~a · (~x + λ~a) = −b.
Follows that λ = −(~a · ~x + b)/|~a|2, and if |~a| = 1, then λ = −(~a · ~x + b).

I In SVM we seek a classifier with biggest margin:

max
~a,b,|~a|=1

C s.t. yµ(~xµ · ~a + b) ≥ C , ∀µ ≥ 1 to N

I.e, the positive examples are at least distance C above the plane, and
negative examples are at least C below the plane.

I Having a large margin is good for generalization because there is less
chance of an accidental alignment.

Basic Support Vector Machines (2)

Basic Support Vector Machines (2)

I Perfect separation is not always possible. Let’s allow for some data points
to be misclassified. We define the slack variables {z1, ..., zn} allow data
points to move in direction ~a, so that they are on the right side of the
margin.

I Criterion:

max
a,b,|~a|=1

C s.t. yµ(~xµ · ~a + b) ≥ C(1− zµ), ∀µ ∈ {1,N} s.t. zµ ≥ 0, ∀µ

.

I Alternately, yµ{(~xµ + Czµ~a) · ~a + b} ≥ C , which is like moving ~xµ to
~xµ + zµ~a.

I But, we must pay a penalty for using slack variables. E.g, a penalty∑N
µ=1 zµ. If zµ = 0, then the data point is correctly classified and is past

the margin. If zµ > 0, then the data point is on the wrong side of the
margin, and so had to be moved.

The Max-Margin Criterion

The Max-Margin Criterion
I Here the task is to estimate several quantities simultaneously: (1) The

plane ~a, b. (2) The margin C . (3) The slack variables {zµ}.
I We need a criterion that maximizes the margin and minimizes the amount

of slack variables used. We absorb C into ~a by ~a→ a/c and remove the
constraint |a| = 1. Hence, C = 1

|~a| .
I The Max-Margin Criterion:

min 1
2

∑
~a · ~a + γ

∑
µ zµ s.t. yµ(~xµ · ~a + b) ≥ 1− zµ, ∀ µzµ ≥ 0.

I First, we need to solve the Quadratic Primal Problem using Lagrange
multipliers: Lp(~a, b, z ;α, τ) =
1
2
~a · ~a + γ

∑
µ zµ −

∑
µ αµ{yµ(~xµ · ~a + b)− (1− zµ)} −

∑
µ τµzµ. The

{αµ} and {τµ} are Lagrange parameters needed to enforce the inequality
constraints. We require that αµ ≥ 0, τµ ≥ 0, ∀µ.

I The function Lp(~a, b, z ;α, τ) should be minimized with respect to the
primal variables ~a, z and maximized with respect to the dual variables α, τ .
Note this means that if the constraints are satisfied then we need to set
the corresponding lagrange parameter to be zero (to maximize). For
example, if yµ(~xµ · ~a + b)− (1− zµ) > 0 for some µ then we set αµ = 0
because the term −αµ{yµ(~xµ · ~a + b)− (1− zµ)} is non-positive, and so
the maximum value occurs when αµ = 0. But if the constraint is not
satisfied – e.g., yµ(~xµ · ~a + b)− (1− zµ) < 0 – then the lagrange
parameter will be positive. So there is a relationship between the lagrange
parameters which are positive (non-zero) and the constraints which are
satisfied. This will have important consequences.

The Support Vectors

The Support Vectors
I Lp is a function of the primal variable ~a, b, {zµ} and the Lagrange

parameters {αµ, τµ}. There is no analytic solution for these variables, but
we can use analytic techniques to get some understanding of their
properties.
∂Lp

∂~a
= 0⇒ ~̂a =

∑
µ αµyµ~xµ

∂Lp

∂b
= 0⇒

∑
µ αµyµ = 0

∂Lp

∂zµ
= 0⇒ αµ = γ − τ̂µ,∀µ

I The classifier is: sign < ~̂a · ~x + b̂ >= sign <
∑
µ αµyµ~xµ · ~x + b >, by

using the equation
∂Lp
∂~a

= 0.
I Given that the solution depends only on the vectors ~xµ for which αµ 6= 0,

we call them support vectors.
I The constraints are yµ(~xµ ·~̃a + b̃) ≥ 1− ẑµ, ẑµ ≥ 0, and τ̂µ ≥ 0.
I By theory of Quadratic Programming, αµ > 0, only if either:

(i) zµ > 0, i.e, slack variable is used.
(ii) zµ, butyµ(~xµ ·~̃a + b̃) = 1, i.e. data point is on the margin.

I The classifier depends only on the support vectors, the other data points
do not matter. This is intuitively reasonable - the classifier must pay close
attention to the data that is difficult to classify - the data near the
boundary. This differs from the probabilistic approach.

The Dual and its Relation to the Primal

The Dual and its Relation to the Primal

I We can solve the problem more easily in the dual formulation – this is a
function of Lagrange multipliers only.
Lp =

∑
µ αµ −

1
2

∑
µ,ν αµανyµyν~xµ~xν s.t 0 ≤ αµ ≤ τ,

∑
µ αµyµ = 0.

I There are standard packages to solve this. (Although they get slow if you
have a very large amount of data). Knowing {α̂µ}, will give us the
solution ~̂α =

∑
µ α̂µyµ~xµ, (only a little more work needed to get b̂).

I Now we show how to obtain the dual formulation from the primal. The
method we use is only correct if the primal is a convex function (but it is a
positive quadratic function with linear constraints, which is convex).

I Start with the dual formulation Lp. Rewrite it as
Lp =
− 1

2
~a ·~a+

∑
µ αµ+~a ·(~a−

∑
µ αµyµ~xµ)+

∑
µ zµ(γ−τµ−αµ)−b

∑
µ αµyµ.

I Extremize w.r.t. ~a, b, {zµ}. The result is:

~̂a =
∑
µ αµyµ~xµ,

∑
µ αµyµ = 0, γ − τµ − αµ = 0

Substituting back into Lp gives:
Lp = − 1

2

∑
µ,ν αµανyµyν~xµ~xν +

∑
µ αµ,

which has to be maximized w.r.t. {αµ}.

The Dual and its Relation to the Primal

Reformulation of the Perceptron

I The Perceptron can be reformulated in the following way. By the theory,
the weight hypothesis will always be of form: ~a =

∑
µ αµyµ~xµ.

I The Perceptron update rule is: If data ~xµ is misclassified (i.e,
yµ(~a · ~xµ + b) ≤ 0), then set
~αµ → ~αµ + 1
b → b + yµK

2,
where K is the radius of the smallest ball containing the data.

The Dual and its Relation to the Primal

Max Margin from Empirical Risk
I Suppose we look at the primal function Lp. Consider the constraint

yµ(~xµ · ~a + b)− 1 > 0. If this constraint is satisfied, then it is best to set
the slack variable zµ = 0 (because otherwise we pay a penalty γ for it). If
the constraint is not satisfied, then we set the slack variable to be
zµ = 1− yµ(~xµ · ~a) because this is the smallest value of the slack variable
which satisfies the constraint. We can summarize this by paying a Hinge
Loss penalty max{0, 1− yµ(~xµ · ~a + b)} – if the constraint is satisfied,
then the maximum is 0 but, if not, the maximum is 1− yµ(~xµ · ~a) which is
minimum value of the slack variable (to make the constraint satisfied).

I This gives an energy function:
L(~a, b) = 1

2
~a · ~a + γ

∑
µ max{0, 1− yµ(~xµ · ~a + b)}.

Note that the hinge loss is a convex loss function,
I So, we can re-express the max-margin criterion as the sum of the empirical

risk (with hinge loss function) plus a term 1
2
|~a|2, multiplied by a constant

1
γN

:
Lp
γN

= 1
2γN
|~a|2 + 1

N

∑N
µ=1 max{0, 1− yµ(~xµ · ~a + b)}.

The first term is a regularizer. It penalizes decision rules
ŷ(~x) = sign(~x · ~a + b) which have large |~a|. This is done in order to help
generalization. If we only tried to minimize the loss function, we may
overfit the data, because the space of possible decision rules is very big (all
values of ~a and b). If we penalize those rules with big |~a|, then we restrict
our set of rules and are more likely to generalize to new data.

The Dual and its Relation to the Primal

Online Learning: AKA Steepest Descent

I We can do online learning (update with new data) using the cost function
L(~a, b) = 1

2
~a · ~a + γ

∑
µ max{0, 1− yµ(~xµ · ~a + b)}.

Consider the second term for one datapoint ~xµ, yµ:
∂
∂~a

max{0, 1− yµ(~xµ · ~a + b)} = −yµ~xµ, if yµ(~xµ · ~a + b) < 1,
= 0 otherwise.

I The online learning consists of:
Selecting the data (~xµ, yµ) at random.
Computing ∂

∂~a
max{0, 1− yµ(~xµ · ~a + b)}.

If µ(~xµ · ~a + b) < 1, updating ~at → ~at − 1
2N
~at − γ{−yµ~xµ},

or if µ(~xµ · ~a + b) > 1, updating ~at → ~at − 1
2N
~at − γ{0}.

I This is almost exactly the 1950’s perceptron algorithm. The −yµ term is
like converting negative examples to positive ones. The 1

2N
~at is from the

regularizer.

The Dual and its Relation to the Primal

Structure SVM

I Structure Max-Margin extends binary-classification methods so they can
be applied to learn the parameters of an MRF, HMM, SCFG or other
methods. Recall standard SVM, for binary classification,
R(λ) = 1

2
||λ||2 + C

∑M
i=1 max〈0, 1− yiλ · φ(xi)〉 where {(yi , xi)}is training

data, and yi ∈ {±1},
I The goal is to get a plane, s.t. φ(x) = x . The Decision rule is

ŷi (λ) = arg max yyλ · φ(xi) = sign(λ · φ(xi)) The task is to minimize R(λ)
w.r.t λ which maximize the “margin” 1

||λ|| .

I Here is a more general formulation that can be used if the output variable
y is a vector y = (y1, . . . , yn). i.e. it could be the state of an MRF, or
HMM, or a SCFG. R(λ) = 1

2
||λ||2 + c

∑M
i=1 ∆(yi , ŷi (λ)). The decision

rule: ŷi (λ) = arg max yλ · φ(xi , y). The error function ∆(yi , ŷi (λ)) is any
measure of distance between the true solution yi and the estimate ŷi (λ),

I Binary is a special case:(i) set yi ∈ {−1, 1}, (ii) φ(x , y) = yφ(x), (iii)
∆(yi , ŷi (λ)) = max〈0, 1− yiλ · φ(xi)〉. This is the hinge loss because the
function is 0 if yiλ · φ(xi) > 1 i.e. point is on the right side of the margin
and the function increases linearly with λ · φ(xi). (iv)
ŷi (λ) = arg max yyλ · φ(x).

The Dual and its Relation to the Primal

Structure SVM: Convex Upper Bound

I This more general formulation is R(λ) = 1
2
||λ||2 + C

∑M
i=1 ∆(yi , ŷi (λ))

with ŷi (λ) = arg max yλφ(y , xi)

I But this has a problem. We need to be able to maximized R(λ) to find λ,
but this is hard because the error term ∆(yi , ŷi (λ)) is a highly complicated
function of λ. Instead we modify R(λ) to a convex upper bound R̄(λ).

I R̄(λ) = 1
2
||λ||2 + C

∑M
i=1 maxŷ{∆(yi , ŷ) + λ · φ(xi , ŷ)− λ · φ(xi , yi)} which

is convex in λ.

I We get this bound in two steps: Step 1:
maxŷ {∆(yi , ŷ) + λ · φ(xi , ŷ)} ≥ ∆(yi , ŷi (λ)) + λ · φ(xi , ŷi (λ)). Step 2:
λ · φ(xi , ŷi (λ)) ≥ λ · φ(xi , yi).

I Note: these bounds are “tight” because if we can find a good solution
then yi ≈ ŷi (λ).

The Dual and its Relation to the Primal

Structure SVM: How to Minimize R(λ).

I How to minimize R(λ)?

I (1) Solve in the Dual Space. Like the original SVM for the binary problem.

I (2) Stochastic gradient descent. Pick example (xi , yi), take derivative of
R(λ) w.r.t λ

λt+1 = λt − βt(φ(xi , ŷ
t)− φ(xi , yi))

where ŷ t = arg max ŷ∆(yi , ŷ) + λ · φ(xi , ŷ))

I To compute arg max ŷ will require an inference algorithm. This depends
on whether this is a graph with closed loops or not. If no closed loops, we
can use dynamical programming. If closed loops we would need an
approximate algorithm like mean field theory or belief propagation.

The Dual and its Relation to the Primal

Latent SVM

I How to extend to module with latent (hidden) variables? Denote these
variables by h with decision rule
(ŷ , ĥ) = arg max (y , h) ∈ Y,Hλ · φ(x , y , h)

I Training data 〈(xi , yi); i = 1, . . . ,M〉. The hidden variables are not known.

I The Loss function ∆(yi , ŷi (λ), ĥi (λ)) depends on the truth yi , the estimate
of ŷi (λ), ĥi (λ) from the model

R(λ) =
1

2
||λ||2 + C

M∑
i=1

∆(yi ; ŷi (λ), ĥi (λ))

which is typically a highly nonconvex function of λ.

I Replace R(λ) by an upper bound

R̄(λ) =
1

2
||λ||2 +C

M∑
i=1

max
(ŷ,ĥ)

(∆(yi ; ŷ , ĥ)+λ ·φ(xi , ŷ , ĥ))−max
h
λ · φ(xi , yi , h)

I
f (λ) = max

(ŷ,ĥ)
(∆(yi ; ŷ , ĥ) + λ · φ(xi , ŷ , ĥ))

g(λ) = −max
h
λ · φ(xi , yi , h)

The Dual and its Relation to the Primal

Latent SVM: Concavity and Convexity

I Here f (·) is convex and g(·) is concave.

I To show convexity and concavity. Let

τ(λ) =
M∑
i=1

max
ŷi

λ · φ(xi , ŷi)

I This is convex if τ(αλ1 + (1− α)λ2) ≤ ατ(λ1) + (1− α)τ(λ2) for all
λ1, λ2, α.

I Now

τ(αλ1 + (1− α)λ2) = α
M∑
i=1

max
ŷi

αλ1 + (1− α)λ2), φ(xi , ŷi)

ατ(λ1)+(1−α)τ(λ2) = α

M∑
i=1

max
yi
{λ1, φ(xi , ŷi)〉+(1−α)

M∑
i=1

max
yi

λ2φ(xi , ŷi)}

I and the result follows from (does it?)

max
ŷi

αλ1φ(xi , ŷi)+max
ŷi
{(1−α)λ2φ(xi , ŷi)} ≥ max

ŷi
{(αλ1+(1−α)λ2)φ(xi , ŷi)}

The Dual and its Relation to the Primal

Latent SVM: CCCP

I There are two steps.

I Step 1: involves estimating the hidden state h∗i

∂g(λt)

∂λ
= −φ(xi , yi , h

∗)

where h∗ = arg max hλtφ(xi , yi , h), λt is the current estimate of λ. This
reduces to a modified SVM with known state:

min
λ

1

2
||λ||2 +C

M∑
i=1

max
(y,h)
{λ ·φ(xi , yi , h) + ∆(yi , y , h)}−C

M∑
i=1

λ ·φ(xi , yi , h
∗
i)

I Step 2 estimate λ. This is equivalent to minimizing a structured SVM
(now that h is known).

I Repeat steps 1 and 2 until convergence. Like EM, there is no guarantee
that this will converge to the global optimum.

