Detecting and Reading Text in Natural Scenes

Xiangrong Chen, Alan L. Yuille
{xrchen, Yuille}@stat.ucla.edu

Statistics dept, UCLA
Outline

- Background
- Overview of our method
- Detecting text
- Reading text
- Experiments
- Summary
Text detection methods

Text as texture

Text as connected component
Comparison

<table>
<thead>
<tr>
<th>Text as</th>
<th>texture</th>
<th>connected component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>Texture analysis</td>
<td>Shape, structure and appearance analysis</td>
</tr>
<tr>
<td>Searching method</td>
<td>Scan the image using a small window in different scales</td>
<td>Enumerate all the CCPS; need image segmentation to obtain the CCPs</td>
</tr>
<tr>
<td>Pros</td>
<td>Easy to deal with scale and complex background; scan quickly</td>
<td>Easily lead to generative model and thus can guide recognition task</td>
</tr>
<tr>
<td>Cons</td>
<td>Discriminant model; a black box, not easy to guide recognition task</td>
<td>No good enough segmentation algorithm available to get CCPs</td>
</tr>
</tbody>
</table>
Combination

- Find candidate area using text as texture
- Verify using text as connected component
Proposed method

Text as texture

AdaBoost for text detection

Adaptive binarization

OCR engine

Connected components evaluation

Text as connected component
Why using AdaBoost

- Improves classification accuracy
- Can be used with many different classifiers
- Simple to implement
- Not prone to overfitting
Training data

- 162 Source images by normal and blind people
- Manually label text regions
- Cut the text regions into overlapped training samples with fixed width-to-height ratio, 2:1
Features – Criterion

- **Informative**
 - Invariant for text regions
 - Discriminating between text and non-text regions

- **Cost**
 - Computation
Features-Training samples

<table>
<thead>
<tr>
<th>Face</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data</td>
<td>Telephones</td>
</tr>
<tr>
<td>![Face images]</td>
<td>![CALIFORNIA]</td>
</tr>
<tr>
<td>![Face images]</td>
<td>![SCHOOL]</td>
</tr>
<tr>
<td>Align, Crop & Scale</td>
<td>4,000 faces</td>
</tr>
<tr>
<td>![Face images]</td>
<td>4,000 patches</td>
</tr>
<tr>
<td>![Face images]</td>
<td>20 × 40</td>
</tr>
<tr>
<td>PCA</td>
<td>First 50 PCs capture</td>
</tr>
<tr>
<td>![PCA graph]</td>
<td>90% energy</td>
</tr>
<tr>
<td>![PCA graph]</td>
<td>Mean face</td>
</tr>
<tr>
<td>![PCA graph]</td>
<td>Mean patch</td>
</tr>
<tr>
<td>![PCA graph]</td>
<td>![First 150 PCs capture]]</td>
</tr>
<tr>
<td>![PCA graph]</td>
<td>90% energy</td>
</tr>
</tbody>
</table>

Features

- ![Feature 1]
- ![Feature 2]
- ![Feature 3]
- ![Feature 4]
Features – Set I

➢ 1st order derivatives

Mean of $\left| \frac{dI}{dx} \right|$

Mean of $\left| \frac{dI}{dy} \right|$
Features – Set II

- Histogram of Intensity and gradient

![Graphs showing histogram of intensity and gradient](image)
Features – Set III

- Edge linking features

edge map → thinning → linking

Using statistics of the length of the linked edges
Weak learners

- Ability of the strong classifier is determined by the ability of the weak learners
- Strong classifier with 1D stub weak learners can’t deal with the example

We use log-likelihood ratio test on distributions of both single features and pairs of features as weak learners (Konishi and Yuille, 2003)
An example of Weak learners

- Joint distribution of a pair of features form the first weak learner AdaBoost selected

Text distribution is shaded.
Cascade of strong classifiers

Candidates

- μ and σ
- Derivative features
- Derivative features
- All features

Ruled out

Results

- ador
- NWIC
- CKS
- 0:00pm
- DOUBLE
- O WASHI
- SUI
- ROU
- CASH
- 674
- PTIC
Text detection examples
Fail to detect

- Vertically aligned text
- Individual letters
- Extreme cases
Adaptive binarization

- Ni’Black’s method

\[T_r(x) = \mu_r(x) + k \cdot \sigma_r(x) \]

- Determine range of neighborhood size
 - Relative to the sub-window height \(h \)

\[r(x) = \min_{\sigma_r(x) > T_0} \{ \sigma_r(x) \} \]
OCR engine

- Currently we use a commercial OCR engine
- A generative model for reading text is under developing
Text reading examples

Detecting and reading text in natural scenes
False positives

- Building structures
- Signs or icons
- Tree leaves and branches
Results

Accurarcy
- False Negative for detection 2.8%
- False Positive for detection ~ 1/200,000
- False Negative for reading 7%
- False Positive for reading 10% (1% w/ constraint to form coherent word)

Speed
- 3 Seconds for 2,048*1536 image ~ 15fps for 320*240 video frames
Using Adaboost to learn a strong classifier for detecting text in unconstrained scenes

Selection of informative features with consideration of computation cost

Detecting and reading over 90% text regions in our database

Real-time (15fps) for video quality images (320 * 240)
ICDAR’s competition

- Database