
Vision as Bayesian Inference

Lecture 03-01

What can happen in an 8x8 image window?

How to represent images?

• Basis Functions / Fourier Series

• Overcomplete bases, sparse coding

• Learning bases: (i) PCA, (ii) Sparsity, (iii) Matched Filters

• Shift invariance: Mini-epitomes, Active Patches (next lecture)
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Theoretically, 25664 possible images

But, which ones happen?
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Representing images in terms of basis function

Classic: Orthogonal set of basis functions
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Examples

• Sinusoids / Fourier Analysis

• Haar Bases

• Impulse Function
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D

8x8 patch

Note: the number of orthogonal basis functions is equal to the dimension of the space (e.g., 64 for an 8x8 image), 
because they have to span the space. This limits the number of orthogonal basis functions is limited.
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JPEG Coding

Choose basis function to be sinusoids

Represent image by 

because the bases are orthonormal, we can solve to get 
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An image is represented by the coefficients 

We can also approximate the image by minimizing 

a cost function 

And keeping the terms where the  α’s are large, setting the

others to be 0.
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 This gives standard 

image format of JPEG 
if we use sinusoids
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Sinusoids / Fourier Theory work well if the image can be approximated 
well by a set of sinusoids: i.e. only a small number of non-zero coefficients.

E.G. 

But an image like this: 
is much better 
approximated by a set of 
impulse functions (i.e. 
much fewer impulse 
functions are needed).

And an image like this: 

Is badly modeled by either
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Over-complete Bases

We can represent the image by an over-complete set of bases.

E.G. use all the sinusoids and all the impulse functions. Represent 
the image by a combination of sinusoids and impulses. In the 
1990’s mathematicians invented wavelets, which is another way 
to get an over-complete set of basis functions.

But now we have a problem.
There will be many ways to represent the image in form 

because we can represent it equally well by sinusoids only, or by impulse 
function only, or by combinations of each.
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Note: is a convex function (the L1-norm is convex)

• There are efficient algorithms to estimate 

• Solution: 

Sparsity   L1-Sparsity: 
Resolve this problem by imposing a penalty on, or regularizing, 
the alphas. Determine the α’s by minimizing

 
2

( ) ( )i i i

x i i

E I x b x   
 

= − + 
 

  

regularization

L1-norm

 ˆ arg min E =

ˆ( ) ( )i i

i

I x b x=

Lecture 03-06

 E 

By a “miracle” (later in course),
many of the α’s will be zero
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Extreme Sparsity: Matched Filters

Set of basis function:

Represent each image by one basis function only

 ( )ib x

Algorithm estimate 

Set

Choose 

 ˆ arg min E =
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Set ˆ
ˆ

ii
 =

0j = otherwise

But this needs an enormous number of basis functions.  How many? See mini-epitomes.
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Comments

We described three ways to represent images using basis functions

• Classical: e.g. Fourier Theory / Harr Basis

• L1-Sparsity

• Matched Filters

But what bases to use?

• We can use the bases, like sinusoids (20th century math)

• Or we can learn them from data (21th century math)

Both, overcomplete
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Learning the bases

Let’s start with the classical approach

Bases are orthogonal →

Dataset of images:

Energy Function

Note: basis functions are the same for all images

the coefficients       vary between images
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Minimize
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w.r.t. 

This is simply Principal Component Analysis (PCA)

Provided we extract the means from the images
1
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Solution: Singular Value Decomposition (SVD) implies that

The basis function         are the eigenvectors of the correlation matrix

The coefficients

We can restrict the number of basis function by only use those 

eigenvectors whose eigenvalues are above a threshold T
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What are the eigenvectors of image patches?

Claim If the image patches are randomly drawn from real images, 
then the eigenvectors are sinusoids?

Why? Because images are shift-invariant

Eigenvectors:

( , ) ( )K x y F x y= −

( ) ( ) ( )
y

F x y e y e x− =

The correlation function depends 
only on the different (x-y)

Sinusoids➔ proof: apply the convolution theorem
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So PCA doesn’t help much

You know you will get sinusoids before you look at the images

It is different if we align the images
For example, if we have images of faces and center them in the 
image patch, then the bases will not be sinusoids (Pentland & Turk) 

The alignment means that 
we remove shift-invariance 

But it is not possible to align general images



PCA for generic images.

• Due to shift-invariance, the eigenvectors of generic images are 
sinusoid functions.



PCA for Faces (1)

• The Faces are aligned, so there is no shift-invariance.

• PCA on faces (Pentland and Turk 1991).

• Dataset of faces:



PCA for Faces (2)

• Mean Face (left). Top 7 eigenvectors (center). Reconstruction (right).

• Number of eigenvalues: M=7, or M=14.
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Now try sparsity – Olshausen & Field, 1996
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Minimize E w.r.t. 

Note: is convex in α if b is fixed
is convex in b if α is fixed
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Alternative Algorithm • Initialize b’s

• Minimize w.r.t a and b alternatively

• Guaranteed to converge to local minima

(sparsity)

code 
available 
online
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Olshausen & Field, 1996

Applied these to natural images (See examples)

This gives more interesting bases than PCA

Note: Deep Neural Networks obtain similar bases. So does 
Independent Component Analysis (ICA). 

They look similar to Gabor functions – sinusoids multiplied by 
Gaussians.

https://www.nature.com/articles/381607a0


Sparse Representations of Generic Images

• Olshausen and Field. 
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The Miracle of Sparsity

Sparsity represents an input y by

The miracle: many       will be zero

This won’t happen if we replaced             (L1-loss) by           (L2-loss) 

(Easy to see, with L2-loss you can compute      analytically)
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Why the miracle?   1D case

Let

Claim

here
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Can check analytically

If 0a 
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In higher dimensions

Reformulate the problem in terms of convex hulls

First, duplicate each basis function

Then we can express
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Trick
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b1

b1 -b1

b2

b2 -b2

bN

bN -bN new 2N bases: ib
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In higher dimensions

Now consider encoding an input y
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In higher dimensions

Consider an input data y, w.l.o.g.  |y| = 1 Lies on a sphere

1y

py

Hence, solving for       corresponds to finding 
the closest point yp on the convex hull

i

Sparsity➔find closest point on convex hull 
while penalizing the radius α of the convex hull

Hence, y is projected to a point yp on the 
boundary of the convex hull
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In higher dimensions

Increasing the size of λ

Corresponds w increasing the penalty for the radius of the convex hull

Hence causing the radius to get smaller

Where do point project?

A B

C

D

E

Projected to bases A&B 
(zero coefficients for C, D, and E) 

Projected to 
basis A

This shows that many bases will have 
zero coefficients 
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In higher dimensions, Increasing the size of λ

As λ gets bigger, the convex hull gets smaller and increasingly bases have 
non-zero coefficients

Projected to B Projected to A

CE

A B

D

This gives geometric intuition into the miracle of sparsity
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Final Alternative Matched Filters

Minimize

How to minimize? 

Convert this to k-means clustering
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Extensions

All the previous methods have problem with shift-invariance

The basis function are encoding the space as well as the 
image patterns → See PowerPoints

One solution       Mini-Epitomes

(G. Papandreou, L.-C. Chen, A.L. Yuille, 2014)

http://ieeexplore.ieee.org/document/6909661/
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Extensions

Mini-Epitomes

This is like an extension of L0-sparsity.

But with smarter patches

➔ See next lecture

Can be learnt by the EM algorithm: extending k-means (next lecture)

Image patch
8x8

select

12

12
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Extensions

One result: A small set of mini-epitomes. 

• 128 is able to represent most image patches in 10,000 images with 
good accuracy.

• So the number of possible image patches may not be too 
enormous.

Another approach: Active Patches

• Allow the patch to be deformed when it matches the image 

➔ See next lecture

(J. Mao, J. Zhu, A.L. Yuille, 2014)

https://link.springer.com/chapter/10.1007/978-3-319-10578-9_10
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Why Image Patches?

Helps capture what locally happens in images

Can rediscover edges by examining the bases learnt from images 
(by matched filters or mini-epitomes)

• Can be used for image processing applications

(i) Image denoising, (ii) Super-resolution  (state-of-the-art)

• Can be used for high-level vision tasks (later in course)


