
Contents

1 Images and Basis Functions . 4
1.1 Basis Functions, and Linear Algebra . 5
1.2 Principle Component Analysis . 7
1.3 Sparsity and Over-Complete Bases . 13
1.4 Dictionaries and Matched Filter Interpretation. 16
1.5 K-means and Dictionaries . 17
1.6 Deeper Understanding; Soft k-means and Mixtures of Gaussians 18

3

4 CONTENTS

1 Images and Basis Functions
In Section (1.1) we discuss how images can be represented in terms of basis functions. This builds on the
Fourier theory introduced in the previous lecture. SP!! Get material from LinearFilteringKokkinos.Pages 24
to 32. Need the mathematics (not images). and Pages 39-43.

In Section (1.2) we describe PCA and SVD. This is a way to learn basis functions from natural images.
Shift-invariance means that these are often like sinusoids. A problem is that the number of basis functions
is foxed (dimension of the image).

In Section (1.3) we describe how we can get a sparse basis – and the miracle of L1 sparsity. Material
from the SeyounPowerpoints – pages 20-24. SP!!

In Section (1.4) we use k-means (and other methods) to get dictionaries of ultra-sparse basis functions.
This gives matched filters. We also discuss mini-epitomes.

Question – what about Independent Component Analysis??

1. IMAGES AND BASIS FUNCTIONS 5

1.1 Basis Functions, and Linear Algebra
This is a quick reminder about orthogonal basis functions. It needs to be fleshed out with some words.

Let u ∈ RN
Basis: N linearly independent vectors {vi}, i = 1, ..., N
Expansion on basis: u =

∑
i civi

Orthonormal basis: 〈vi,vj〉 =

{
1, i = j
0, otherwise

Expansion coefficients: 〈vi,u〉 = ci
Expansion: u =

∑
i〈vi,u〉vi

Canonical basis (an example is the three-dimensional coordinate system of Euclidean space).u1

u2

u3

 (1)

u =
∑
i

uiei =
∑
i

〈ei,u〉ei (2)

Canonical basis for 2D signals
Canonical basis for signals: expansion
Signal expansion: g[n] =

∑
k ckdk[n]

Identify terms: g[k] = ck
Rewrite: dk[n] = d[n− k]
d[n] =
Sifting property: g[n] =

∑
k g[k]d[n− k]

Canonical basis for signals and LTI filters d[n]→ h[n] d[n− k]→ h[n− k]
Any signal: g[n] =

∑
k g[k]d[n− k]

By linearity: ψ(g) =
∑
k g[k]h[n− k] = g[n] ∗ h[n]

Output of any LSI filter for any input: convolution of input with filter’s impulse response
Convolution - discrete and continuous
2D convolution sum:

f [n1, n2] =
∑
k1,k2

g[k1, k2]h[n1 − k1, n2 − k2]

= g[n1, n2] ∗ h[n1, n2]

(3)

2D convolutional integral:

f(x, y) =

∫ ∫
g(a, b)h(x− a, y − b)dadb

= g(x, y) ∗ h(x, y)

(4)

Page 32
page 39: Linear algebra reminder: eigenvectors M : N ×N
Eigenvectors: Mvi = λivi, i = 1, ..., N
Full-rank, real and symmetric: eigenbasis
u =

∑
k 〈vk,u〉︸ ︷︷ ︸

ck

vk

Mu =
∑
k

ckMvk =
∑
k

ckλk︸︷︷︸
c
′
k

vk (5)

M(Mu) =
∑
k

ckλ
2
k︸︷︷︸

c
′′
k

vk (6)

6 CONTENTS

Page 40: Eigenvectors and eigenfuctions
Eigenvector: Mv = λv
Eigenfunction: ψ(b) = λb
Input: f =

∑
k akbk

Output: ψ(f) =
∑
k akψ(bk)

f ↔ {ak} ψ(f)↔ {akλk}
Page 41: Eigenfunctions for LTI filters
LTI filter: ψ(g)[n] =

∑
k h[k]g[n− k]

Let’s guess: bω[n] = exp(jωn) = cos(ωn) + j sin(ωn) It works

ψ(bω)[n] =
∑
k

h[k]bomega[n− k]

=
∑
k

h[k] exp(jω[n− k])

=
∑
k

h[k] exp(−jωk) exp(jωn)

= H(ω)bω[n]

(7)

Frequency response: H(ω) =
∑
k h[k] exp(−jωk)

Page 42: Expansion on harmonic basis
From orthonormality: u =

∑
k 〈u,vk〉vk

Inner product for complex functions: 〈f, g〉 =
∑
n f [n]g∗[n]

Discrete-time: F (ω) = 〈f, bω〉 =
∑
n f [n]e−jωn

Continuous-time: F (ω) =
∫∞
−∞ f(t) exp(−jωt)dt

Page 43: Change of basis
Canonical expansion: u =

∑
k ukek

Eigenbasis expansion: u =
∑
k 〈u,vk〉︸ ︷︷ ︸

ck

vk Rotation matrix from eigenbasis:

1. IMAGES AND BASIS FUNCTIONS 7

1.2 Principle Component Analysis
Learning the basis functions. Mathematics of PCA and SVD. If images are shift-invariant, then the eigen-
vectors are sinusoids.If the images are aligned – e.g., faces – then we get eigenfaces.

Probably shorten and put some material in an Appendix.

Principal Component Analysis (PCA)

One way to deal with the curse of dimensionality is to project data down onto a space of low dimensions,
see figure (1). There are a number of different techniques for doing this. The most basic method is Principal
Component Analysis (PCA) .

Figure 1:

We will use the following convention:
~µT ~µ is a scalar µ2

1 + µ2
2 + · · ·+ µ2

D

~µ ~µT is a matrix


µ2

1 µ1µ2 µ1µ3 · · ·
... µ2

2

. . .
...

...
...

...
...


The data samples are ~x1, . . . , ~xN in a D-dimension space. First, compute their mean

~µ =
1

N

N∑
i=1

~xi

and their covariance

K =
1

N

N∑
i=1

(~xi − ~µ)(~xi − ~µ)T

Next, compute the eigenvalues and eigenvector of K:
Solve K~e = λ~e
λ1 ≥ λ2 ≥ · · · ≥ λN

Note: K is a symmetric matrix- so eigenvalues are real, eigenvectors are orthogonal. ~enu · ~eµ = 1 if
µ = ν, and = 0 otherwise. Also, by construction, the matrix K is positive semi-definite, so λN ≥ 0 (i.e. no
eigenvalues are negative).

8 CONTENTS

PCA reduces the dimension by projection the data onto a space spanned by the eigenvectors ~ei with
λi > T , where T is a threshold. Let M eigenvectors be kept. Then, project data ~x onto the subspace
spanned by the first M eigenvectors, after subtracting out the mean. Formally:

~x− ~µ =

D∑
ν=1

aν~eν ,

where the coefficients {aν} are given by

aν = (~x− ~µ) · ~eν

Note: orthogonality means ~eν · ~eµ = δνµ, which denotes the Kronecker delta.
Hence:

~x = ~µ+

D∑
ν=1

〈(~x− ~µ) · ~eν〉~eν

and there is no dimension reduction (no compression).
Then, approximate

~x ≈ ~µ+

M∑
ν=1

〈(~x− ~µ) · ~eν〉~eν

This Projects the data into the M-dimension subspace of form:

~µ+

M∑
ν=1

bν~eν

See a 2-dimensions example in figure (2). The eigenvector of K corresponds to the second order move-
ments of the data.Section3ImagePatches/figures/

Figure 2: In two-dimensions, the eigenvectors give the principal axes of the data.

If the data lies (almost) on a straight line, then λ1 � 0, λ2 ≈ 0, see figure (3).

PCA and Gaussian Distribution

PCA is equivalent to performing ML estimation of the parameters of a Gaussian distribution

p(~x | ~µ,Σ) =
1

(2π)D/2
√

det Σ
e−

1
z (~x−~µ)T

∑−1(~x−~µ)

to get ~̂µ, Σ̂ by performing ML on
∏
i p(~xi | ~µ,Σ), and then throw away the directions where the standard

deviation is small. ML gives ~µ = 1
N

∑N
i=1 ~xi and Σ = 1

N

∑N
i=1(~xi − ~mu)(~xi − ~µ)T . See Bishop’s book

for probabilistic PCA.

1. IMAGES AND BASIS FUNCTIONS 9

Figure 3: In two-dimensions, if the data lies along a line then λ1 > 0 and λ2 ≈ 0.

When is PCA appropriate?

PCA is almost always a good technique to try, because it is so simple. Obtain the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λN and plot f(M) =

∑M
i=1 λi/

∑N
i=1 λi, to see how f(M) increases with M and takes maximum

value 1 at M = D. PCA is good if f(M) asymptotes rapidly to 1. This happens if the first eigenvalues are
big and the remainder are small. PCA is bad if all the eigenvalues are roughly equal. See examples of both
cases in figure (4).

0 D
M

1

f(M)

0 D
M

1

f(M)

Figure 4: Left: eigenvalues asymptote rapidly to 1, this is good. Right: all eigenvalues are equally important,
PCA is not appropriate here.

PCA would be bad in an example in which the data is a set of strings
(1, 0, 0, 0, . . .) = ~x1

(0, 1, 0, 0, . . .) = ~x2

(0, 0, 0, 0, . . . , 0, 1) = ~xN
Then, it can be computed that there is one zero eigenvalue of PCA. But all the other eigenvalues are not

small. In general, PCA works best if there is a linear structure to the data. It works poorly if the data lies on
a curved surface and not on a flat surface.

Interpretation of PCA

What is PCA doing? There are two equivalent ways to interpret PCA: (i) minimize the projection error, and
(ii) maximize the variance of the projection.

Consider the variance of the data 1
N

∑N
i=1(~xi − ~µ)2. It is independent of the projection. We can express

10 CONTENTS

(~xi − ~µ)2 =
∑D
i=1{(~xi − ~µ) · ~eν}2, where the ~eν are the eigenvectors of the correlation. Hence,

1

N

N∑
i=1

(~xi − ~µ)2 =
1

N

N∑
i=1

M∑
ν=1

{(~xi − ~µ) · ~eν}2 +
1

N

N∑
i=1

D∑
ν=M+1

{(~xi − ~µ) · ~eν}2,

where the left-hand side is the variance of the data, the first term of the right-hand side is the variance of the
data within the plane ~e1, · · · , ~eM , and the last term is the projection error.

When ~xi is projected to a point ~xi,p = ~µ+
∑M
ν=1{(~xi−~µ)·~eν}~eν , it has a projection error

∑D
ν=M+1{(~xi−

~µ) · ~eν}2. The sum of the projection error and the variance of projection are constant. So maximizing on is
equivalent to minimizing the other.

Also, this relationship can be expressed in terms of eigenvalues. It reduces to

N∑
ν=1

λν =

M∑
ν=1

λν +

D∑
ν=M+1

λν

To see this, 1
N

∑N
i=1(~xi−~µ) ·(~xi−~µ) = Trace(C) =

∑D
ν=1 λν . The variance of the projection is

∑M
ν=1 λν ,

by similar reasoning. Hence, the projection error is
∑D
ν=M+1 λν .

Cost Function for PCA

The cost function for PCA can be defined as

J(~M, {a}, {e}) =

N∑
k=1

||(~µ+

M∑
i=1

aki~ei)− ~xk||2),

where The {aki} are projection coefficients.
Minimize J w.r.t. ~M, {a}, {e} Data {~xk : k = 1 to N}

Intuition: find the M-dimensional subspace s.t. the projections of the data onto this subspace have minimal
error, see figure (5).

Figure 5: PCA can be obtained as the projection which minimizes the least square error of the residuals.

Minimizing J , gives the {~̂ ie}’s to be the eigenvectors of the covariance matrix
~K = 1

N

∑N
k=1(~xk − ~µ)(~xk − ~µ)T

~µ = 1
N

∑
k=1N ~xk

âki = (~xk − ~̂µ) · ~ei the projection coefficients.
To fully understand why PCA minimizes or maximizes these terms we must express the criterion slightly

differently. Then we use Singular Value Decomposition (SVD), which is advanced material of this lecture.

1. IMAGES AND BASIS FUNCTIONS 11

We can re-express the criteria as

J [~µ, {a}, {e}] =

N∑
k=1

D∑
b=1

{(µb − xbk) +

M∑
i=1

akieib)}2,

where b denotes the vector components.
This is an example of a general class of problem.
Let E[Ψ, e] =

∑a=D,k=N
a=1,k=1 (x̃ak −

∑M
ν=1 ΨaνΦνk)2 .

Goal: minimize E[Ψ, e] w.r.t. Ψ, e.
This is a bilinear problem, that can be solved by SVD.
Note: x̃ak = xak − µa is the position of the point, relative to the mean.

Singular Value Decomposition SVD

We can express any N ×D matrix ~X , xak in form

X = E D F

xak =

M∑
µ,ν=1

eaµdµνfνk

where D = {dµν} is a diagonal matrix (dµν = 0, µ 6= ν). Note: X is not a square matrix (unless D = N).
So it has no eigenvalues or eigenvectors.

D =


√
λ1 · · · 0
...

. . .
...

0 · · ·
√
λN

 , where the {λi} are eigenvalues of X XT (equivalently of XT X)

E = {eaµ} are eigenvectors of (X XT)ab,
F = {fνk} are eigenvectors of (XT X)kl,
µ, ν label the eigenvectors.

Note: For X̄ defined on previous page, we get that (X̃ X̄T) =
∑N
k=1(~xk −µ)(~xk −µ)T . Also note that

if (X XT)~e = λ~e, then (XT X)(XT~e) = λ(XT~e).
This relates the eigenvectors of X XT and of XT X (calculate the eigenvectors for the smallest matrix,

then deduce those of the bigger matrix – usually D < N).
Minimize:

E[ψ, e] =

a=D,k=N∑
a=1,k=1

(x̃ak −
M∑
ν=1

ψaνφνk)

2

We set
{
ψaν =

√
δννe

ν
a

φνk =
√
δννf

ν
k

Take M biggest terms in the SVD expansion of x.
But there is an ambiguity.

M∑
ν=1

ψaνφνk = (ψφ)ak = (ψAA−1φ)ak

for any M ×M invertible matrix A
ψ → ψA
φ→ A−1φ

For the PCA problem, we have constants that the projection directions one orthogonal unit eigenvectors.
This gets rid of the ambiguity.

12 CONTENTS

Relate SVD to PCA

Linear algebra can be used to relate SVD to PCA. Start with an n×m matrix X.
XXT is a symmetric n× n matrix
XTX is a symmetric m×m matrix
Note that (XXT)

T
= XXT .

By standard linear algebra,
XXT~eµ = λµ~eµ,

with n eigenvalues λµ and eigenvectors ~eµ. The eigenvectors are orthogonal ~eµ · ~eν = δµν (= 1 if µ = ν,
= 0 if µ 6= ν).

Similarly,
XXT ~fν = τν ~fν ,

with m eigenvalues τν and eigenvectors ~fν , where ~fµ · ~fν = δµν .

The {~eµ} and {~fν} are related because

(XTX)(XT~eµ) = λµ(XT~eµ)

(XXT)(X~fµ) = τµ(X~fµ)

Hence, XT~eµ ∝ ~fµ, X~fµ ∝ ~eµ and λµ = τµ. If n >m , then there are n eigenvectors {~eµ} and m
eigenvectors {~fµ}. So, several {~eµ} relate to the same ~fµ.

Claim: we can express
X =

∑
µ

αµ~eµ ~fTµ

XT =
∑
µ

αµ ~fµ~eTµ

(For some αµ. We will solve for all αµ later.)

Verify the claim:
X~fν =

∑
µ

αµ~eµ ~fTµ
~fν =

∑
µ

αµδµν~e
µ = αν~eν

XXT =
∑
µ,ν

αν~eν ~fTν α
µ ~fµ~eTµ =

∑
µ,ν

αναµ~eνδµν~e
T
µ =

∑
µ

(αµ)2~eµ~eTµ

Similarly, xTx =
∑
µ(αµ)2 ~fµ ~fTµ . So, (αµ)2 = λµ. (Because we can express any symmetric matrix in

form
∑
µ λµ~e

µ~eµ
T , where λµ are the eigenvalues and ~eµ are eigenvectors.)

X =
∑
µ α

µ~eµ ~fµ
T

is the SVD of X
In coordinates:

xai =
∑
µ α

µeµaf
µ
i

xai =
∑
µ,ν e

µ
aα

µδµνf
ν
i

x = EDF
Eaµ = eµa ,Dµν = αµδµν , Fνi = fνi .

1. IMAGES AND BASIS FUNCTIONS 13

1.3 Sparsity and Over-Complete Bases

From Arbib Chapter
This section considers receptive field models from different perspectives. This includes the use of spar-

sity to suggest receptive field properties based on the statistics of natural images and also the idea of matched
filters which revert to an older idea of receptive fields as feature detectors [?]. Sparsity was proposed by Bar-
low [?] as a general principle for modeling the brain based on the observation that typically only a small
number of neurons are active. It was developed as a way to predict receptive field properties by Olshausen
and Field [?]. It is natural to ask whether the receptive fields of cells encode basis functions which somehow
capture the typical structure of images and represent it in a form which is suitable for later processing.

Our starting point is the idea that images, and particularly local regions of images. can be represented as
a linear combination of basis functions I(~x) =

∑
i αi

~bi(~x), see equation (??).

Over-Complete Bases and Sparsity.

This section introduces the idea of over-complete basis functions and sparsity. To motivate this idea, consider
an image which consists partly of regions where the intensity varies spatially smoothly and others where the
intensity is more jagged and consists of a number of bright spots, or impulses. The smoothly varying regions
of the image can be represented by fourier analysis efficiently, in the sense that we can approximate the
intensity by only a small number of weighted sinusoids (in other words, the fourier transform of the image
is peaked at a limited number of frequencies). By contrast, the impulses are not well described by fourier
analysis because the fourier transform is not zero for all frequencies (the fourier transform of an impulse at
~x0 is exp{i~ω · ~x0}, so the amplitude spectrum is constant at all frequencies). Instead it would be better to
represent the spikes in terms of a basis of impulse functions, but this representation would be very inefficient
for the smoothly varying parts of the image. In short, different types of basis functions are suitable for
different regions of the image. This suggests a strategy where we seek a representation in terms of an over-
complete set of basis functions, in this case sinusoids and impulse functions, and a criterion which selects
an efficient representation so that only a small number of basis functions are activated for each image. This
requirement is called sparsity.

More formally, we represent an image, or local image region, by:

I(~x) =

N∑
i=1

αibi(~x),

where the {bi} are the basis functions (which are the same for all images, and could include sinusoids
and impulse functions) and the {αi} are the coefficients of the bases (which depend on the image). The
number N of bases is much bigger than the dimension of the image, and hence the bases are over-complete.
This differs from fourier analysis where the data (e.g., an image) is expressed in terms of a set of basis
functions which are mutually orthogonal, which enables the coefficients α to for each image to be estimated
by αi =

∑
~x bi(~x) · I(~x). Over-completeness implies that there are many ways to represent the image in

terms of these basis functions (by different choices of the α’s) and we need an additional criterion to select
the α’s. The sparsity criterion proposes that we favor representations which make

∑N
i=1 |αi| small, which

penalize the weights of the basis functions and encourages most coefficients to be 0.
More precisely, we represent an image ~I by the approximation

∑N
i=1 α̂i

~bi, where the {α̂i} are chosen to
minimize the function:

E(α) =
∑
~x

(I(~x)−
N∑
i=1

αibi(~x))2 + λ

N∑
i=1

|αi|. (8)

The first penalizes the error of the approximation and the second term, whose strength is weighted by a
parameter λ, penalizes the coefficients {αi}. The solution α̂ = arg minαE(α) can not not be specified in
closed form (unlike the case for orthogonal basis function), but E(α) is a convex function of α and efficient
algorithms exist for minimizing it to estimate α̂. The results of these algorithms can, for example, decompose
an image into a sum of sinusoids and a sum of impulse functions.

14 CONTENTS

These ideas give an alternative way to think about the receptive fields of cells in V1. Firstly, observe that
V1 has far more cells than the retina or the LGN and so it is has enough neural machinery to implement over-
complete bases. Secondly, over-complete bases can be designed for specific image structures of interest (e.g.,
impulse functions or edges) which enables us to start interpreting the image instead of simply representing
it. Thirdly, it relates to the observation that cells in V1 fire sparsely, which suggests [?] that they are tuned
to specific stimuli and may relate to metabolic processes(firing a neuron takes energy which needs to be
replenished). Hence the idea that the visual cortex seeks to obtain sparse, and hence presumably more easily
interpretable representations, has intuitive appeal.

How does this discussion of over-completeness and sparsity relate to our previous description of V1 cells
in terms of Gabor filters? Gabor filters have some of the properties that this approach requires. Families of
Gabor filters are built by taking a basic functions and performing transformations on it which give an over-
complete basis. Hence they do not specify a unique representation of an image (i.e. any image can be
represented many different ways in terms of Gabor functions). These issues, and the relations of Gabors to
wavelets, are discussed in more detail in [?].

Sparsity and Natural Images.

Sparsity can also be used to derive the properties of receptive fields of cell in V1 if we assume that these
cells are designed to be able to represent properties of natural images [?], see figure (6)(Left). Hence instead
of hypothesizing models of receptive fields (e.g., Gabor filters) we can try to predict these receptive fields
from studying images. These predictions do give some justification for Gabor functions but they also suggest
other receptive field models which have also been experimentally observed.

Figure 6: Left: The receptive fields learnt using sparsity [?]. Right: receptive fields learnt by matched filters.

This requires learning the basis functions {~bi} from a set of natural images {~Iµ : µ ∈ Λ}. This can be
found be extending equation (8) to obtain a criteria E(b, α) for fitting basis functions b and coefficients α to
the set of images:

E(b, α) =
∑
µ∈Λ

(Iµ(~x)−
N∑
i=1

αµi bi(~x))2 + λ
∑
µ∈Λ

N∑
i=1

|αi|.

We estimate the basis functions b̂ and the coefficients α̂ by minimizing E(b, α) to obtain:

(b̂, α̂) = arg min
(b,α)

E(b, α).

Note that the basis functions are the same for all images but the coefficients vary for each image (hence they
are indexed by the image µ as well as the basis coefficient i). This minimization is non-convex but there are
efficient algorithms to perform it.

1. IMAGES AND BASIS FUNCTIONS 15

This criterion has been applied to natural images (where the ~I represent small image regions) and the
resulting basis functions, see figure (6)(left), include filters which look like Gabor functions but they also
include other types of filters which are also observed in experiments [?].

We note that there are other methods for predicting receptive field properties from natural images using
a similar image model, I(~x) =

∑N
i=1 αibi(~x), but imposing different assumptions on the form of the bases.

In particular, independent component analysis (ICA) gives similar receptive field models [?]. Hyvarinen [?]
explains this by showing that both types of models – L1 sparsity and ICA – both encourage the αi to be
strongly peaked at 0, but can occasionally have large non-zero values.

What happens if we remove the sparsity requirement and instead find the basis functions that minimize∑
µ∈Λ(Iµ(~x) −

∑N
i=1 α

µ
i bi(~x))2? The basis functions will be the eigenvectors of the correlation matrix of

the images and can be found by principal component analysis (PCA). Code for performing PCA is supplied
in interactive demo (2c). It can be shown that the principal components of images will typically be sinusoids
(provided the images are sufficiently representative of natural images). We return to this issue in section (??)
when we describe unsupervised ways to learn receptive fields of neurons.

Sparsity and Faces

Grab material from Ethan Gao – or form the Wright, Yi Ma, sparsity paper!!

Sparsity: Interpretation

The miracle of sparsity is illustrated by the following example (here we replace | ~J | by J to simplify the
argument).

f(ω; I) = (ω − I)2 + λ|ω| (9)

What is ω̂(I) = arg minω f(ω; I)?

f+(ω; I) = (ω − I)2 + λω. For ω ≥ 0 (10)
f−(ω; I) = (ω − I)2 − λω. For ω ≤ 0 (11)

df+

dω
= 2(ω − I) + λ = 0⇒ ω̂(I) =

2I − λ
2

,∀ω ≥ 0 (12)

df−
dω

= 2(ω − I)− λ = 0⇒ ω̂(I) =
2I + λ

2
,∀ω ≤ 0 (13)

Hence, we have

ŵ(I) =
2I − λ

2
, I ≥ λ

2 (14)

ŵ(I) = 0, |I| ≤ λ
2 (15)

ŵ(I) =
2I + λ

2
, I ≤ −λ2 (16)

As we show in Figure 1.3, the use of the L1 norm |ω| biases the solution to ω̂(I) = 0 for small I .
By contrast, f2(ω; I) = (w − I)2 + λω2 has minimum at ω − I + λω = 0. Therefore,

ω̂(I) =
I

1 + λ
(17)

which always smooths I , but doesn’t force it to 0.

16 CONTENTS

0

𝜔 𝐼

𝐼 𝜆

2
 −

𝜆

2

𝐼 −
𝜆

2

𝐼 +
𝜆

2

Figure 7: L1 norm is better

1.4 Dictionaries and Matched Filter Interpretation.
This section describes a way to represent each image in terms of a single basis element, or matched filter.
Examples of matched filters are shown in figure (6)(right). We now describe the details of this approach.

Suppose we have a filter ~B and an input image patch ~Ip. We want to find the best fit of the filter to
the image by allowing us to transform the filter by ~B 7→ a ~B + b~e, where ~e = (1/

√
N)(1, ..., 1). This

corresponds to scaling the filter by a and adding a constant vector b. If ~B is a derivative filter then, by
definition, ~B · ~e = 0. We normalize ~B and ~e so that ~B · ~B = ~e · ~e = 1.

The goal is to find the best scaling/contrast a and background b to minimize the match:

E(a, b) = |~Ip − a ~B − b~e|2.

The solution â, b̂ are given by (take derivatives of E with respect to a and b, recalling that ~B and ~e are
normalized):

â = ~B · Ip, b̂ = ~e · ~Ip.

In this interpretation, the filter response is just the best estimate of the contrast a. The estimate of the
background b is just the mean value of the image. Finally, the energy E(â, b̂) is a measure of how well the
filter ”matches” the input image. Receptive fields learnt by matched filters are shown in figure (6)(right).

The idea of a matched filter leads naturally to the idea of having a“dictionary” of filters { ~Bµ : µ ∈ Λ},
where different filters ~Bµ are tuned to different types of image patches. In other words, the input image
patch is encoded by the filter that best matches it. The magnitude of the dot product ~B · ~I is less important
than deciding which filter best matches the input ~Ip. Matched filters can be thought of an extreme case
of sparsity. In the previous sections, an image was represented by a linear combination of basis functions
whose weights were penalizes by the L1-norm,

∑
i |αi|. By comparison, matched filters represent an image

by a single basis function. This gives an ever sparser representation of the image, but at the possible cost of
a much larger image dictionary. Matched filters can be thought of as feature detectors because they respond
only to very specific inputs.

1. IMAGES AND BASIS FUNCTIONS 17

1.5 K-means and Dictionaries
One way to learn a dictionary of basis functions, for matched filters, is by using the K-means algorithm.
This is a classic clustering algorithm but there are many others. As we will show, it related to mixtures of
Gaussians and the EM algorithm.

The K-means algorithm

The input to K-means is a set f unlabeled data: D = {x1, ..., xn}. The goal is to decompose it into disjoint
classes w1, ..., wk where k is known.

The basic assumption is that the data D is clustered round (unknown) mean values m1, ...,mk, see
figure (8).

Figure 8: The k-means algorithm assumes that the data can be clustered round (unknown) mean values
m1, ...,mk. Equivalently, that the data is generated by a mixture of Gaussians with fixed covariance and
with these means.

We defines an association variable Via. Via = 1 if datapoint xi is associated to mean ma and Via = 0
otherwise. we have the constraint

∑
a Via = 1 for all i (i.e. eqach datapoint is assigned to a single mean).

This gives a decomposition of the data. Da = {i : Via = 1} is the set of datapoints associated to mean ma.
The set D =

⋃
aDa is the set of all datapoints. Da

⋂
Db = φ for all a 6= b TODO: φ is the empty set.

We defines a goodness of fit:

E({V }, {m}) =

n∑
i=1

k∑
a=1

Via(xi −ma)2 =

k∑
a=1

∑
x∈Da

(x−ma)2 (18)

The goal of the k-means algorithm is to minimize E({V }, {m}) with respect to {V } and {m}. E(., .)
is a non-convex function and no known algorithm can find its global miminum. But k-means converges to a
local minimum. TODO: It can be given a set of random initialization, obtain a local minima for each, then
select the solution which has lowest energy. Or can use K++ as an initialization.

The k-means algorithm
1. Initialize a partition {D0

a : a = 1 to k} of the data. (I.e. randomly partition the datapoints – ir use
K++).
2. Compute the mean of each cluster Da, ma = 1

|Da|
∑
x∈Da x

3. For i=1 to n, compute da(xi) = |xi −ma|2
Assign xi to cluster Da∗ s.t. a∗ = arg min{da(xi), ..., dk(xi)}
4. Repeat steps 2 & 3 until convergence.

18 CONTENTS

This will converge to a minimum of the energy function because steps 2 and 3 each decrease the energy
function (or stop if the algorithm is at a local minimum). This will divide the space into disjoint regions
TODO: sketch this.

k-means can be formulated in terms of the assignment variable. At step 2, ma = 1∑
i Via

∑
i Viaxi. At

step 3. Via = 1 if |xi −ma|2 = minb |xi −mb|2 and Via = 0 otherwise.

Figure 9: There are three clusters and four ’means’. In practice, two ’means’ will usually be assigned to one
cluster.

Soft k-means

A ”softer” version of k-means – the Expectation-Maximization (EM) algorithm. Assign datapoint xi to each
cluster with probability (P1, . . . , Pk)

1. Initialize a partition of the datapoints.

2. For j=1 to n. Compute the probability that xj belongs to ωa

P (ωa|xj) =
exp− 1

2σ2
(xj−ma)2∑

b exp− 1
2σ2

(xj−mb)2
.

3. Compute the mean for each cluster:
ma =

∑
j xjP (ωa|xj)

Repeat steps 2 & 3 until convergence.

Note: in this version the hard-assign variable Via is replaced by a soft-assign variable P (ωa|xj). Observe
that

∑
a P (ωa|xj) = 1. Also observe that the softness is controlled by σ2. In the limit, as σ2 7→ 0, the

distribution P (ωa|xj) will become binary valued, and soft k-means will be the same as k-means.

1.6 Deeper Understanding; Soft k-means and Mixtures of Gaussians
Soft k-means can be reformulated in terms of mixtures of Gaussians and the Expectation-Maximization
(EM) algorithm. This assumes that the data is generated by a mixture of Gaussian distributions with means

1. IMAGES AND BASIS FUNCTIONS 19

{m} and variance
sigma2I.

P (x|{V }, {m}) =
1

Z
exp{−

∑
ia

Via
||xi −ma||2

σ2
}. (19)

This is equivalent to a mixture of Gaussians:

P (x|V,m) = N (x :
∑
a

Viama, σ
2), (20)

where the variable V identifies the mixture component (i.e. Via = 1 if datapoint xi was generated by mixture
a).

We need to impose a prior P ({V }) on the assignment variable V . It is natural to choose a uniform
distribution P (V) = 1/Z, where Z is the number of possible assignments of the datapoints to the means.

This gives distributions P (x, {V }|{m}) = P (x|{V }, {m})P ({V }). This form enables us to use the
EM algorithm TODO: see later section to estimate the mean variables {m} despite the presence of un-
known/missing/latent variables {V }. The EM algorithm can be applied to problems like this where there are
quantities to be estimated but also missing/latent variables. The EM algorithm can be formulated in terms
of minimizing an energy function, but this energy function is non-convex and EM can be only guaranteed
to converge to a minimum of the energy function and not to a global minimum. Deriving the soft k-means
algorithm by applying the EM algorithm to P (x|V,m).is left as an exercise for the reader.

We can extend soft k-means in several ways. The simplest, which we will do next, is to allow the
covariances of the Gaussians to differ and to estimate them as well. More generally, we can have a process
P (x, h|θ) where x is the observed data, h is a hidden/missing/latent variable, and θ are the model parameters.
TODO: Add Gaussian material from other notes.

Figure 10: The data x is generated by hidden variable h by a probability model with unknown parameters θ.

Mini-Epitomes

This is another way to learn dictionaries which uses a complicated variant of mixtures of Gaussians by intro-
ducing extra variables. It is motivated by deal with the shift-invariance of images and introduces additional
variables to deal with this. TODO: get figures from the powerpoints to show why we care about shofts.

This is another way to learn a dictionary with a more complicated generative model with more hidden
variables.. It is motivated by the fact that images are shift-invariant (unless they are carefully aligned).

Let {xi}Ni=1 be a set of possibly overlapping patches of size h×w pixels cropped from a large collection
of images.

20 CONTENTS

Our dictionary comprises K mini-epitomes {µk}Kk=1 of size H×W , with H ≥ h and W ≥ w. The
length of the vectorized patches and epitomes is then d = h · w and D = H ·W , respectively.

We approximate each image patch xi with its best match in the dictionary by searching over the Np =
hp × wp (with hp = H − h + 1, wp = W − w + 1) distinct sub-patches of size h × w fully contained in
each mini-epitome. Typical sizes we employ are 8× 8 for patches and 16× 16 for mini-epitomes, implying
that each mini-epitome can generate Np = 9 · 9 = 81 patches of size y88.

We model the appearance of image patches using a Gaussian mixture model (GMM). We employ a
generative model in which we activate one of the image epitomes µk with probability P (li = k) = πk,
then crop an h× w sub-patch from it by selecting the position pi = (xi, yi) of its top-left corner uniformly
at random from any of the Np valid positions. We assume that an image patch xi is then conditionally
generated from a multivariate Gaussian distribution

P (xi|zi, θ) = N (xi;αiTpiµli + βi1, c
2
iΣ0) (21)

The label/position latent variable vector zi = (li, xi, yi) controls the Gaussian mean via νzi = Tpiµli . Here
Tpi is a d×D projection matrix of zeros and ones which crops the sub-patch at position pi = (xi, yi) of a
mini-epitome. The scalars αi and βi determine an affine mapping on the appearance vector and account for
some photometric variability and 1 is the all-ones d× 1 vector. Here x̄ denotes the patch mean value and λ
is a small regularization constant (we use λ = d for image values between 0 and 255).

We choose πk = 1/K and fix the d× d covariance matrix Σ−1
0 = DTD + εI, where D is the gradient

operator computing the x− and y− derivatives of the h× w patch and ε is a small constant.
To match a patch xi to the dictionary, we seek the mini-epitome label and position zi = (li, xi, yi), as

well as the photometric correction parameters (αi, βi) that maximize the probability in Eq. (21), or equiva-
lently minimize the squared reconstruction error (note that D1 = 0)

R2(xi; k, p) =
1

c2i

(
‖D (xi − αiTpµk)‖2 + λ(|αi| − 1)2

)
, (22)

where the last regularization term discourages matches between patches and mini-epitomes whose contrast
widely differs. We can compute in closed form for each candidate match νzi = Tpiµli in the dictionary

the optimal β̂i = x̄i − α̂iν̄zi and α̂i =
x̃Ti ν̃zi±λ
ν̃Tzi

ν̃zi+λ
, where x̃i = Dxi and ν̃zi = Dνzi are the whitened

patches. The sign in the nominator is positive if x̃Ti ν̃zi ≥ 0 and negative otherwise. Having computed the
best photometric correction parameters, we can substitute back in Eq. (22) and evaluate the reconstruction
error R2(xi; k, p).

In order to learn the parameters we use the EM algorithm.Given a large training set of unlabeled image
patches {xi}Ni=1, our goal is to learn the maximum likelihood model parameters θ = ({πk, µk}Kk=1) for the
epitomic GMM model in Eq. (21). As is standard with Gaussian mixture model learning, we employ the
EM algorithm [?] and maximize the expected complete log-likelihood

L(θ) =

N∑
i=1

K∑
k=1

∑
p∈P

γi(k, p) · log
(
πkN

(
xi;αiTpµk + βi1c

2
iΣ0

))
, (23)

where P is the set of valid positions in the epitome. In the E-step, we compute the assignment of each patch
to the dictionary, given the current model parameter values. We use the hard assignment version of EM and
set γi(k, p) = 1 if the i-th patch best matches in the p-th position in the k-th mini-epitome and 0 otherwise.
In the M-step, we update each of the K mini-epitomes µk by∑

i,p

γi(k, p)
α2
i

c2i
TT
p Σ−1

0 Tp

µk =
∑
i,p

γi(k, p)
αi
c2i

TT
p Σ−1

0 (xi − x̄i1). (24)

The EM Algorithm

Suppose we have data x which is generated by a model P (x|h, θ) with a prior p(h) for the hidden variables
h. This gives a distribution p(x, h|θ) from which we can compute p(x|θ) =

∑
h p(x, h|θ).

1. IMAGES AND BASIS FUNCTIONS 21

The goal is to estimate θ̂ = arg maxP (x|θ) (i.e. the maximum likelihood estimate of θ). This can be
formulated in terms of minimizing − log p(x|θ). To obtain EM we introduce a new variable q(h) which is a
distribution over the hidden variables. We define an energy function:

F (θ, q) = − log p(x|θ) +
∑

hq(h) log
q(h)

p(h|x, θ)
. (25)

The second term is the Kullback-Leibler divergence TODO: state relations to Information Theory which
has the property that it is non-negative and is zero only if q(h) = p(h|x, θ). This implies that minimizing
F (θ, q) with respect to θ and q is equivalent to minimizing − log p(x|θ) with respect to θ (by setting q(h) =
p(h|x, θ)).

The EM algorithm corresponds to minimizing F (θ, q) with respect to θ and q(.) alternatively. These
correspond to the two steps of the k-means algorithm. The algorithm is specified most simply by re-
expressing F (θ, q) =

∑
h q(h) log q(h)−

∑
q(h) log p(h, x|θ) (which exploits p(h, x|θ) = p(h|x, θ)p(x|θ

and
∑
hq(h) log p(x|theta) = log p(x|theta).

The algorithm starts with an initialization. Then follows by repeating the two staps.
Step 1. Fix θ and estimate q̂(.) by p(h|x, θ). This requires computing P (h, x|theta)/p(x|theta).
Step 2. Fix q(.) and estimate θ̂ = arg min | −

∑
h q(h) log p(h, x|θ).

Step 1 minimizes F (θ, q) with respect to q and Step 2 minimizes F (θ, q) with respect to θ. Hence each
step is guaranteed to reduce the energy (to stop if the energy cannot be reduced0. There are many variants
because convergence does not require minimizing F (., .) at each step, but only reducing it.

TODO: we can derive soft k-means from this.

A variant of EM

TODO: Older material – Another variant. Instead we have p(θ|D) =
∑
h p(θ, h|D)

Define a new distribution q(h)

Minimize F (θ, q) = − log p(θ|D) +
∑
h q(h) log q(h)

p(h|θ,D)

* Kullback-Leibler divergence:
∑
h q(h) log q(h)

p(h|θ,D) ≥ 0

Note, the minimum occurs at θ̂ = arg minθ{− log p(θ|D)} = arg maxθ p(θ|w)

and at q̂(h) = p(h|θ̂, D)

(Because the Kullback-Liebler divergence attains its minimum at q̂(h) = p(h|θ̂, w)).
We can re-express the Free Energy

F (θ, q) = − log p(θ|D) +
∑
h q(h) log q(h)

p(h|θ,D)

= −
∑
h q(h) log p(θ|D) +

∑
h q(h) log q(h)−

∑
h q(h) log p(h|θ,D)

=
∑
h q(h) log{p(θ|D)p(h|θ,D)}+

∑
h q(h) log q(h)

F (θ, q) = −
∑
h q(h) log p(h, θ|D) +

∑
h q(h) log q(h)

EM minimize F (θ, q) w.r.t. θ&q alternatively. This is called ’coordinate descent’, see figure (11). Here
is an intuition for this algorithm. You live in a city with hills, like Seoul, and the streets are arranged in a
horizontal grid of blocks. You start on a hill (at high altitude) and want to decrease your altitude. You can

22 CONTENTS

either walk in the North-South direction or in the East-West direction. You look in all directions and must
choose to walk North, South, East, or West. You see that North and East are uphill, so you do not choose
them. You see that you can walk South and decrease your altitude by only 10 meters before the street starts
going uphill. You look West and see that you can decrease your altitude by 100 meters by walking in that
direction (until that street also starts going uphill). So you – i.e. coordinate descent – chooses to walk West
and stop when the street starts going uphill (i.e. you have lost 100 meters). The you stop, look again in the
directions North, South, East, West and walk in the direction to maximize your decrease in altitude. The you
repeat until you are at a place where all directions are uphill.

Note: coordinate descent will be important when the dimension of the space is very big. In two-
dimensions, like the city example, the number of choices is small – so if you have ’moved’ East-West last
time then you have to move North-South the next time. In high-dimensions, there are an enormous number
of choices. So the algorithm will often choose only to ’move’ in a small number of possible directions, and
the other directions will be irrelevant. This will be important for AdaBoost learning.

Note: you may not be able to calculate how much you will decrease altitude by walking in one direction.
This will depend on the specific problem.

Figure 11: The coordinate descent algorithm. You start at θt, qt. You fix qt and decrease F (θ, q) by changing
θ until you reach θt+1, where ∂

∂θF (θ, qt) = 0. Then fix θt+1 and decrease F (θ, q) by changing q until you
reach qt+1, where ∂

∂qF (θt+1, q) = 0.

Step 1: Fix qt, set θt+1 = arg minθ{−
∑
h q(h) log p(h, θ|D)}

Step 2: Fix θt, set qt+1(h) = p(h|θt, D)

Iterate steps 1 & 2 until convergence.
Note: this algorithm is guaranteed to converge to a local minimum of F (θ, q), but there is no guarantee

that it will converge to the global minimum. You can use multiple starting points – and pick the solution
which has lowest value of F (.,) – or you can use extra knowledge about the problem to have a good starting
point, or starting points. Or you can use a stochastic algorithm.

