Object Detection by Deformable Part Models and Latent support Vector Machines

- Hierarchical Models of Objects.
- Movable Parts.
- Several Hierarchies to take into account different viewpoints.
- Energy– data & prior terms.
- Energy can be computed recursively.
- Data partially supervised object boxes.
- Zhu, Chen, Torrabla, Freeman, Yuille (2010)

Overview

(1). Hierarchical part-based models with three layers. 4-6 models for each object to allow for pose.

(2). Energy potential terms: (a) HOGs for edges, (b) Histogram of Words (HOWs) for regional appearance, (c) shape features.

(3). Detect objects by scanning sub-windows using dynamic programming (to detect positions of the parts).

(4). Learn the parameters of the models by machine learning: a variant (iCCCP) of Latent SVM.

Graph Structure:

- Each hierarchy is a 3-layer tree.
- Each node represents a part.
- Total of 46 nodes:
- \circ (1+9+ 4 x 9)
- State variables -- each node has a spatial position.
- Graph edges from parents to child – spatial constraints.

Graph Structure:

- The parts can move relative to each other enabling spatial deformations.
- Constraints on deformations are imposed by edges between parents and child (learnt).

Parent-Child spatial constraints

Deformations of the Car

Parts: blue (1), yellow (9), purple

Deformations of the

Multiple Models: Pose/Viewpoint:

- Each object is represented by 4 or 6
 hierarchical models (mixture of models).
- These mixture components account for pose/viewpoint changes.

Hierarchical Part-Based Models:

The object model has variables:

- 1. p represents the position of the parts.
- 2. V specifies which mixture component (e.g. pose).
- 3. y specifies whether the object is present or not.
- 4. w model parameter (to be learnt). During learning the part positions p and the pose V are unknown – so they are latent variables and will be expressed as V=(h,p)

Energy of the Model:

The "energy" of the model is defined to be: $-\omega \cdot \Phi(x, y, h)$ where χ is the image in the region. $y^*, h^* = \arg\max \omega \cdot \Phi(x, y, h)$ • The object is detected by solving:

- If $y^* = +1$ then we have detected the object.
- If so, $h^* = (p^*, V^*)$ specifies the mixture component and the positions of the parts.

Energy of the Model:

- Three types of potential terms $\Phi(x, y, h)$
 - (1) Spatial terms $\Phi_{shape}(y,h)$ specify the distribution on the positions of the parts.
 - (2) Data terms for the edges of the object $\Phi_{HOG}(x, y, h)$ defined using HOG features.
 - (3) Regional appearance data terms $\Phi_{HOW}(x, y, h)$ defined by histograms of

words

(HOWs – grey SIFT features and K-means).

Energy: HOGs and HOWs

- Edge-like: Histogram of Oriented Gradients (Upper row)
- Regional: Histogram Of Words (Bottom row)
- 13950 HOGs + 27600 HOWs

Object Detection

To detect an object requiring solving:

```
y^*, h^* = \arg \max \omega \cdot \Phi(x, y, h) for each image region.
```

We solve this by scanning over the subwindows of the image, use dynamic programming to estimate the part positions p
and do exhaustive search over the y&V

Learning by Latent SVM

- The input to learning is a set of labeled image regions. $\{(x_i, y_i): i = 1,..., N\}$
- Learning require us to estimate the parameters ω
- While simultaneously estimating the hidden variables h = (p, V)
- Classically EM approximate by machine learning, latent SVMs.

Latent SVM Learning

- We use Yu and Joachim's (2009) formulation of latent SVM.
- This specifies a non-convex criterion to be minimized. This can be re-expressed in terms of a convex plus a concave part.

$$\min_{w} \frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{N} \left[\max_{y,h} [w \cdot \Phi(x_{i}, y, h) + L(y_{i}, y, h)] - \max_{h} [w \cdot \Phi(x_{i}, y_{i}, h)] \right]$$

$$\min_{w} \left[\frac{1}{2} \| w \|^{2} + C \sum_{i=1}^{N} \max_{y,h} [w \cdot \Phi(x_{i}, y, h) + L(y_{i}, y, h)] \right]$$
$$- \left[C \sum_{i=1}^{N} \max_{h} [w \cdot \Phi(x_{i}, y_{i}, h)] \right]$$

Latent SVM Learning

- Following Yu and Joachims (2009) adapt the CCCP algorithm (Yuille and Rangarajan 2001) to minimize this criterion.
- CCCP iterates between estimating the hidden variables and the parameters (like EM).
- We propose a variant incremental CCCP which is faster.
- Result: our method works well for learning the parameters without complex initialization.

Learning: Incremental CCCP

• Iterative Algorithm:

- Step 1: fill in the latent positions with best score(DP)
- Step 2: solve the structural SVM problem using partial negative training set (incrementally enlarge).

Initialization:

- No pretraining (no clustering).
- No displacement of all nodes (no deformation).
- Pose assignment: maximum overlapping
- Simultaneous multi-layer learning

Kernels

- We use a quasi-linear kernel for the HOW features, linear kernels of the HOGs and for the spatial terms.
- We use:
 - (i) equal weights for HOGs and HOWs.
 - (ii) equal weights for all nodes at all layers.
 - (iii) same weights for all object categories.
- Note: tuning weights for different categories will improve the performance.
- The devil is in the details.

Post-processing: Context Modeling

- Post-processing:
 - Rescoring the detection results
- Context modeling: SVM+ contextual features
 - best detection scores of 20 classes, locations, recognition scores of 20 classes
- Recognition scores (Lazebnik CVPR06, Van de Sande PAMI 2010, Bosch CIVR07)
 - SVM + spatial pyramid + HOWs (no latent position variable)

Detection Results on PASCAL 2010: Cats

Horses

Cars

Buses

Comparisons on PASCAL 2010

- Mean Average Precision (mAP).
- Compare AP's for Pascal 2010 and 2009.

Methods (trained on 2010)	MIT- UCLA	NLPR	NUS	UoCTTI	UVA	UCI
Test on 2010	35.99	36.79	34.18	33.75	32.87	32.52
Test on 2009	36.72	37.65	35.53	34.57	34.47	33.63