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Abstract

We describe a method of learning generative models of objects from a set of images of the object
under different, and unknown, illumination. Such a model allows us to approzimate the objects’
appearance under a range of lighting conditions. This work is closely related to photometric stereo
with unknown light sources and, in particular, to the use of Singular Value Decomposition (SVD)
to estimate shape and albedo from multiple images up to a linear transformation [15]. Firstly
we analyze and extend the SVD approach to this problem. We demonstrate that it applies to
objects for which the dominant imaging effects are Lambertian reflectance with a distant light
source and a background ambient term. To determine that this is a reasonable approximation we
calculate the eigenvectors of the SVD on a set of real objects, under varying lighting conditions,
and demonstrate that the first few eigenvectors account for most of the data in agreement with
our predictions. We then analyze the linear ambiguities in the SVD approach and demonstrate
that previous methods proposed to resolve them [15] are only valid under certain conditions. We
discuss alternative possibilities and, in particular, demonstrate that knowledge of the object class is
sufficient to resolve this problem. Secondly, we describe the use of surface consistency for putting
constraints on the possible solutions. We prove that this constraint reduces the ambiguities to
a subspace called the generalized bas relief ambiguity (GBR) which is inherent in the Lambertian
reflectance function (and which can be shown to exist even if attached and cast shadows are present
[8]). We demonstrate the use of surface consistency to solve for the shape and albedo up to a GBR
and describe, and implement, a variety of additional assumptions to resolve the GBR. Thirdly, we
demonstrate an iterative algorithm that can detect and remove some attached shadows from the
objects thereby increasing the accuracy of the reconstructed shape and albedo.

1 Introduction

In the last few years there has been growing realization that accurate imaging (or lighting) models
are needed to design vision systems which can recognize objects in complex lighting situations.
Small changes in lighting conditions can cause large changes in appearance, often bigger than those
due to viewpoint changes [21]. The amounts of these variations can be appreciated by looking at
images of the same object taken under different, but calibrated, lighting conditions, see figure 1.
Accurate lighting models are also required for the related reconstruction problem of photometric
stereo. In both problems — learning object models and photometric stereo — the input is a set of
images of the object, or scene, taken under different lighting conditions. The task is to estimate
the shape of the object or scene, its reflection function, and its albedo.
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Figure 1: Examples of faces under different lighting conditions.

In recent years, two extreme strategies have been followed to deal with illumination variation.
By far the most common is to build representations based on images features [20, 4], such as inten-
sity edges or corners, which are belieeved to be somewhat insensitive, or invariant, to illumination
changes. The idea being that object recognition and image understanding can then be performed
using these “illumination invariant” representations as input. This approach has two significant
drawbacks. First, when illumination variations are large, edges, and indeed all image features, are
sensitive to the lighting conditions. Second, and perhaps more important, representations based
on edges and corners are sparse and, consequently, throw out a large fraction of useful information.

A different strategy is to use what is often termed an image-based representation or an appear-
ance model. This differs from the feature-based strategy mentioned above in that their represen-
tation is, in a least-squared sense, faithful to the original image [22, 24, 26, 14, 12, 32, 40]. (Such
models have also been suggested by psychophysicists, see for example [34, 37].) An influential
examples is the SLAM system [22] which simultaneously models variations due to pose and illumi-
nation by projecting the training images down into low-dimensional subspaces. Systems like these
have demonstrated the power of appearance-based methods for certain visual tasks both in ease
of implementation and in accuracy. These systems, however, confound the different factors (such
as illumination, pose, albedo and geometry) which generate images in a non-transparent way. If
the albedo of the viewed object was changed slightly, for example by drawing a red triangle on it,
then the whole appearance model would need to be learnt from scratch. Moreover, in principle,
appearance based models require that the object is seen under all possible viewing conditions and
hence an enormous amount of training data is needed.

We argue that it is preferable to have a more transparent model which explicitly takes into
account all the factors which generate the image. This approach requires isolating each factor
in turn and modeling it with as simple a representation as possible. This can be thought of as
a generative model. A big potential advantage of this approach is that from a small number of
training images, one can model the object under all possible combinations of lighting and pose.
For example, it has been shown [2] that the illumination cone of a convex Lambertian object
can be reconstructed from as few as three images taking into account shadow effects which are
notoriously hard to model. Thus, the representations generalize to novel conditions (requiring less
learning data), see [2] for examples of images genereated in such a way. In addition, they can
generalize to objects which have not been seen before but which are members of a known object
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class [27].

In this paper we are specifically concerned with modeling the appearance of objects under a
range of lighting conditions. Our approach makes use of Singular Value Decomposition (SVD)
to split the images into components depending on surface properties (geometry and albedo) and
lighting conditions. SVD, however, is only able to solve the problem up to an unknown constant
linear transform in the shape and albedo of the viewed object(s) and further assumptions must be
made to resolve this ambiguity. In addition, the SVD approach starts degrading when there are
significant shadows and, as we will describe, robust estimation can be used to remove shadows as
outliers.

Our approach has been strongly influenced by the linear lighting models suggested on both
theoretical [28] and experimental [13, 5] grounds. A second important source has been the pho-
tometric stereo literature [30], [41],[33],[18]. The closest work, which we will refer to throughout
the paper, is the application of SVD to this problem by Hayakawa [15] and the recent work by
Fan and Wolff [8]. Both consider the situation with spatially varying albedo and unknown light
sources. Hayakawa uses SVD in situations without shadows to recover the shape and albedo up
to a linear ambiguity but, as we will show in section (2.4), his proposed method for solving for
the ambiguity is only valid under limited situations. Fan and Wolff eliminate the albedo by con-
sidering ratios of images and demonstrate, on synthetic images (without shadows), that they can
estimate properties such as the signs of the surface curvatures. Their results can be re-interpreted
in light of the generalized bas relief (GBR) ambiguity, see section (3), which clarifies precisely
which properties of the surface can be estimated. Some of the work described in this paper has
appeared in conference articles [5, 6, 43, 3] and more details are available in PhD theses [14, 7].
Recent work on bilinear models [10] has applied SVD to a variety of vision problems including
estimating shape and lighting. Other recent work includes [29].

In section (2) we describe, extend and analyze the SVD approach. We demonstrate in that
it can be generalized to include a background ambient light source which causes the number of
non-zero eigenvalues of the SVD to increase from three to four. Empirical analysis of images of
real world objects under varying lighting shows that the first three or four eigenvalues typically
describe most of the data. We then analyze the linear ambiguities in the SVD approach and
demonstrate that additional assumptions proposed to solve them [15] are only valid under certain
conditions and discuss alternative possibilities, such as knowledge of object class, to resolve the
linear ambiguity. In section (3) we show that surface integrability can be used to reduce the
ambiguity to a generalized bas relief ambiguity GBR, provided that no shadows are present. (This
ambiguity has been shown to exist even when cast and attached shadows are present [3] and under
perspective projection [19].) In addition, we demonstrate the power of surface integrability for
solving up to a GBR and apply other assumptions to remove the GBR. Finally, in section (4), we
demonstrate an iterative algorithm which is able to improve the analysis by finding and rejecting
shadows.

2 Lambertian Lighting Models and SVD

In this section we describe the SVD approach to lighting [15]. It builds on previous work on
photometric stereo [30], [41], [33],[18] and on linear lighting models for objects [13], [28]. See also
[31] for the use of linear re-rendering for interactive lighting design.

Suppose we have a set of images generated by a Lambertian model where the lighting conditions
vary. We use x to label positions in the image plane € and let |©2] be the number of these positions
(we assume a finite grid). The light source directions are unknown and are labeled by p = 1, ..., M.
This gives us a set of M images:

I(x, p) = a(x)n(x) - s(p) = b(x) - (), (1)
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where a(x) is the albedo of the object, n(x) is its surface normal, b(x) = a(x)n(x) (observe that
a(x) = [b(x)| and n(x) = b(x)), and s(u) is the light source direction. We will typically work
with b(x) instead of a(x) and n(x). Equation (1), however, has several limitations. It ignores
shadows, ambient illumination, and specularities.

We wish to solve equation (1) for the albedo, shape, and light source directions. To do this,
we define a least squares cost function:

3

Elb,s] =) {I(x,1) =Y bi(x)si(n)}?, (2)

i=1

where the subscripts ¢ denote the cartesian components of the vectors (i.e. b = (b1, ba, b3)).

It is possible to minimize this cost function to solve for b(x) and s(u) up to a constant linear
transform using Singular Value Decomposition (SVD) [15],[6].

To see this, observe that the intensities {I(x,u)} can be expressed as a M x || matrix J
where M is the number of images (light sources) and |2 is the number of points x. Similarly we
can express the surface properties {b;(x)} as a |€2] x 3 matrix B and the light sources {s;(u)} as
a 3 x M matrix S. SVD implies, see the Appendix, that we can write J as:

J=UDVT, (3)

where D is a diagonal matrix whose elements are the square roots of the eigenvalues of JJ7T.
The columns of U correspond to the normalized eigenvectors of the matrix J7J. The ordering of
these columns corresponds to the ordering of the eigenvalues in D. Similarly, the columns of V
correspond to the eigenvectors of JJT'.

Observe that (1/M)JTJ is the || x |€2] the autocorrelation of the set of input images where |Q2]
is the image size. (Observe that the mean image is not subtracted — if it was, we would obtain the
covariance, or Karhunen-Loeve, matrix used, for example, to compute the principal components of
an image dataset). There is a direct relationship between the eigenvectors and eigenvalues of the
two matrices J7J and JJT. In fact, this relationship can be exploited to calculate the principal
components in situations where the matrix (1/M)JTJ is too large to calculate its eigenvectors
directly (see, for example, [40]). This relationship will be important later in our theoretical
analysis, see subsection (2.4).

If our image formation model is correct then there will only be three nonzero eigenvalues of JJ7
and so D will have only three nonzero elements (this, of course, has been known in the photometric
stereo and vision literature [28], [30], [41]). We do not expect this to be true for our dataset because
of shadows, ambient background, specularities, and noise. But SVD is guaranteed to gives us the
best least squares solution in any case. Visual study of these solutions [5], [7] suggests that the
biggest three eigenvalues typically correspond to the Lambertian component of the reflectance
function provided the number of input images, and the variety of light sources, is large compared
with the amount of specularity and shadows. Intuitively, the positions of the specularities and
shadows is highly sensitive to the lighting conditions and so they tend to get averaged out as we
take images of the object under different lighting conditions. An object whose reflectance function
is mostly Lambertian will only need a few images to ensure that the first three eigenvalues yield
the Lambertian components. For a highly specular object, such as the helmet shown in figure (6),
many more images are required, see [5], [7] for details. We will therefore assume that the biggest
three eigenvalues of 3, and the corresponding columns of U and V represent the Lambertian part
of the reflectance function of these objects. We define the vectors {f(p) : p = 1,..., M} to be the
first three columns of U and the {e(x)} to be the first three columns of V.

This assumption enables us to use SVD to solve for b and s up to a linear transformation, see
the Appendix. The solution is:

=
k)
I

Pse(x), V x,
s(p) = Qsf(p), ¥V u, (4)
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where P3 and Q3 are 3 x 3 matrices which are constrained to satisfy P3TQ3 = D3, where D3 is the
3 x 3 diagonal matrix containing the square roots of the biggest three eigenvalues of JJ7. There
is an ambiguity P3 — AP3, Qs +— A~! TQ3 where A is an arbitrary invertible matrix.

This ambiguity is inherent in the original Lambertian equation (1), where it is clear that the
equation is invariant to the transformation b(x) — Ab(x) and s(u) — A’lTS(u). As we will
show later, see section (3), the requirement of surface consistency will reduce this ambiguity to a
generalized bas relief transformation (GBR).

2.1 The Linear Ambiguity

For this subsection, we describe other methods besides surface consistency that have been proposed
to solve for the linear ambiguity. These methods have their limitations but, as we will show in
section (3), they can be used in conjunction with surface consistency to eliminate all ambiguity.

Hayakawa drew attention to the linear ambiguity and proposed certain methods for resolving
t [15]. These methods place further restrictions about the application domain such as constant
light source magnitudes or partially known reflectance functions. But it is unclear that these
assumptions are powerful enough to resolve all the ambiguities.

In particular, Hayakawa proposed assuming that the light source had constant magnitude for
six or more images. By equations (4), we have s(u) - s(u) = £7(1)QL Qsf(1). Imposing the
constraint that this is constant only allows us to solve for Q¥'Qs and hence there is a further
ambiguity Qs — RQs, where R is a rotation matrix satisfying RTR = I. Hayakawa makes the
additional assumption that this rotation R is the identity. However, it is unclear why this is a
reasonable assumption. It will be proven later, see subsection (2.4) and the Appendix, that this
assumption will often be incorrect even in the ideal case where the reflectance function of the
object is pure Lambertian with no shadows. Indeed, it is equivalent to making assumptions of
symmetry about the dataset which are only appropriate for very special situations.

Another assumption suggested by Hayakawa — that the magnitude of the surface reflectance
was known for six or more surface points — would lead to knowledge of P2 P3 and hence to an
equivalent ambiguity P3 — RPs.

One method to resolve the linear ambiguity is to use knowledge about the class of the object
to determine the linear transformations P and Q, and hence determine the surface properties and
the light sources uniquely [6]. We define a class to be a set of objects with similar albedos and
surface normals. This method will only be appropriate if the variations between shape and albedos
within the class is small. Below we illustrate this approach for faces.

To do this all we need is the shape and albedo {bp,(x)} for a prototype object Pr within
the object class. This can obtained, for example, by applying SVD with a set of calibrated light
source directions, see figure (2). Then when we get the data for a new face image we will estimate
its P and Q matrices by assuming that it has the same surface properties as the prototype. Thus
we estimate P by minimizing:

> Ibpy(x) — Pe(x)|”, (5)

where the e(x) are computed from the new dataset. We are minimizing a quadratic function of
P so the result, P*, can be obtained by linear algebra.
We now solve for the surface properties using:

b(x) = P*e(x), Vx. (6)

The results are shown in figure (3) where we obtain good surface properties even for a face of
different shape to the prototype. Observe that the prototype is used merely in conjunction with
the dataset to solve for the 3 x 3 matrix P.

This result has used prior knowledge about object class in the simplest possible form — a
prototype model. More sophisticated class knowledge, such as a prior probability distribution for
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Figure 2: From left to right, the Albedo and z, z,y components of the surface normals calculated
directly from SVD using known light source directions to estimate the linear transformations.
Observe that the z component of the normal is large except at the sides of the face and near the
eyes and nose. The x component of the surface normal is approximately asymmetric corresponding
to the symmetry of the face.

5000

Figure 3: From left to right, the Albedo and z,z,y components of the surface normals calculated
directly from SVD using the results shown in the previous figure as a prototype to resolve the
linear ambiguity.

shapes and albedos, would lead to improved results. In some situations it is possible to use laser
range data to put prior probability distributions on the three-dimensional shapes of object classes.
For certain objects, like faces [1] this has been reported to generate accurate three-dimensional
models from a single input image (i.e. not requiring an SVD stage).

2.2 Generalization to include ambient illumination

In this subsection we generalize the SVD approach to include a background ambient illumination

term. This will mean that we can obtain the albedo, shape, and ambient term. It is standard to

assume that ambient lighting corresponds to illuminating the object by a large number of point

sources from a range of directions (e.g. illumination on a cloudy day). But another, less common,

form of ambient lighting is when the object is illuminated by projecting a pattern onto it (e.g.

projecting a slide onto a surface). We will demonstrate that our approach works for both cases.
This means we modify the equations to be:

I(x, ) = b(x) - s(p) + a(x), (7)

where @(x) is the ambient illumination which we assume to be independent of u. (I.e. we assume
that the ambient illumination stays constant while the Lambertian light sources vary).
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We define a cost function for estimating b, s, and a:

Elb,s,a] =) {I(x,n) — (b(x)-s(n) + a(x))}*. (8)

It is straightforward to generalize our previous approach and apply SVD to estimate b, s,
and a@. The important difference is that we now rely on the first four eigenvalues of JJT, see the
Appendix. The additional eigenvalue is needed because of the ambient lighting term a(z) (before
the images could be expressed as the outer product of three-dimensional vectors b and s but
now they are the outer product of four-dimensional vectors (b,a) and (s, 1).). We can generalize
equation (4) to:

1) + wa fa(pe). 9)

As before, there is a linear ambiguity. The difference is that it is now a four by four linear
transformation instead of a three by three. It will turn out, however, that the surface consistency
constraint in combination with assuming constant magnitude of the light source will be sufficient to
remove this ambiguity, see section (3). Note that the last equation of (9) already gives conditions
on w and wy.

2.3 Empirical Evidence for Approximate Lambertian Models

As described in previous sections, the SVD approach applies for Lambertian objects with a distant
light source and an ambient term. However, real objects have significant specular lobes and
spikes [23] and there are other complicating effects such as shadows, mutual inter-reflections, and
occlusions [9]. In addition, how distant do the light sources need to be from the object? Hence, the
issue of whether lighting variations can be approximated by Lambertian models requires empirical
investigation. Can we assume, for example, that Lambertian is a good approximation (in the sense
of least squares) for common objects such as faces and helmets? If this is true then we may be
able to ignore non-Lambertian effects or, if necessary, treat them as residuals and remove them
by an iterative algorithm, see section (4).

The most direct way to investigate this is by computing the eigenfunctions of JTJ for each
of a set of objects under a variety of lighting conditions. If only the first three eigenvalues are
large then we have evidence for a Lambertian model. If the fourth eigenvalue is also big then this
would require, at the least, an ambient background term. As discussed in the previous section,
SVD gives an efficient way to compute the eigenvectors and eigenvalues of J7J.

Such an empirical investigation was done for faces by Hallinan [13] and motivated his linear
basis function model of lighting [14]. The work was extended by Epstein al [5] and applied to a
range of objects. The conclusions of both studies were that only the first few eigenvalues were
significant. Moreover, the light sources used in these studies were standard light bulbs at most
six feet from the viewer [14]. Therefore the requirement that the light source be “distant” is very
weak and will be satisfied in most environments. Similar results were also reported by Belhumeur
and Kriegman in their work on illumination cones [2].

More precisely, it was concluded that for many objects: (a) 5 £ 2 eigenvectors will suffice to
model the Lambertian and specular lobes, (b) specular spikes, small shadows and occluders can
be treated as residuals and eliminated by projecting the original image onto the low dimensional
eigenvector model, and (c) the sampling of lighting directions required in the training set increases
with both the specularity and the complexity of the surface geometry.



International Journal on Computer Vision. 35(3), pp 203-222. 1999.

The following methodology was used to construct the lighting models for each object. Seventy
images were taken of each object under different lighting conditions. The dominant lighting in
each image was from a small area source (floodlight) at a distance of about six feet. (See [14] for
details.) This light could be moved along the surface of a sphere whose center was the object and
whose North Pole was directly above the object. The light was moved along the sphere’s lines of
latitude and longitude in 15 degree intervals such that the lighting direction varied over the entire
right front side of the object. These images formed the dense training set. The sparse training set
was a subset of 20 images from the dense set. The lighting for the images of the sparse set varied
in 30 degree intervals.

Two eigenimage models were constructed for each object by calculating the eigenvalues and
eigenvectors of the autocorrelation matrix on the sparse and the dense data sets. (Tests were also
run with the mean images subtracted but little change was noticed). Additional images of the
objects were taken under ambient lighting conditions. These images were used to evaluate the
models’ ability to reconstruct novel images which were not in the training sets. In addition, when
the sparse data alone was used, the remaining images of the dense set were used to test the sparse
model.

The eigenvectors are of form shown in figure (4). The first three eigenvectors appear to cor-
respond to the face illuminated from three orthogonal lighting conditions. The first three eigen-
vectors of many objects shared this property so we informally named it the orthogonal lighting
conjecture. Mathematical analysis, see subsection (2.4) and the Appendix, suggests that this
conjecture depends on the symmetry of the object being viewed and will not hold in general.

Figure 4: The eigenvectors calculated from the sparse set for the human face. Note that the
images were only lit from the right so the eigenvectors are not perfectly symmetric. Observe also
that the first three eigenvectors appear to be images of the face illuminated from three orthogonal
lighting conditions in agreement with the orthogonal lighting conjecture.

The quality of the eigenimage models was measured by using a goodness of fit criterion. This
is a measure of the difference between the image and its projection onto the space of eigenimages.
More precisely, for an object o we construct the eigenvectors e?(x) of the autocorrelation matrix
indexed by i = 1,...,n. For a specific image I°(x) of the object we construct its projection I7(x)
to be:

Ix) =) {) I'(z)ef(z)}ef(x). (10)
i=1 zeQ
We then measured the quality of the projection of the specific image by the goodness of fit
function: || ) ( )\ 2

I°(x) — I (x
€(0,I%)=1-— b , (11)

[T ()| 2
where the norm [|I(x)|[? = >, cq{I(x)}?. Observe that the goodness of fit ranges from one (if
the image and its projection are identical) to zero (if the image is infinitely different from its
projection). We emphasize that this goodness of fit criterion does not necessarily account for
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Figure 5: Plots of the mean goodness of fit vs the number of eigenvectors for training (top left) and
test (top right) sets of several different objects. All models were constructed using a sparse data
set. Examples images of the ball, helmet, fire-extinguisher,parrot,spectrometer, and voltmeter are
shown below,

human perception — small specularities would give little contribution to the goodness of fit but
might be visually salient.

In figure (5) we give graphs showing the mean goodness of fits for a variety of objects where
the mean is with respect to either training or test data sets. The bases used were constructed
from the sparse samples only. These graphs show clearly that, even for highly specular objects,
the mean goodness rises very rapidly with the first three or four eigenvalues and improvements in
performance begins to taper off at the fifth eigenvectors.

Table (1) shows the cumulative variances for different objects. Observe that even for highly
specular objects such as the helmet, see figure (6), the variance only rises a little slower if the
dense data set is used instead of the sparse set. The quality of the principal eigenvectors, however,
does improve when the dense set is used. Not surprisingly (see [5, 7] for more details) the principal
eigenvectors for the sparse dataset are influenced heavily by the precise location of the specularities
in the sparse training set. When the dense dataset is used then the specularities average out and
they appear not to influence the principal eigenvectors. This means that when images are projected
the specularities are removed and appear nicely as residuals, see figure (6).
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Eigen- ball | parrot phone face | helmet | helmet | helmet fire function | infrared
vector ext | generator | detector

sparse dense dense | sparse sparse dense dense dense dense dense

(right) | (both) | (right) | (right) | (right) | (right) | (both) | (right) (right) (right)
#1 0.482 0.428 0.679 0.537 0.320 0.340 0.388 0.536 0.806 0.624
#2 0.844 0.697 0.832 0.752 0.569 0.540 0.474 0.687 0.879 0.805
#3 0.944 0.763 0.882 0.902 0.651 0.628 0.581 0.765 0.922 0.885
#4 0.965 0.815 0.920 0.921 0.728 0.746 0.655 0.816 0.936 0.915
#5 0.979 0.847 0.941 0.935 0.798 0.772 0.722 0.852 0.948 0.927
#6 0.989 0.872 0.952 0.945 0.845 0.794 0.750 0.882 0.956 0.939
#7 0.991 0.885 0.963 0.953 0.881 0.816 0.795 0.901 0.962 0.948
#8 0.993 0.897 0.968 0.958 0.905 0.833 0.811 0.913 0.968 0.954
#9 0.995 0.907 0.972 0.963 0.924 0.848 0.824 0.925 0.972 0.960
#10 0.996 0.917 0.975 0.966 0.943 0.861 0.837 0.933 0.975 0.965

Table 1: The variance (cumulative) accounted for by each eigenvector for several different objects,
both for sparse and dense training sets.

2.4 Mathematical Analysis of the SVD approach

What can mathematical analysis tell us about the SVD method? As we will show, it is possible to
theoretically analyze the eigenvectors that result from SVD provided we assume that the object
has a pure Lambertian reflectance function with no shadows. In other words, we assume that the
data is indeed generated by the model with which we analyze it. Of course, this is an ideal world
assumption and so the theoretical results will start to degrade as shadows become significant.

We specifically investigate two issues arising earlier this section. The first concerns Hayakawa’s
assumption that a specific rotation ambiguity in SVD can be resolved by setting the rotation to
be the identity. The second involves the orthogonal lighting conjecture — that the first three
eigenvectors point along the axes of the cartesian coordinate system. We will show that these
claims are closely related and depend on the symmetry of the dataset.

Let us assume that the data is generated by a true Lambertian surface. In other words, that
the input image set {I(x, u)} can be expressed as:

3

I(x, 1) = ) bi(x)si (1), (12)

=1

where {b;(x)} and {s;(p)} are the true albedo, shape and lighting.
We can reformulate equation (4) in coordinate terms as:

3
bi(x) = ZPijej(x) Vi, X,
=1
s
j=1

where the e and f obey the eigenvectors equations:

S D I I 1) i) = Nifilp), Vi, p
SO I I, wlei(x) = Niei(x), Vi, x, (14)

and the matrices P and Q are constrained to satisfy:

P’Q =D, (15)

10
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Figure 6: Top left is helmet under ambient lighting conditions. Top center is reconstruction from
projection onto the first five eigenvectors. Note the specularities have been eliminated. Top right is
the difference between original image and reconstruction. (Differences less than zero have been set
to zero because the specularities are, by definition, positive.) The specularities are easily isolated.
Bottom row shows the same effect for an image from the dense data set.

where D is a diagonal matrix whose diagonal elements are )\1/ 2, )\;/ %, )\é/ %,

We can now state the following theorems:

Theorem 1. If the light sources in the dataset are such that 3, si(ut)s;(pn) = dij, where 6;
is the Kronecker delta, then Hayakawa’s rotation matriz should be set equal to the identity if, and
only if, the albedos and shapes in the data set satisfy > b;(x)b;j(x) =0, i # j.

Theorem 2. The first three eigenvectors e;(x) : i = 1,2,3 point along the azes of the cartesian
coordinate system if, and only if, both 3> bi(x)b;j(x) =0, i # j and 3_, si(p)s;(p) =0, i # j.

Both theorems show that interesting results occur if the input data is symmetric. More pre-
cisely, it corresponds to assuming that the off-diagonal terms of }° b;(x)b;(x) and >_ , si(1t)s; ()
vanish. This will be true if, for example, the light source directions sample the viewing hemisphere
evenly and the object is an ellipsoid viewed head-on and with constant albedo. The off-diagonal
terms will also be expected to vanish if the ¢ and j components of the dataset are statistically inde-
pendent (for then, by ergodicity, >, bi(x)b;(x) —< bib; > and }_ , si(1)s; (1) —< s;5; >). How-
ever, there will be many datasets for which these assumptions will be violated. Thus Hayakawa’s
assumptions and the orthogonal lighting conjecture will typically not be true.

The proofs of the theorems are long and involved. For reasons of space, we only give the broad
outlines of the proofs here and refer the reader to the Appendix for more details.

Proof of Theorem 1. 7 si(n)s;j(p) = 0ij implies that 37, I(x, p)I(x', ) = >, bi(x)bi(x').
This implies that PTP = D2, where D was defined above. Hayakawa’s assumption involves
setting P = D, but there are many other possible solutions of form P = RP where R is any
rotation matriz. Observe, that if R =1 then b;(x) = )\;/261'()(), Vi,x and so Y, bi(x)bj(x) =0
for i # j. Conversely, suppose that ) . b;(x)bj(x) = pidij, V i,j for some values {p;}. Then this
implies that PPT = Dy, where Dy is diagonal with diagonal elements {u;}. This is inconsistent
with PTP = D2, unless P is diagonal.

Observe, in this proof, that there is a close connection between Hayakawa’s assumption and
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Figure 7: On the left is an image of a face from the dense set. The second image is the reconstruc-
tion from the projection onto the first 3 eigenvectors calculated from the sparse set. The third
image is the reconstruction from its projection onto the first five eigenvectors calculated from the
sparse set. The rightmost image shows the difference between the first and third images, where
differences of greater than 30 greyscale levels have been highlighted in black (if the original image
is darker than the reconstruction from the projection), or white (if the original image is brighter
than the reconstruction from the projection).

the orthogonal lighting conjecture. In particular, there is a clear relation between the matrices
>, si(p)s;i(p) and Y- bi(x)bj(x) being diagonal and the relationship b;(x) o e;(x), V i,x and
sl@) o fi(w), Vi, p. This motivated the second theorem.

Proof of Theorem 2. If bi(x) = piei(x), V i,x and s;(u) = )\3/2/,”1'.]01'(,“), Vi, i then it is clear
that 32, bi(x)bj(x) and >_, si(u)s;(p) are diagonal. Conversely, suppose that ), bi(x)b;(x) =
Sijuz, Vi, j and 2o si(m)si(p) = 8ij /12, Vi, j, for some {u;}. Then it follows that PTDyP = D?
and QTD3Q = D2, where Dy and D3 are diagonal matrices with diagonal elements {\;/u2} and
{u?} respectively. The only solutions to these equations occur if Q and P are diagonal.

3 Surface Integrability and the Generalized Bas Relief Am-
biguity

From subsections (2.1,2.4) we see that existing assumptions, with the exception of class specific
knowledge, are not sufficient to solve for the linear ambiguity.

There is, however, another constraint which can always be applied. This is the surface consis-
tency conditions or integrability constraints, see various chapters such as Frankot and Chellappa
n [16]. These integrability conditions are used to ensure that the set of surface normals forms a
consistent surface. As we first showed in an earlier version of this work [6] these constraints are
powerful enough, theoretically, to determine the surface and albedo up to a generalized bas relief
transformation (GBR) (see [3] for a full treatment of the GBR). In this section we will introduce
GBR and demonstrate a method, which we first presented in [43], for using it to solve for the
shape and albedo up to a GBR. Additional assumptions can then be used to determine the full
solution.

The integrability constraints are usually expressed in terms of the surface normals but, as shown
in [6], they can be generalized to apply to the b(x) vectors. The constraints can be expressed in
differential form:

8 bQ(X) . 8 bl(X)
Ox (b3(x)) Oy (bg(X))

(16)

12
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Expanding this out we get

0bs Obs 0by Obs
—b =b —b
o 25y - B, T Uias

bs 5 Jy Jy

(17)

It is straightforward to check that these equations are invariant to the three-dimensional linear
transformations given by:

by (x) — Aby (X) + abs(x)
ba(x) — Aba(x) + Bbs(x)
b3(x) — Tb3(x) (18)

This transformation, the generalized bas relief transform (GBR), has been further investigated
[3] and shown to apply even when cast and attached shadows are present. It can also be shown
to be the only linear transformation which preserves the integrability constraints. Integrability
therefore means that, in theory, the only linear ambiguity is the three-dimensional GBR constraint.

To understand the GBR we re-express it in terms of the geometry of the surface being viewed.
The surface can be locally parameterized as z = f(z,y) with normals of form:

1
(VE-VE+ 11079

n(x) = (VE, —1). (19)

It follows directly that the transformed surface z = f(x,%) is given by:

flz,y) = Mz, y) + po + vy. (20)

The GBR therefore corresponds to the standard bas relief ambiguity f(x,y) — Af(x,y) with
the (non-standard) addition of an arbitrary background plane pz+vy. See [3] for further discussion
and results on GBR.

Observe that the GBR equation (20) implies that the eigenvalues of the Hessian stay the same
under a GBR if A is positive and both change sign if A is negative (because the Hessian depends on
the second order derivatives of f(x,y)). This implies that the principal curvatures of the surface
either both stay the same or both change sign under a GBR. This throws light on the recent
work of Fan and Wolff [8] who also dealt with shape from shading for Lambertian objects with
multiple images and non-constant albedo. Their approach involved taking ratios of the intensities
to eliminate the albedo dependence. They were then able to show that properties such as the
signs of the principal curvatures of the surfaces could be determined for simulated data. From our
perspective, they were reconstructing the surface up to a GBR.

3.1 Using Surface Integrability

But we must demonstrate that surface integrability can be used in practice to reduce the linear
ambiguity to a GBR. This subsection describes work, initially reported in [43], which demonstrates
this. It enables us, for example, to estimate the shape and albedo even when the ambient lighting
is completely different from the point illumination and might easily be confused with the albedo,
see figure (8).

For simplicity of mathematics, we now define P to be a 3 x 4 matrix equal to (Pg, p4), where
P3 and p4 are defined in equation (9). The three rows of P are three four-vectors which we denote
by P1, P2, Ps-

Now we substitute the following values for b(x), b;(x) = Y2 Pire,(x), i=1,2,3.

T=1
Zu<v{P3uP2u Pgng,,} {eu 61 u}
Z“<V{P3“P1V PlMP3V} {eﬂ 666; — €y dy M} (21)

13
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This gives us || linear equations for twelve unknowns (recall that || is the size of the image).
These equations are therefore over constrained but they can be solved by least squares to determine
the P3Py, — P, P3, and Ps, Py, — P, P, up to a constant scaling factor. These correspond to the
cross products in four dimensions p; X p3, and ps X Ps3, . By inspection, the only transformation
which preserves these cross products is:

P11 — APi+ops3

P2 — ApP2+ 08P3
1,
p3 — Xpa (22)

which corresponds to the GBR [6],[3].

This means, consistent with the generalized bas relief ambiguity, that knowing these cross
products will only allow us to solve for the P up to a generalized bas relief transformation. We
now describe an explicit procedure to solve for the P in terms of the cross products.

First, recall that cross products arise in linear algebra as co-factors when calculating the
inverses of matrices. In particular, the the cross product terms above are precisely the co-factors
of the three by three submatrix P3. Recall that this matrix is related to co-factors by:

-1

Py P Pi3 Ayp Axr Asgp
kl Por P Poz | = Az Az As (23)
Py P3p Psg A1z Agz Asg

where the co-factors are given by A1 = Pao P33 — Pa3 P30, etc. and k is a normalization constant.

In fact, the cross products determine the co-factors Aq1,A12,A13,A21,A22, Ass. The remaining
three co-factors Asp, Asz, Asz are unknown. These correspond to the parameters A, a, 3 of the
generalized bas relief transformation. Specific choices of them will correspond to specific transfor-
mations. We therefore select values for Asq, Asa, Ass which will later be modified as we solve for
the generalized bas relief ambiguity.

We can now solve equation (23) to determine P3 up to GBR. To determine the remaining
values of P, the p4, we use the remaining cross product terms and least squares.

The results show that we can reconstruct the b up to a GBR. Figure (9) shows the result of
the reconstruction in (a), but also shows the deformations that might arise due to a GBR in (b).

3.2 The Full SVD solution

The previous section has shown how we can use integrability to solve for P, and hence b, up to a
GBR. This means that the full solution is given by GP3, Gp} where G is an arbitrary GBR and
P3; and pj are the output of our algorithm imposing integrability.

In this section, we show that additional assumptions can be used to determine the full solution.
There are several possible choices. The one we describe here assumes that the magnitude of the
light sources is constant. We emphasize that we have not needed to make any assumptions about
the magnitude of the light sources in order to estimate the surface up to a GBR.

First, observe that we can directly solve for w and w, using the last equation of (9) and
applying least squares. This gives:

wy =Y fa(pw), w=> f(u) (24)

In addition, we can use the assumption that the light sources have constant magnitude which,
without loss of generality, can be set equal to 1. Using equation (9) we find that we can express
the magnitude squared of the s(1)-s(x) in terms of unknown quantities such as Q%' Qs, Q¥ 'q4, and
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Figure 8: (a) shows four images of an object with the albedo of a parrot and ambient lighting
of a tree. (b) shows that our approach manages to determine the albedo (left) and the ambient
illumination (right). Moreover, the z,y and z components of the normals of the object are also
found correctly. This nice separation between albedo and ambient will start degrading if there are
many shadows in the images.

qTq4 and known quantities such as the eigenvectors. This, extending our analysis of Hayakawa,
allows us to determine Qs and q4 up to an arbitrary rotation matrix R (using a least squares cost
function solved by a mixture of SVD and steepest descent).

By now, we have solved for the P up to a GBR G, the w and wy4, and Qs and q4 up to a
rotation R. We have, as yet, no knowledge of v and vy4.

But we still have the constraint that PTQ = D. We see that G and R only appear in this
equation in the form M = GTR.. Indeed the equations PT”Q = D reduce to linear equations for

15



International Journal on Computer Vision. 35(3), pp 203-222. 1999.

XX
il
U IINILEN
e
s
////"/'///,/,;”',"" o8

NN

N

SRS
o

O
X
S

Figure 9: Figure (a) shows the face reconstructed up to an unknown GBR using integrability.
Observe that the reconstruction appears to be accurate. In figure (b) we introduced a GBR by
hand to demonstrate the type of deformations which might arise.

M, v,v4. They can therefore be solved by least squares.

It now remains to determine G and R from M. Recall that M = GTR, where G is a GBR
and R is a rotation matrix. We therefore have that MM7” = GG and so we can determine
GGT. From the form of a GBR it can be shown that G can be determined uniquely from GG
apart from a square root ambiguity (corresponding to the well-known concave/convex ambiguity).
Now that G is known we can solve M = GTR by least squares while imposing the condition that
R is a rotation matrix. Figures (10) shows the results on the face.

4 Locating and Rejecting Shadows

So far, we have assumed that there are no shadows, or specularities, in the image. But it is clear
from our dataset that this is a poor assumption. The least squares techniques we impose have
given us some protection against the effect of shadows, but inevitably biases have been introduced.

In this section, we show that we can modify our method and eliminate shadows by an iterative
process starting with the results given by the SVD method. Our strategy is to treat the shadows
as outliers which can be removed by techniques from Robust Statistics [17]. We introduce a binary
indicator variable V(x, 1) which can be used to indicate whether a point x is in shadow when the
illuminant is s(u). This variable V(x, ) must be estimated. To do so, we can use our current
estimates of b(x) and s(u) to determine whether x is likely to be in shadow from light source s(u).
We set V(x, p) = 0if n(x) -s(u) < T, where T is a threshold. We then re-estimate b(x) and s(u)
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Albedo Ambient

(a)

Figure 10: The full SVD on the face. (a) shows the estimated albedo and ambient term. (b) shows
the 2,y and z components of the surface normals. (¢) shows the true lighting positions (left) and
the estimated light source positions (right).

and repeat.
More precisely, we define a modified energy function:

E[V(x, 1), b(x), d(x),s(1)] = Y _{I(x, 1) = V(x, p)b(x) - s(p) — a(x)}*

0bs

oby ob
+c1 zm:{(b:%a—y - bla_y) - (b36—

LR Y1 - s) - s(u))? (29)

T

where ¢; and ¢2 are constants.

We set

Vi(x,p) =0, if b(x) s(u) <
V(x,p) =1, if b(x)-s(u)>T. (26)

Then we minimize with respect to the variables b(x), s(u), and a(x).
The energy is quadratic in a(x) and can be minimized directly,

St = 2 10k 10~ Vi pb(x) - s(0) - a(x)}

a(x)" = % > {I6x, 1) = V(x, u)b(x) - s(n)} (27)
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Where N is the number of images.
To minimize with respect to s(u) requires steepest descent.

— 3 (I, 1) — Vi(x, 1)b(x) - (12) — () }(~2V (x, j)b(x)) — dea {1 —s(n) - s(u)}s(n) (28)

For b(x) we also need steepest descent. Because of the derivative in b(x) we need to discretize
the integrability terms.

= Z{I(X7 1) — V(x, p)b(x) - s(p) — a(x)}(—2V(x, u)s(p)) + integrability terms  (29)

The integrability energy terms are

Oby Obs
(bsa—y — b 8_y) — {bij(bzl,j+1 - b%, ) —bi; (b§g+1 b?,j)}
Obs Obs

(b3 = ba?) = {bf; (70,5 — b 5) = B2 (01 5 = 7))

The derivatives are given by:

81)1 - 201 Z{bZ] bz_]+1 ) bl (bz]+l bi) (bg (bz-l-l] bi) b2 (bz-l—l_] b?,j))}(bzyi-l b?,j)

(30)
and similarly for the derivatives with respect to b7 ; and b3 ;.
We repeat this process several times and obtain the shadows see figure (11) and the albedo,
ambient, and light source direction, see figure (12).

5 Conclusion

In this paper we have argued for generative models of object appearance and have stressed the
necessity of modeling each factor — shape, albedo, illumination — independently. In particular,
we have considered the special case of determining generative models when the input consists of
multiple views of the same object, at similar poses, under different illumination conditions.

We have shown that the SVD approach for Lambertian models [15] can be generalized to
include ambient illumination and we have argued, on empirical grounds, that such models are a
good approximation to real world objects and that effects such as shadows and specularities can
be treated as outliers.

We analyzed the linear ambiguity remaining after SVD and showed that it could be reduced to
a generalized bas relief ambiguity [3] by imposing surface consistency. Other methods for resolving
the ambiguity were discussed and it was shown that some of them only worked under very special
conditions. Our methods were implemented on both real and artificial data. Finally, we developed
an iterative algorithm which, when combined with SVD, was able to detect shadows as outliers
and remove them thereby improving the quality of the results.

Our approach assumed that the images of the object were viewed from the same position. This
assumption has been relaxed, see [7], to allow structure from motion to aid shape from shading to
obtain more accurate results.

In conclusion, we note that recent results by Georghiades, Kriegman and Belhumeur [11] are
very encouraging. They demonstrate that models constructed using similar techniques to those in
this paper can be highly effective for recognizing faces under different illumination conditions.
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Figure 11: The top four images show the shadows extracted by our approach for the corresponding
four input images at the bottom.
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Figure 12: The albedo and ambient of the parrot image and the face image are obtained using
our shadow rejection technique. They appear more accurate that those shown in figure 8. The
bottom row shows the true lighting (left), the estimated lighting for the parrot (center) and the
estimated lighting for the face (right). Again these appear more accurate than in figure 8.
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Appendix I: SVD and Ambiguities.

This appendix introduces SVD and then gives details for the proofs sketched in section (2.4). More
precisely. we will address: (i) Hayakawa’s assumption that a specific rotation ambiguity in SVD
can be resolved by setting the rotation to be the identity, (ii) the observation that the first three
eigenvectors typically point along the axes of the cartesian coordinate system. We will show that
these claims are closely related and depend on the symmetry of the dataset.

We refer to matrices either in bold face — i.e. A — or in coordinate form A;;, where ¢ labels
the rows and j the columns. Similarly, we can refer to a vector as € or as e;, where i labels the
coordinates. Rotation matrices will be expressed as R and W and satisfy WW = WW7T =1,
where I is the identity matrix.

Singular Value Decomposition SVD

SVD implies that we can write any matrix J in form J = UDV7” where D is a diagonal matrix
with non-negative entries and U and V obey UTU =1 and VIV = 1. It can then be verified that
the columns of U are the eigenvectors of JJ7 and the eigenvalues are the squares of the diagonal
elements of D. Similarly, the columns of V are the eigenvectors of J7J and the eigenvalues are,
once more, the squares of the diagonal elements of D.

One way to obtain the SVD is to recall that any positive semi-definite matrix M can be
expressed as M = ZZ )\ieie;fr where {)\;} and e; are the eigenvectors and eigenvalues of M re-
spectively. This can be rewritten as M = ED1E7T, where D, is a diagonal matrix with diagonal
terms {\;} (non-negative because M is positive semi-definite) and the matrix E has e; as its i’
column. Because Dy is diagonal we can write it as D1 = D2D2 (where Dy is a diagonal matrix
whose diagonal terms are the square roots of the diagonal terms of D1). Therefore we can write
M = {ED,}{ED}” (note that Dy” = Dy because the matrix is diagonal). More generally,
we can write M = {ED2F}{ED2F}T where F is an arbitrary matrix such that FF? = I. Now
JJ7 is a positive semi-definite square matrix so it can be expressed in form {ED2F}{ED,;F}”
and hence we get J = ED2F where D5 is diagonal, FF” = I and EE” = I (by properties of
eigenvectors).

SVD and Energy Minimization

We assume that the data I(p, 1) has been generated by a Lambertian model plus some additive
noise. We define a cost function which allows us to obtain the lighting and surface properties:

3

Eb,s]=> {I(p,p) =Y bi(p)si(m)}*. (31)

i=1
Extremizing these equations with respect to b and s gives us two coupled equations to solve

for b*,s*. It can be shown that E[b, s] has a single minimum (though it has many saddle points).
This solution can be attained using SVD. This gives:

bi(p) = Y Pije;(p), ¥ i.p,
i

i) = - Quly(w), Vi (32
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where the e(.) and f(.) obey the eigenvectors equations:
SO I I )} i) = Nifi(u), Viop
wop
Z{Z I(pa N)I(p/aﬂ)}ez(p/) = )\iei(p)ﬂ v i7pu (33)
p P

where the eigenvectors e(.) and f(.) are orthogonal (like all eigenvectors), so > ei(p)e;(p) = dsj,
and >, fi(p)fj() = 6ij. The matrices P and Q are constrained to satisfy:

P'Q = D3, (34)

. . . . 1/2 \1/2 1/2 .

where D3 is a diagonal matrix whose diagonal elements are A" ", Ay’ 7, A3’ “. These are the biggest

three eigenvalues of the SVD decomposition of J = I(p, 1) and correspond to the three dimensions

of the vectors b and s. For the more general case when we seek to minimize >, {I(p,n) —

i1 bi(p)si(p)}?, then we will need to take the 7 biggest eigenvalues of the SVD expansion (four
the ambient case r = 4 and so we need four eigenvalues).

It can be seen that the error of the best solution E[b*,s*], see equation (31), is simply the sum
of the squares of the remaining eigenvalues of the SVD of J (i.e. all those not in D3).

Observe that P and Q are only determined up to an arbitrary linear transformation P — AP
and Q — A~1TQ. As described in section (3), part of this ambiguity can be removed by requiring
surface integrability and the remaining ambiguity is the Generalized Bas Relief (GBR) ambiguity.

The Orthogonal Lighting Conjecture and Hayakawa’s Assumption

The orthogonal lighting conjecture states that the first three lighting eigenvectors correspond
to the object illuminated from three orthogonal directions. The Hayakawa assumption specifies a
way of choosing P assuming that P7P is known (it can be known if the albedos of the object are
approximately known, alternatively we can estimate QQ” if we assume that the light sources are
of constant strength).

We analyze this conjecture and assumption assuming that the data has been generated by the
naive Lambertian model (i.e. ignoring shadows). Our empirical experiments [13], [5] suggest that
this assumption is fairly good as a first approximation. Moreover, the nature of singular value
decomposition approach (SVD) means that, even if the reflectance is not Lambertian, the first
three eigenvectors are likely to be the Lambertian components.

We will prove theorems which give necessary and sufficient conditions that the orthogonal
lighting conjecture and Hayakawa’s hidden assumption are true.

Let us define:
Bij =Y bi(p)bj(p), Sij =Y si(1)s;(n), (35)

where {b;(p)} and {s;(u)} are the surface properties and the lighting conditions of the naive
Lambertian model which generated the data.
Now we formally state the orthogonal lighting conjecture and Hayakawa’s assumption.
Orthogonal Lighting Conjecture. There exist three orthogonal unit vectors El, EQ, Eg such

that & (p) o k1 - b(p), @(p)  kz - b(p), and &3(p) o ks - b(p).

Comment. By equation (32) this condition is equivalent to saying we can find a coordinate
system in which P is diagonal.

Hayakawa’s Assumption. If we express PTP in diagonal form as WIT MW, where W is
an orthogonal matriz and M is diagonal, then P = M'/?W.

Comment I. PTP can always be expressed in diagonal form as WMW. But the general
solution is P = RM'/2W, where R is an arbitrary rotation matrix.
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Comment II. The diagonal form W MW is not unique because we can always re-order the
diagonal elements of M by applying a permutation matrix IT'. More precisely, IIMII” is also
a diagonal matrix whose diagonal elements are a re-ordering of those in M. Thus we can send
M — IIMII” and W — IIW. The only way to make the diagonal form unique is by putting a
condition on the ordering of the diagonal elements of M.

This means that Hayakawa’s assumption is ill-defined. We can, however, generalize it by
incorporating an arbitrary permutation matrix. Observe that this only causes slight ambiguity in
the output of the algorithm (i.e. we know what the shape and surface properties are, but only up
to a permutation on the z,y, z axes).

Hayakawa’s Generalized Assumption. If we express PTP in diagonal form as WT MW,
where W is an orthogonal matriz and M is diagonal, then P = TIMY?W , where II is an arbitrary
permutation matrix.

To prove our theorems, we first need some intermediate results.
Lemma 1. If the data has been generated by a naive Lambertian model with lighting s;(u) and
surface properties b;(p), then we have B = PPT and S = QQT.

Proof. By equation (35), Si = >_ , si(1)s;(p). Now, equation (32) gives us si(u) = 3_; Qij f5 (1)
Substituting for s;(p) and using the orthogonality of the f(.)’s we obtain S = QQT. Similarly,
B =PPT.

This Lemma allows us to understand when Hayakawa’s generalized assumption is valid.
Theorem 1. If the data is generated by a naive Lambertian model, then Hayakawa’s general-
ized assumption is valid if, and only if, B is diagonal.

Proof. Set P = RMY2W, where the rotation matriz R is unknown. If the data is naive
Lambertian, then, by Lemma 1, B = PPT = RMR (recalling that W is a rotation and M is
diagonal). Thus B is diagonal if, and only if, R is a permutation matriz — i.e. if, and only if,
Hayakawa’s generalized assumption is true.

Comment. The constraint that B is diagonal can be thought of as a symmetry assumption
about the surface properties of the viewed object. It will be true, for example, if we look at an
ellipsoidal object, with constant albedo, from directly in front. More importantly, it will also be
true (statistically speaking) if the individual components of the surface properties can be modelled
as independent random variables with zero mean. This seems close to the data used in Hayakawa’s
experiments, and may be a good approximation for some scenes.

Lemma 2. The orthogonal lighting conjecture is independent of the choice of coordinate sys-
tem.

Comment. This result is not surprisingly, but because this problem contains special coordi-
nate systems, defined by the viewer direction and defined by the eigenvectors, it is wise to check
it.

Proof. Let us start in the coordinate system defined by the viewer position (i.e. with the z axis
pointing along the direction of sight). By equation (32):

b(p) = Pé(p),

5(p) = Qf (). (36)

IThe permutation matrices form a discrete subgroup of the rotation group. Geometrically their function is to
relabel the z, y and z axes. This means there are 3! = 6 of them.
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Now let us rotate the coordinate system by a rotation R. This gives:

3(p) = Ri(p) = RQf(p). (37)
Thus we can define: .
b(p) = Pé(p), 3(n) = Qf(n). (38)
This gives:
P =RP, Q=RQ (39)

and we can confirm that f’TQ = PTQ. Therefore equations (32,34) retain the same form if we
rotate the coordinate system.

We are now ready to prove our main theorem.
Theorem 2. If the data has been generated by the naive Lambertian model, then the or-
thogonal lighting conjecture holds if, and only if, the two matrices S;; = Z# si(p)s;(p) and

Bij =3, bi(p)bj(p) commute.

We have:

Proof. First observe that the orthogonal lighting conjecture is true if, and only if, we can find a
coordinate system in which P is diagonal which, by equation (34) PTQ = D, also implies that Q
is diagonal. If both P and Q are diagonal, then the eigenvectors e(.) and f(.) will be proportional
to the cartesian components of the b(.) and s(.).

We consider the eigenvalue equation (33) for e(.) and f(.). Now

> I(p, w)I(p Z bi(p (p)s; (1) = si(p)s; (1) Bij,
ZI P 1 = bi(p)b; (p"Si;- (40)

The eigenvalue equation (33) now becomes:

Z{Bws (W5 (1) = N il
Z{wa P)}e;(p') = Aiei(p). (41)

Now, from equation (32), we substitute f(i/) = Q '5(y/) and &(p') = P~Lb(p') into these
equations, recalling the definitions, equation (35), of S and B, and comparing coefficients of §()

and b(p) gives:
QTBS = D2Q?, PTSB =D?P7, (42)
1/2 )\1/2 )\1/2
e

where D is a diagonal matriz with elements A| ,

Using the results of Lemma 1 gives:
Q'BQ =D?, PTsp=D% (43)

Now let us assume that S and B commute. This means that we can rotate the coordinate
system until they are both diagonal. This will allow us, using Lemma 1, to express:

Q=S'"?R;, P=B!?R,, (44)

where Ry and Ra are (unknown) rotation matrices.
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Substituting into equation (43), and using the fact that S and B are diagonal (and hence
commute), gives:

RTSBR,; = D? = RISBR.. (45)

But both SB and D are diagonal, and so the only solution to these equations is to set R1 =
Ry = II, where I1 is a permutation matriz. This implies that Q and P are diagonal, and hence
the result follows.

Conversely, suppose that the orthogonal lighting conjecture is true. Then we can find a coordi-
nate system in which P and Q are diagonalizable. Then Lemma 2 implies that S and B are both
diagonal, and hence commute.
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