
AdaBoost Learning for Detecting and Reading Text in City Scenes.

X. Chen and A.L. Yuille
Dept. Statistics

University of Los Angeles
Los Angeles, CA 90095.

yuille@stat.ucla.edu

Preliminary version. To appear as oral presentation
in Computer Vision and Pattern Recognition 2004. Not
for distribution.

Abstract

This paper gives an algorithm for detecting and reading tex-
t in natural images. The algorithm is intended for use by
blind and visually impaired subjects walking through city
scenes. We first obtain a dataset of city images taken by
blind and normally sighted subjects. From this dataset, we
manually label and extract the text regions. Next we perfor-
m statistical analysis of the text regions to determine which
image features are reliable indicators of text and have low
entropy (i.e. feature response is similar for all text images).
We obtain weak classifiers by using joint probabilities for
feature responses on and off text. These weak classifiers
are used as input to an AdaBoost machine learning algo-
rithm to train a strong classifier. In practice, we trained a
cascade with 4 strong classifiers containg 79 features. An
adaptive binarization and extension algorithm is applied to
those regions selected by the cascade classifier. An com-
mercial OCR software is used to read the text or reject it as
a non-text region. The overall algorithm has a success rate
of over 90% (evaluated by complete detection and reading
of the text) on the test set and the unread text is typically
small and distant from the viewer.

1. Introduction
This paper presents an algorithm for detecting and reading
text in city scenes. This text includes stereotypical form-
s – such as street signs, hospital signs, and bus numbers –
as well as more variable forms such as shop signs, house
numbers, and billboards. Our database of city images were
taken in ZZZZ partly by normally sighted viewers and part-
ly by blind volunteers who were accompanied by sighted
guides (for safety reasons) using automatic camera settings
and little practical knowledge of where the text was located
in the image. The databases have been labelled to enable us

to train part of our algorithm and to evaluate the algorithm
performance.

The first, and most important, component of the algo-
rithm is a strong classifier which is trained by the AdaBoost
learning algorithm [4],[19],[20] on labelled data. AdaBoost
requires specifying a set of features from which to build the
strong classifier. This paper selects this feature set guided
by the principle ofinformative features (the feature set used
in [19] is not suitable for this problem). We calculate join-
t probability distributions of these feature responseson and
off text, so weak classifiers can be obtained as log-likelihood
ratio tests. The strong classifier is applied to sub-regions of
the image (at multiple scale) and outputs text candidate re-
gions. In this application, there are typically between 2-5
false positives in images of 2,048 x 1,536 pixels. The sec-
ond component is an extension and binarization [12] algo-
rithm that acts on the text region candidates. The extension
and binarization algorithm takes the text regions as inputs,
extends these regions, so as to include text that the strong
classifier did not detect, and binarizes them (ideally, so that
the text is white and the background is black). The third
component is an OCR software program which acts on the
binarized regions (the OCR software gave far worse perfor-
mance when applied directly to the image). The OCR soft-
ware either determines that the regions are text, and reads
them, or rejects the region as text.

The performance is as follows: (I) Speed. The current al-
gorithm runs in under 9 seconds on images of size 2,048 by
1,536. The biggest delay is when we apply the strong classi-
fier to the image in the detection stage. By using multiscale
techniques, it should be possible to reduce the run time. (II)
Quality of Results. We are able to detect text ofalmost all
form with false negative rate of 2.8 %. We are able to read
the detected text correctlty at 93.0 % (correctness is mea-
sured per complete word and not per letter). We incorrectly
read non-text as text for 10 % of cases. But only 1 % re-
mains incorrectly read after we prune out text which does
not form coherent words. (Many of the remaining errors
correspond to outputting ”111” due to vertical structures in
the image.)

1



2 Previous Work

There has been recent succesful work on detecting text in
images. Some has concentrated on detecting individual let-
ters [1], [6],[7]. More relevant work is reported in [23],
[10], , [22] [8], [9]. In particular, Lucaset al [10] report on
performance analysis of text detection algorithms on a stan-
dardized database. It is hard to do a direct comparison to
these papers. None of these methods use AdaBoost learn-
ing and the details of the algorithms evaluated by Lucaset
al are not given. The performance we report in this paper is
better than those reported in Lucaset al, but the datasets are
different and more precise comparison on the same dataset-
s are needed. We will be making our dataset available for
testing.

3 The Datasets

We used two image datasets with one used fortraining the
AdaBoost learning algorithm and the other used fortesting
it.

The training dataset was 162 images of which 41 of them
were taken by scientists from XXXX (name witheld for
confidentiality) and the rest taken by blind volunteers un-
der the supervision of scientists from XXXX.

The test dataset of 117 images was taken entirely by
blind volunteers. Briefly, the blind volunteers were e-
quipped with a Nikon camera mounted on the shoulder or
the stomach. They walked round the streets of YYYY tak-
ing photographs. Two observers from XXXX accompanied
the volunteers to assure their safety but took no part in tak-
ing the photographs. The camera was set to the default au-
tomatic setting for focus and contrast gain control.

From the dataset construction, see figure (1), we noted
that: (I) Blind volunteers could keep the camera approxi-
mately horizontal. (II) They could hold the camera fairly
steady so there was very little blur. (III) The automatic con-
trast gain control of the cameras was almost always suffi-
cient to allow the images to have good contrast.

4. Selection of Features for AdaBoost
The AdaBoost algorithm is a method for combining a set
of weak classifiers to make a strong classifier. The weak
classifiers correspond to image features. Typically a large
set of features are specified in advance and the algorithm
selects which ones to use and how to combine them.

The problem is that the choice of feature set is critical
to the success and transparency of the algorithm. The set
of features used for face detection by Viola and Jones [19]
consists of a subset of Haar basis functions. But there was
no rationale for this choice of feature set apart from com-
putational efficiency. Also there are important differences

Figure 1: Example images in the training dataset taken by
blind volunteers (top two panels) and by scientists from
XXXX (bottom two panels). The blind volunteers are, of
course, poor at centering the signs and in keeping the cam-
era horizontally alligned.

2



between text and face stimuli because the spatial variation
per pixel of text images is far greater than for faces. Facial
features, such as eyes, are in approximately the same spatial
position for any face and have similar appearance. But the
positions of letters in text is varied and the shapes of letters
differ. For example, PCA analysis of text, see figure (2), has
far more non-zero eigenvalues than for faces (where Pent-
land reported that 15 eigenfaces capture over ninety percent
of the variance [14]).

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen values

E
ne

rg
y 

ca
pt

ur
ed

Figure 2: PCA on our dataset of text images (40 x 20 pixel-
s). Observe that about 150 components are required to get
90 percent of the variance. Faces require only 15 compo-
nents to achieve this variance [14].

Ideally, we should selectinformative features which give
similar results on all text regions, and hence have low en-
tropy, and which are also good for discriminating between
text and non-text. Statistical analysis of the dataset of train-
ing text images shows that there are many statistical regu-
larities.

For example, we allign samples from our text dataset
(precise allignment is unnecessary) and analyze the re-
sponse of the modulus of the� and� derivative filters at
each pixel. The means of the derivatives have an obvious
pattern, see figure (3), where the derivatives are small in the
background regions above and below the text. The� deriva-
tives tend to be large in the central (i.e. text) region while
the� derivatives are large at the top and bottom of the tex-
t and small in the central region. But the variances of the
� derivatives are very large within the central region (be-
cause letters have different shapes and positions). However,
the� derivatives tend to have low variance, and hence low
entropy.

Our first set of features are based on these observations.
By averaging over regions we obtain features which have
lower entropy. Based on the observation in figure (3), we
designed block patterns inside the sub-window, correspond-
ing to horizontal and vertical derivative. We also designed
three symmetrical block patterns, see figure (4), which are
chosen so that there is (usually) a text element within each
sub-window. This gives features based on block based mean
and STD of intensity and modulus of� and� derivative fil-

0

10

20

30

40

0

5

10

15

20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

y

S
T

D
 o

f m
od

ul
e 

of
 h

or
iz

on
ta

l d
er

iv
at

iv
e

0

10

20

30

40

0

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

x
y

S
T

D
 o

f m
od

ul
e 

of
 v

er
tic

al
 d

er
iv

at
iv

e

Figure 3: The means of the moduli of the� (left top) and�
(right top) derivative filters have this pattern. Observe that
the average is different directly above/below the text com-
pared to the response on the text. The� derivative is small
everywhere. The� derivatives tend to have large variance
(bottom left) and the� derivatives have small variance (bot-
tom right).

ters.

Figure 4: Block patterns. Features which compute proper-
ties averaged within these regions will typically have low
entropy, because the fluctuations shown in the previous fig-
ure have been averaged out.

We build weak classifiers from these features by comput-
ing probability distributions. Formally, a good feature����
will determine two probability distributions� � �����������

and� ����������� �����. We can obtain a weak classifier
by using the log-likelihood ratio test. This is made easi-
er if we can find tests for which� � ����������� is strongly
peaked (i.e. has low-entropy because it gives similar results
for every image of text) provided this peak occurs at a place
where� ����������� ����� is small. Such tests are compu-
tationally cheap to implement because they only involved
checking the value of����� within a small range.

We also have a second class of features which are more
complicated. These include tests based on the histograms
of the intensity, gradient direction, and intensity gradien-
t. In ideal text images, we would be able to classify pix-
els as text or background directly from the intensity his-
togram which should have two peaks corresponding to text
and background mean intensity. But, in practice, the his-
tograms typically only have a single peak, see figure (5)

3



(top right). But by getting a joint histogram on the intensity
and the intensity derivative, see figure (5) (bottom left), we
are able to estimate the text and background mean intensi-
ties. These joint histograms are useful tests for distinguish-
ing between text and non-text.

0 32 64 96 128 160 192 224 256
0

500

1000

1500

Intensity

N
um

be
r 

of
 p

ix
el

s

0 
32 

64 
96 

128 
160

192
224

256
0

5

10

15

0

50

100

150

200

250

300

Module of intensity
derivative

Intensity

N
um

be
r 

of
 p

ix
el

s

0 32 64 96 128 160 192 224 256
0

100

200

300

400

500

600

700

800

Intensity

N
um

be
r 

of
 p

ix
el

s

Figure 5: Original image (top left) has intensity histogram
(top right) with only a single peak. But the joint histograms
of intensity and intensity gradient shows two peaks (bot-
tom left) and shown in profile (bottom right). The intensity
histogram is contaminated by edge pixels which have high
intensity gradient and intensity values which are intermedi-
ate between the background and foreground mean intensity.
The intensity gradient information helps remove this con-
tamination.

Our third, and final, class of features based on perform-
ing edge detection, by intensity gradient thresholding, fol-
lowed by edge linking. These features are more computa-
tionally expensive than the previous tests, so we only use
them later in the AdaBoost cascade, see next section. Such
features count the number of extended edges in the image.
These are also properties with low entropy, since there will
typically be a fixed number of long edges whatever the let-
ters in the text region.

In summary, we had: (i) 79 first class features including
4 intensity mean features, 12 intensity standard deviation
features, 24 derivative features, (ii) 14 second class features
(histograms), and (iii) 25 third class features (based on edge
linking).

Ideally, we would learn a joint distributions
� ������������ and � ����������� ����� for all features
� . In practice, this is impossible because of the dimen-
sionally of the feature set and because we do not know
which set of features should be chosen. We would need an
immense amount of training data.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

0

500

1000

1500

2000

2500

3000

Figure 6: Joint histograms of the first features that Ad-
aBoost selected.

Instead, we use both single features and joint distribu-
tions for pairs of features, followed by log-likelihood ratio
tests, as our weak classifiers. See figure (6. These are then
combined together by standard AdaBoost techniques. It is
worth to note that all weak classifiers selected by AdaBoost
are from joint distributions, indicating that it is more ”dis-
criminant” and making the learning process less greedy.

The result of this feature selection approach is that our
final strong classifier, see next section, uses far fewer filter’s
than Viola and Jones’ face detection classifier [19]. This
helps the transparency of the system.

5. AdaBoost
The AdaBoost algorithm [4] has been shown to be ar-
guably the most effective method for detecting target ob-
jects in images [19]. Its performance on detecting faces
[19] compares favourably with other successful algorithms
for detecting faces [3, 15, 17, 21, 24] and for detecting text
[8],[16],[9],[1].

The standard AdaBoost algorithm learns a “strong clas-
sifier” ������� by combining a set of� “weak classifiers”
������� using a set of weights�	��:

������� � �	
��

��

���

	�������


The selection of features and weights are learned through
supervised training off-line [4]. Formally, AdaBoost uses a
set of input data���� �� � � � �� 

� � where�� is the in-
put, in this case image windows described below, and� � is
the classification where�� � � indicates text,�� � �� is
not-text. The algorithm uses a set ofweak classifiers de-
noted by����
��. These weak classifiers correspond to a
decision of text or non-text based on simple tests of visual
cues (see next paragraph). These weak classifiers are on-
ly required to make the correct classifications slightly over

4



half the time. The AdaBoost algorithm proceeds by defin-
ing a set of weights����� on the samples. At� � �, the
samples are equally weighted so����� � �� . The update
rule consists of three stages. Firstly, update the weights by
������� � ������

��������������	�� ���, where�� is a nor-
malization factor chosen so that

��

���������� � �. The
algorithm selects the	�� ���
� that minimize��	�� ���
��.
Then the process repeats and outputs astrong classifier
����� � �	
��

��

��� 	�������. It can be shown that this
classifier will converge to the optimal classifier as the num-
ber of classifiers increases [4].

AdaBoost requires a set of classified data with image
windows labelled manually as being text or non-text. We
performed this labelling for the training dataset and and di-
vided each text window into several overlapping text seg-
ments with fixed width-to-height ratio 2:1. This lead to a
total of 7,132 text segments which were used as positive
examples, see figure (7). The negative examples were ob-
tained by a bootstrap process similar to Drucker et al [2].
First we selected negative examples by randomly sampling
from windows in the image dataset. After training with
these samples, we applied the AdaBoost algorithm to clas-
sify all windows in the training images (at a range of sizes).
Those misclassified as text were then used as negative ex-
amples for retraining AdaBoost. The image regions most
easily confused with text were vegetation, repetitive struc-
tures such as railings or building facades, and some chance
patterns.

The previous section described the weak classifiers we
used for training AdaBoost.

Figure 7: Positive examples used for training AdaBoost.
Observer the low quality of some of the examples.

We used standard AdaBoost training methods to learn
the strong classifier [4] [5] combined with Viola and Jones’
cascade approach which uses asymmetric weighting [19].
The cascade approach enables the algorithm to rule out most
of the image as text locations with a few tests (so we do not
have to apply all the tests everywhere in the image). This
makes the algorithm extremely fast when applied to the test
dataset and yields order of magnitude speed-up over stan-
dard AdaBoost [19]. Our algorithm had a total of 4 cas-
cade layers. Each layer has 2, 10, 30, 50 tests respectively.
The overall algorithm uses 92 different feature tests. The
first three layers of the cascade only use mean, STD and
module of derivative features, since they can be easily cal-

culated from integral images[19]. Computation intensive
features, histogram and edge linking, involve all pixels in-
side the sub-window. So we only let them be selected in the
last layer.

In the test stage, we applied the AdaBoost strong classifi-
er���� to windows of the input images at a range of scales.
There was a total of 14 different window sizes, ranging from
20 by 10 to 212 by 106, with a scaling factor of 1.2. Each
window was classified by the algorithm as text or non-text.
There was often overlap between windows classified as tex-
t. We merged these regions by taking the union of the text
windows. (Much of the run time of our algorithm is due to
applying the strong classifier to the image windows at these
different scale. A multiscale approach should speed this up
significantly).

In our test stage, AdaBoost gave very high performance
with low false positives and false negatives (in agreement
with previous work on faces [19]). When applied to over
20,000,000 image windows, taken from 35 images, the total
number of false positives was just over 118 and the number
of false negatives was 27. By alterering the threshold we
could reduce the number of false negatives to 5 but at the
price of raising the number of false positives, see table (1).
We decided to keep not to alter the threshold so as to keep
the number of false positives down to an average of 4 per
image (almost all of which will be eliminated at the reading
stage).

Object Thresh False Pos. False Neg. Images Subwindows
Text 0.00 118 27 35 20,183,316
Text -0.05 1879 5 35 20,183,316

Table 1: Performance of AdaBoost at different thresholds.
Observe the excellent overall performance and the trade-off
between false positives and false negatives.

We illustrate these results by showing the windows that
AdaBoost classifies as text for typical images in the test
dataset, see figure (8).

6 Extension and Binarization

Our next stage produces binarized text regions to be used
as inputs to the OCR reading stage. (It is possible to run
OCR directly on intensity images but we obtain substan-
cially worse performance if we do so). In addition to bina-
rization, we must extend the text regions found by the Ad-
aBoost strong classifiers because these regions sometimes
miss letters or digits at the start and end of the text.

We start by appling adaptive binarization [12] to the text
regions detected by the AdaBoost strong classifier. This is
followed by a connected component algorithm [13] which
detects letter and digit candidates and enables us to estimate

5



Figure 8: Results of AdaBoost on typical test images (taken
by blind subjects). The boxes display areas that AdaBoost
classifies as text. Observe that text is detected at a range
of scales and at non-horizontal orientations. Note the small
number of false positives. The boxes will be expanded and
binarized in the next processing stage.

their size and the spacing between them. These estimates
are used toextend the search for text into regions directly to
the left, right, above and below of the regions detected by
AdaBoost. Binarization is then applied in these extended
text regions.

More precisely, we use Niblack’s adaptive binariza-
tion algorithm [12] which was reported by Wolf [22] to
be the most succesful binarization algorithm (jointly with
Yanowitz-Bruckstein’s method [25]). This requires select-
ing both a threshold for the local sub-windows of the text
region and an appropriate size for the sub-window. The sub-
windows have vertical and horizontal lengths in the range 3-
11 pixels. At each point in the text region, the sub-window
is chosen to be the smallest possible subwindows whose
variance is above a fixed threshold. Then the binarization
is performed by selecting a threshold� ��� �� based on the
mean���� �� and standard deviation���� �� within the sub-
window:

� ��� �� � ����� �� ����� ��

The value� is used to adjust how much the foreground
object edges that are taken as a part of the objects. (For
example:� � ��
� to check for cases where the foreground
is brighter or darker than the text.)

We show results for the extension and binarization al-
gorithms in figure (9) using the text regions shown in fig-
ure (8).

7 Text Reading

We applied commercial OCR software to the extended text
regions (produced by AdaBoost followed by extension and
binarization). This was used both to read the text and to
discard false positive text regions.

Overall, the AdaBoost strong classifier (plus exten-
sion/binarization) detected 97.2 % of the visible text in our
test dataset (text that could be detected by a normally sight-
ed viewer). See figure (10) for typical examples of the text
that AdaBoost fails to detect. Most of these errors corre-
spond to text which is blurred or badly shadowed. Others
occur because we do not train AdaBoost to detection verti-
cal text or individual letters. (Our training examples were
horizontal segments usually containing two or three letter-
s/digits).

For the 286 extended text regions correctly detected by
the AdaBoost strong classifier (plus extension/binarization),
we obtained a correct reading rate of 93.0 % (proportion of
words correctly read). This required a preprocessing stage
to scale the text region. The 7 % errors are caused by s-
mall text areas. See figure (11) for examples of text that we
can read successfully and figure (12) for text that we cannot
read.

6



Figure 9: Extension (left column) and binarization of the
text regions shown in figure (8). Note that our OCR soft-
ware is not yet able to read Chinese or Spanish so we treat
these as non-text.

Figure 10: Examples of different text that we fail to detect
by the AdaBoost strong classifier. Some are blurred, badly
shaded, or have highly non-standard font. Others are not
detected because we did not train AdaBoost to detect indi-
vidual letters/digits or vertical text.

Figure 11: Examples of different text that can be correctly
detected and read. First row: Road signs and street num-
bers. Second and third rows: Commercial and Information-
al signs. Fourth row: bus signs and bus stops. Fifth row:
House numbers and Phone Numbers.

Figure 12: Examples of text that we can detect by the Ad-
aBoost strong classifier but cannot read correctly. These
correspond to small text and blurred text. But improvements
in our binarization process might make some of them read-
able.

The OCR algorithm will also sometimes misclassify the
false positive text regions found by AdaBoost and classify
them as text. See the example in figure (13). This occurred
for about 10 % of false positive text regions, but often the
text read made no grammatical sense and can be removed
(though this requires an additional stage after the OCR soft-
ware). The most common remaining error are text string
like ”111” or ”Ill” which correspond to vertical edges in the
image caused, for example, by iron railings.

Figure 13: Examples of OCR output on non-text. Only the
bottom window is incorrectly read as text, ”Ill”,

The results presented here use the ABBYY Fine Reader
software. Other OCR software we tested that gives almost
identical performance includes TOcr and Readiris Pro 8.

8 Summary

This paper used the AdaBoost algorithm to learn a strong
classifier for detecting text in unconstrained city scenes.
The key element was the choice of the feature set which

7



was selected to have features with low entropy of the posi-
tive training examples (so that they gave similar responses
for any text input). In addition, we used log-likelihood ratio
tests on the joint probability distributions of pairs of fea-
tures. The resulting system is small, compared to that used
by Viola and Jones for face detection [19], and required on-
ly 92 filters and 4 layers of cascade.

The resulting strong classifier was very effective on our
dataset taken by blind users. This database, with ground
truth, will be made available to other researchers. The de-
tection rates resulted in only a small number (2-5) false pos-
itive rates in images of size 2,048 x 1,536.

To demonstrate the effectiveness of our approach, we
used it as a front end to a system which included an exten-
sion and binarization algorithm followed by a commercial
OCR system. The resulting performance was highly effec-
tive.

The algorithm currently runs at 9 seconds on a 2,048 x
1,536 image (which compares favourably to speeds for Ad-
aBoost classifiers for faces when the size of the image is tak-
en into account). We anticipate that multi-scale processing
will enable us to significantly reduce the algorithm speed.

Our future work involves developing alternative tex-
t reading software. Although current OCR algorithms are,
as we have shown, very effective they remain a black box
and we cannot modify them or improve them. Instead we
will continue developing our reading algorithms based on
deformable templates [6],[1]. These algorithms have the
additional advantage that they use generative models [18]
and can be applied directly to the image intensity without
requiring binarization.

References

[1] S. Belongie, J. Malik, and J. Puzicha. ”Matching shapes”, In
Proc. of the IEEE Intl. Conf. on Computer Vision, 2001.

[2] H. Drucker, R. Schapire, and P. Simard. ”Boosting Perfor-
mance in Neural Networks”.International Journal of Pattern
Recognition and Artificial Intelligence. Vol. 7, no. 4, pp 705-
719. 1993.

[3] F. Fleuret, and D. Geman. ”Coarse-to-Fine Face Detection.”I
nternational Journal of Computer Vision. 2000.

[4] Y. Freund and R. Schapire, ”Experiments with a new boost-
ing algorithm”, Proc. of the Thirteeth Int. Conf. on Machine
Learning, 148–156 (1996).

[5] J. Friedman, T. Hastie and R. Tibshirani. ”Additive logistic
regression: a statistical view of boosting”, Dept. of Statistics,
Stanford University Technical Report. 1998.

[6] S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness.
New algorithms for 2D and 3D point matching: pose estima-
tion and correspondence. Pattern Recognition, 31(8), 1998.

[7] M. Revow, G.K.I. Williams and G.E. Hinton, ”Using genera-
tive models for handwritten digit recognition”,IEEE Trans .
PAMI, 18, pp. 592–606, 1996.

[8] A.K. Jain and B. Tu. ”Automatic Text Localization in Images
and Video Frames”.Pattern Recognition. 31(12), pp 2055-
2076. 1998.

[9] Huiping Li, David Doermann and Omid Kia. ”Automatic Text
Detection and Tracking in Digital Video”.IEEE Transactions
on Image Processing, 9(1):147–156, 2000.

[10] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong and R.
Young. ”ICDAR 2003 Robust Reading Competitions”, In7th
International Conference on Document Analysis and Recog-
nition - ICDAR2003, 2003.

[11] J. Malik, S. Belongie, T. Leung and J. Shi, ”Contour and
Texture Analysis for Image Segmentation.” IJCV 43 (1):7-27,
June 2001.

[12] W. Niblack.An Introduction to Digital Image Processing.
pp. 115-116, Prentice Hall, 1986.

[13] T. Pavlidis. Structural pattern Recognition. Springer-
Verlag, Berlin-Heidlesberg-New York. 1977.

[14] M. Turk and A. Pentland. ”Eigenfaces for recognition”.Jour-
nal of Cognitive Neuro Science, vol. 3, pp. 71-86, 1991.

[15] H. Rowley, S. Baluja, and T. Kanade. ”Neural network-based
face detection”. InIEEE Patt. Anal. Mach. Intell.. Vol. 20, pp
22-38. 1998.

[16] T. Sato, T. Kanade, E. Hughes, and M. Smith. ”Video OCR
for Digital News Archives”. IEEE International Workshop on
Content Based Access of Image and Video Databases. 1998.

[17] H. Schniederman and T. Kanade. ”A Statistical method for
3D object detection applied to faces and cars”. InComputer
Vision and Pattern Recognition. 2000.

[18] Z.W. Tu and S.C. Zhu, “Image segmentation by Data Driven
Markov chain Monte Carlo”,IEEE Trans. PAMI, vol 24, no
5. May, 2002.

[19] P. Viola and M. Jones. ”Fast and Robust Classification using
Asymmetric AdaBoost and a Detector Cascade”. InProceed-
ings NIPS01. 2001.

[20] P. Viola, M. Jones and D. Snow. ”Detecting Pedestrians using
Patterns of Motion and Appearance”. InInternational Confer-
ence on Computer Vision. 2003.

[21] M. Weber, W. Einhuser, M. Welling, P. Perona ”Viewpoint-
Invariant Learning and Detection of Human Heads”. InProc.
4th IEEE Int. Conf. Automatic Face and gesture Recognition..
2000.

[22] C. Wolf and J-M. Jolion, ”Extraction and Recognition of
Artificial Text in Multimedia Documents”, http://rfv.insa-
lyon.fr/ wolf/papers/tr-rfv-2002-01.pdf.

8



[23] V. Wu, R. Manmatha, and E. M. Riseman. ”Finding text in
images”, InProc. of the 2nd ACM Conf. on References Digital
Libraries, pages 3C12, 1997.

[24] Ming-Hsuan Yang, N. Ahuja, D. Kriegman. ”Face Detection
Using Mixtures of Linear Subspaces”. InProc. 4th IEEE Int.
Conf. Automatic Face and gesture Recognition.. 2000.

[25] S. D: Yanowitz and A. M. Bruckstein.” A New Method for
Image Segmentation”.Computer Vision, Graphics, and Im-
age Processing CVGIP, Vol.46, no. 1, pp. 82-95, 1989.

9


