Detecting and Reading Text in Natural Scenes

Xiangrong Chen, Alan L. Yuille <u>{xrchen, Yuille}@stat.ucla.edu</u>

Statistics dept, UCLA

Outline

- Background
- Overview of our method
- Detecting text
- Reading text
- Experiments
- Summary

Text detection methods

Comparison

Text as	texture	connected component
Feature	Texture analysis	Shape, structure and appearance analysis
Searching method	Scan the image using a small window in different scales	Enumerate all the CCPS; need image segmentation to obtain the CCPs
Pros	Easy to deal with scale and complex background; scan quickly	Easily lead to generative model and thus can guide recognition task
Cons	Discriminant model; a black box, not easy to guide recognition task	No good enough segmentation algorithm available to get CCPs

Find candidate area using text as texture

Verify using text as connected component

Proposed method

Text as connected component

Why using AdaBoost

- Improves classification accuracy
- Can be used with many different classifiers
- Simple to implement
- Not prone to overfitting

Training data

162 Source images by normal and blind people

Manually label text regions

 Cut the text regions into overlapped training samples with fixed width-to-height ratio, 2:1

Features – Criterion

Informative

- Invariant for text regions
- Discriminating between text and non-text regions
- Cost
 - Computation

Features-Training samples

Features – Set I

> 1st order derivatives

Features – Set II

Detecting and reading text in natural scenes

- Edge linking features
 - edge map \rightarrow thinning \rightarrow linking
 - Using statistics of the length of the linked edges

Weak learners

- Ability of the strong classifier is determined by the ability of the weak learners
- Strong classifier with 1D stub weak learners can't deal with the example

We use log-likelihood ratio test on distributions of both single features and pairs of features as weak learners (Konishi and Yuille, 2003)

An example of Weak learners

Joint distribution of a pair of features form the first weak learner AdaBoost selected

Text distribution is shaded.

Cascade of strong classifiers

Text detection examples

Fail to detect

- Vertically aligned text
- Individual letters
- Extreme cases

Adaptive binarization

Ni'Black's method

$$T_r(x) = \mu_r(x) + k \bullet \sigma_r(x)$$

Determine range of neighborhood size
Relative to the sub-window height h

$$r(x) = \min_{r \subset R(h)} \{\sigma_r(x) > T_0\}$$

OCR engine

- Currently we use a commercial OCR engine
- A generative model for reading text is under developing

Text reading examples

False positives

- > Building structures
- Signs or icons
- Tree leaves and branches

Results

> Accuracy

- False Negative for detection 2.8%
- False Positive for detection ~ 1/200,000
- False Negative for reading 7%
- False Positive for reading 10% (1% w/ constraint to form coherent word)

Speed

 3 Seconds for 2,048*1536 image ~ 15fps for 320*240 video frames

Summary

- Using Adaboost to learn a strong classifier for detecting text in unconstrained scenes
- Selection of informative features with consideration of computation cost
- Detecting and reading over 90% text regions in our database
- Real-time (15fps) for video quality images (320 * 240)

ICDAR's competition

Database

