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AbstractWe prove that the set of all re
ectance functions (the mapping from surface normals to intensities)produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. Thisimplies that, in general, the set of images of a convex Lambertian object obtained under a wide varietyof lighting conditions can be approximated accurately by a low-dimensional linear subspace, explainingprior empirical results. We also provide a simple analytic characterization of this linear space. Weobtain these results by representing lighting using spherical harmonics and describing the e�ects ofLambertian materials as the analog of a convolution. These results allow us to construct algorithms forobject recognition based on linear methods as well as algorithms that use convex optimization to enforcenon-negative lighting functions. Finally, we show a simple way to enforce non-negative lighting whenthe images of an object lie near a 4D linear space.
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1 IntroductionOne of the most basic problems in vision is to understand how variability in lighting a�ects the imagesthat an object can produce. Even when lights are isotropic and distant, smooth Lambertian objects canproduce in�nite-dimensional sets of images (Belhumeur and Kriegman [1]). But recent experimentalwork ([7, 12, 30]) has indicated that the set of images produced by an object under a wide range oflighting conditions lies near a low dimensional linear subspace in the space of all possible images. Thiscan be used to construct e�cient recognition algorithms that handle lighting variations. In this paperwe explain these empirical results analytically and use this understanding to produce new recognitionalgorithms.When light is isotropic and distant from an object, we can describe its intensity as a function ofdirection. Light, then, is a non-negative function on the surface of a sphere. Our approach begins byrepresenting these functions using spherical harmonics. This is analogous to Fourier analysis, but onthe surface of the sphere. To model the way surfaces turn light into an image we look at re
ectanceas a function of the surface normal (assuming unit albedo). We show that re
ectance functions areproduced through the analog of a convolution of the lighting function using a kernel that representsLambert's re
ection. This kernel acts as a low-pass �lter with 99.2% of its energy in the �rst ninecomponents. We use this and the non-negativity of light to prove that under any lighting conditions,a nine-dimensional linear subspace, for example, accounts for 98% of the variability in the re
ectancefunction. This suggests that in general the set of images of a convex, Lambertian object can beapproximated accurately by a low dimensional linear space. We further show how to analyticallyderive this subspace from an object model.This allows us to better understand several existing methods. For example, we show that the linearsubspace methods of Shashua [25] and Moses [20] use a linear space spanned by the three �rst orderharmonics, but that they omit the signi�cant DC component. Also, it leads us to new methods ofrecognizing objects with unknown pose and lighting conditions. In particular, we discuss how theharmonic basis can be used in a linear-based object recognition algorithm, replacing bases derived byperforming SVD on large collections of rendered images. Furthermore, we show how we can enforcenon-negative light by projecting this constraint to the space spanned by the harmonic basis. Withthis constraint recognition is expressed as a non-negative least-squares problem that can be solvedusing convex optimization. This leads to an algorithm for recognizing objects under varying pose andillumination that resembles Georghides et al. [9], but works in an analytically derived low-dimensionalspace. The use of the harmonic basis, in this case, allows us to rapidly produce a representation tothe images of an object in poses determined at runtime. Finally, we discuss the case in which a �rstorder approximation provides an adequate approximation to the images of an object. The set of imagesthen lies near a 4D linear subspace. In this case we can express the non-negative lighting constraintanalytically. We use this expression to perform recognition in a particularly e�cient way, withoutcomplex, iterative optimization techniques.It has been very popular in object recognition to represent the set of images that an object canproduce using low dimensional linear subspaces of the space of all images. Ullman and Basri [28]analytically derive such a representation for sets of 3D points undergoing scaled orthographic projection.2



Shashua [25] and Moses [20] (and later also [22, 31]) derive a 3D linear representation of the set of imagesproduced by a Lambertian object as lighting changes, but ignoring attached shadows. Hayakawa [13]uses factorization to build 3D models using this linear representation. Koenderink and van Doorn [18]extend this to a 4D space by allowing the light to include a di�use component. Researchers havecollected large sets of images and performed PCA to build representations that capture within classvariations [16, 27, 4] and variations due to pose and lighting [21, 12, 30]. Hallinan [12], Epstein etal. [7] and Yuille et al. [30] perform experiments that show that large numbers of images of Lambertianobjects, taken with varied lighting conditions, do lie near a low-dimensional linear space, justifyingthis representation. More recently, analytically derived, convex representations have been used byBelhumeur and Kriegman [1] to model attached shadows. Georghides et al. [8, 9] use this representationfor object recognition.Spherical harmonics have been used in graphics to e�ciently represent the bidirectional re
ec-tion distribution function (BRDF) of di�erent materials by, e.g., Cabral [3] and Westin et al. [29](Koenderink and van Doorn [17] proposed replacing the spherical harmonics basis with the Zernikepolynomials, since BRDFs are de�ned over a half sphere.) Nimero� et al. [23]. Dobashi et al. [5] andTeo et al. [26] explore speci�c lighting con�gurations that can be represented e�ciently as a linearcombination of basis lightings (e.g., daylight). Dobashi et al. [5] in particular use spherical harmonicsto form such a basis. D'Zmura [6] was �rst to point out that the process of turning incoming lightinto re
ection can be described in terms of spherical harmonics. With this representation, after trun-cating high order components, the re
ection process can be written as a linear transformation, andso the low order components of the lighting can be recovered by inverting the transformation. Heused this analysis to explore ambiguities in lighting. We extend this work by deriving subspace resultsfor the re
ectance function, providing analytic descriptions of the basis images, and constructing newrecognition algorithms that use this analysis while enforcing non-negative lighting. Independent ofand contemporaneous with our work, Ramamoorthi and Hanrahan [24] have described the e�ect ofLambertian re
ectance as a convolution. Like D'Zmura they use this analysis to explore the problemof recovering lighting from re
ectances. Also, preliminary comments on this topic can be found inJacobs, Belhumeur and Basri[15].In summary, the main contribution of our paper is to show how to analytically �nd low dimensionallinear subspaces that accurately approximate the set of images that an object can produce. We canthen carve out portions of these subspaces corresponding to non-negative lighting conditions, and usethese descriptions for recognition.2 Modeling Image FormationConsider a convex object illuminated by distant isotropic light sources. Assume further that thesurface of the object re
ects light according to Lambert's law [19]. This relatively simple modelhas been analyzed and used e�ectively in a number of vision applications. The set of images of aLambertian object obtained with arbitrary light has been termed the \illumination cone" by Belhumeurand Kriegman [1]. Our objective is to analyze properties of the illumination cone. For the analysis it willbe useful to consider the set of re
ectance functions obtained under di�erent illumination conditions.3



A re
ectance function (also called re
ectance map, see Horn [14], Chapters 10-11) associated with aspeci�c lighting con�guration is de�ned as the light re
ected by a sphere of unit albedo as a functionof the surface normal. A re
ectance function is related to an image of a convex object illuminated bythe same lighting con�guration by the following mapping. Every visible point on the object's surfaceinherits its intensity from the point on the sphere with the same normal, and this intensity is furtherscaled by the albedo at the point. We will discuss the e�ect of this mapping later on in this section.2.1 Image Formation as the Analog of a ConvolutionLet S denote a unit sphere centered at the origin. Let p = (x; y; z) denote a point on the surface of S,and let Np = (x; y; z) denote the surface normal at p. p can also be expressed as a unit vector usingthe following notation: (x; y; z) = (cos � sin�; sin � sin�; cos �); (1)where 0 � � � � and 0 � � � 2�. In this coordinate frame the poles are set at (0; 0;�1), � denotes thesolid angle between p and (0; 0; 1), and it varies with latitude, and � varies with longitude. Since weassume that the sphere is illuminated by a distant and isotropic set of lights all points on the sphere seethese lights coming from the same directions, and they are illuminated by identical lighting conditions.Consequently, the con�guration of lights that illuminate the sphere can be expressed as a non-negativefunction `(�; �), expressing the intensity of the light reaching the sphere from each direction (�; �).Furthermore, according to Lambert's law the di�erence in the light re
ected by the points is entirelydue to the di�erence in their surface normals. Thus, we can express the light re
ected by the sphereas a function r(�; �) whose domain is the set of surface normals of the sphere.According to Lambert's law, if a light ray of intensity l reaches a surface point with albedo �forming an angle � with the surface normal at the point, then the intensity re
ected by the point dueto this light is given by l�max(cos �; 0): (2)In a re
ectance function we use � = 1. If light reaches a point from a multitude of directions thenthe light re
ected by the point would be the sum of (or in the continuous case the integral over) thecontribution for each direction. Denote by k(�) = max(cos �; 0), then, for example, the intensity of thepoint (0; 0; 1) is given by: r(0; 0) = Z 2�0 Z �0 k(�)`(�; �) sin �d�d�: (3)Similarly, the intensity r(�; �) re
ected by a point p = (�; �) is obtained by centering k about p andintegrating its inner product with ` over the sphere. Thus, the operation that produces r(�; �) is theanalog of a convolution on the sphere. We will refer to this as a convolution, and write:r(�; �) = k � `: (4)The kernel of this convolution, k, is the circularly symmetric, \half-cosine" function. The convolutionis obtained by rotating k so that its center is aligned with the surface normal at p. This still leaves onedegree of freedom in the rotation of the kernel unde�ned, but since k is rotationally symmetric thisambiguity disappears. 4



2.2 Properties of the Convolution KernelJust as the Fourier basis is convenient for examining the results of convolutions in the plane, similartools exist for understanding the results of the analog of convolutions on the sphere. The surfacespherical harmonics are a set of functions that form an orthonormal basis for the set of all functionson the surface of the sphere. We denote these functions by hnm, with n = 0; 1; 2; ::: and �n � m � n:hnm(�; �) = s(2n+ 1)4� (n�m)!(n+m)!Pnm(cos �)eim�; (5)where Pnm are the associated Legendre functions, de�ned asPnm(z) = (1� z2)m=22nn! dn+mdzn+m (z2 � 1)n: (6)In the course of this paper it will sometimes be convenient to parameterize hnm as a function of spacecoordinates (x; y; z) rather than angles. The spherical harmonics, written hnm(x; y; z), then becomepolynomials of degree n in (x; y; z).We may express the kernel, k, and the lighting function, `, as harmonic series, that is, as linear com-binations of the surface harmonics. We do this primarily so that we can take advantage of the analog tothe convolution theorem for surface harmonics. An immediate consequence of the Funk-Hecke theorem(see, e.g., [10], Theorem 3.4.1, page 98) is that \convolution" in the function domain is equivalent tomultiplication in the harmonic domain. In the rest of this section we derive a representation of k as aharmonic series. We use this derivation to show that k is nearly a low-pass �lter. Speci�cally, almostall of the energy of k resides in the �rst few harmonics. This will allow us to show that the possiblere
ectances of a sphere all lie near a low dimensional linear subspace of the space of all functions de�nedon the sphere.In Appendix A we derive a representation of k as a harmonic series. In short, since k is rotationallysymmetric about the pole, under an appropriate choice of a coordinate frame its energy concentrates ex-clusively in the zonal harmonics (the harmonics withm = 0), while the coe�cients of all the harmonicswith m 6= 0 vanish. Thus, we can express k as:k = 1Xn=0 knhn0; (7)with kn = Z 2�0 Z �0 k(�)hn0(�; �) sin �d�d�: (8)After some tedious manipulation (detailed in Appendix A) we obtain thatkn = 8>>>>><>>>>>: p�2 n = 0q�3 n = 1(�1)n2+1 (n�2)!p(2n+1)�2n(n2�1)!(n2+1)! n � 2; even0 n � 2; odd (9)5



n 0 1 2 4 6 8Energy 37.5 50 11.72 0.59 0.12 0.04Cumulative energy 37.5 87.5 99.22 99.81 99.93 99.97Lower bound 37.5 75 97.96 99.48 99.80 99.90Table 1: The top row shows the energy captured by the n'th zonal harmonic for the Lambertian kernel (0 � n � 8).The middle row shows the energy accumulated up to order n. This energy represents the quality of the n'th orderapproximation of r(�; �) (measured in relative squared error). The bottom row shows a lower bound on the quality ofthis approximation due to the non-negativity of the light. The n = 3, 5, and 7 are omitted because they contribute noenergy. Relative energies are given in percents.The �rst few coe�cients, for example, arek0 = p�2 � 0:8862 k2 = p5�8 � 0:4954 k6 = p13�128 � 0:0499k1 = q�3 � 1:0233 k4 = �p�16 � �0:1108 k8 = p17�256 � �0:0285: (10)(k3 = k5 = k7 = 0) A graph representation of the coe�cients is shown in Figure 1.The energy captured by every harmonic term is measured commonly by the square of its respectivecoe�cient divided by the total squared energy of the transformed function. The total squared energyin the half cosine function is given byZ 2�0 Z �0 k2(�) sin �d�d� = 2� Z �20 cos2 � sin �d� = 2�3 : (11)Table 1 shows the relative energy captured by each of the �rst several coe�cients. It can be seen thatthe kernel is dominated by the �rst three coe�cients. Thus, a second order approximation alreadyaccounts for 99.22% of the energy. With this approximation the half cosine function can be written as:k(�) � 14 + 12 cos � + 516 cos 2�: (12)The quality of the approximation improves somewhat with the addition of the fourth order term(99.81%) and deteriorates to 87.5% when a �rst order approximation is used. Figure 2 shows a 1Dslice of the Lambertian kernel and its various approximations.2.3 Approximating the Re
ectance FunctionThe fact that the Lambertian kernel has most of its energy concentrated in the low order terms impliesthat the set of Lambertian re
ectance functions can be well approximated by a low dimensional linearspace. This space is spanned by a small set of what we call harmonic re
ectances. The harmonicre
ectance rnm(�; �) denotes the re
ectance of the sphere when it is illuminated by the harmonic \light"hnm. Note that harmonic lights generally are not positive everywhere, so they do not correspond to real,physical lighting conditions; they are abstractions. As is explained below every re
ectance function6
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Figure 1: From left to right: a graph representation of the �rst 11 coe�cients of the Lambertian kernel, the relativeenergy captured by each of the coe�cients, and the accumulated energy
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Figure 2: A slice of the Lambertian kernel (solid) and its approximations of �rst (left, dotted), second (middle), andfourth (right) order.
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r(�; �) will be approximated to an excellent accuracy by a linear combination of a small number ofharmonic re
ectances.To evaluate the quality of the approximation consider �rst, as an example, lighting generated bya point source at the z direction (� = � = 0). A point source is a delta function. The re
ectanceof a sphere illuminated by a point source is obtained by a convolution of the delta function with thekernel, which results in the kernel itself. Due to the linearity of the convolution, if we approximate there
ectance due to this point source by a linear combination of the �rst three zonal harmonics, r00, r10,and r20, we account for 99.22% of the energy. In other wordsmin(a0;a1;a2) ka0r00 + a1r10 + a2r20 � kk2kkk2 = 0:9922; (13)where k, the Lambertian kernel, is also the re
ectance of the sphere when it is illuminated by a pointsource at the z direction. Similarly, �rst and fourth order approximations yield respectively 87.5% and99.81% accuracy.If the sphere is illuminated by a single point source in a direction other than the z direction there
ectance obtained would be identical to the kernel, but shifted in phase. Shifting the phase of afunction distributes its energy between the harmonics of the same order n (varying m), but the overallenergy in each n is maintained. The quality of the approximation, therefore, remains the same, butnow for an N 'th order approximation we need to use all the harmonics with n � N for all m. Recallthat there are 2n + 1 harmonics in every order n. Consequently, a �rst order approximation requiresfour harmonics. A second order approximation adds �ve more harmonics yielding a 9D space. Thethird order harmonics are eliminated by the kernel, and so they do not need to be included. Finally, afourth order approximation adds nine more harmonics yielding an 18D space.We have seen that the energy captured by the �rst few coe�cients ki (1 � i � N) directly indicatesthe accuracy of the approximation of the re
ectance function when the light includes a single pointsource. Other light con�gurations may lead to di�erent accuracy. Better approximations are obtainedwhen the light includes enhanced di�use components of low-frequency. Worse approximations areanticipated if the light includes mainly high frequency patterns.However, even if the light includes mostly high frequency patterns the accuracy of the approximationis still very high. This is a consequence of the non-negativity of light. A lower bound on the accuracyof the approximation for any light function can be derived as follows. It is simple to show that for anynon-negative function the amplitude of the DC component must be at least as high as the amplitude ofany of the other components.1 One way to see this is by representing such a function as a non-negativesum of delta functions. In such a sum the amplitude of the DC component is the weighted sum ofthe amplitudes of all the DC components of the di�erent delta functions. The amplitude of any otherfrequency may at most reach the same level, but often will be lower due to interference. Consequently,in an N 'th order approximation the worst scenario is obtained when the amplitudes in all frequencies1Note that to obtain the amplitude of the n'th component we must normalize its coe�cient, multiplying it byq 4�2n+1 .Consequently the coe�cient of the DC component may be smaller than that of other components, while the amplitudemay not. The Funk-Hecke theorem applies to the amplitudes.8



higher than N saturate to the same amplitude as the DC component, while the amplitude of orders1 � n � N are set to zero. In this case the relative squared energy becomesk20k20 +P1n=N+1 k2n = k202�3 �PNn=1 k2n : (14)Table 1 shows the bound obtained for several di�erent approximations. It can be seen that using asecond order approximation (involving nine harmonics) the accuracy of the approximation for any lightfunction exceeds 97.96%. With a fourth order approximation (involving 18 harmonics) the accuracyexceeds 99:48%. Note that the bound computed in (14) is not tight, since the case that all the higherorder terms are saturated yields a function with negative values. Consequently, the worst case accuracymay even be higher than the bound.2.4 Generating Harmonic Re
ectancesConstructing a basis to the space that approximates the re
ectance functions is straightforward andcan be done analytically. To construct the basis we can simply invoke the Funk-Hecke theorem. Recallthat this space is spanned by the harmonic re
ectances, i.e., the re
ectances obtained when a unitalbedo sphere is illuminated by harmonic lights. These re
ectances are the result of convolving thehalf cosine kernel with single harmonics. Due to the orthonormality of the spherical harmonics such aconvolution cannot produce energy in any of the other harmonics. Consequently, denote the harmoniclight by hnm, then the re
ectance due to this harmonic is the same harmonic, but scaled. Formally,rnm = k � hnm = cnhnm: (15)(It can be readily veri�ed that the harmonics of the same order n but di�erent phase m share the samescale factor cn.) It is therefore left to determine cn.To determine cn (which is important when we enforce non-negative lighting in Sections 3.2 and 3.3)we can use the fact that the half-cosine kernel k is an image obtained when the light is a delta functioncentered in the z direction. The transform of the delta function is given by� = 1Xn=0r2n+ 14� hn0; (16)and the image it produces is k = 1Xn=0 knhn0; (17)where the coe�cients kn are given in (9). cn determines by how much the harmonic is scaled followingthe convolution; therefore, it is the ratio between kn and the respective coe�cient of the delta function,that is, cn = s 4�2n+ 1kn: (18)9



The �rst few harmonic re
ectances are given byr00 = �h00 r2m = �4h2m r6m = �64h6mr1m = 2�3 h1m r4m = �24h4m r8m = �128h8m (19)for �n � m � n (and r3m = r5m = r7m = 0).For the construction of the harmonic re
ectances it is useful to express the harmonics using spacecoordinates (x; y; z) rather than angles (�; �). This can be done by substituting the following equationsfor the angles: � = cos�1 z� = tan�1 yx : (20)The �rst nine harmonics then becomeh00 = 1p4� ho11 = q 34�y ho21 = 3q 512�yzh10 = q 34�z h20 = 12q 54� (2z2 � x2 � y2) he22 = 32q 512� (x2 � y2)he11 = q 34�x he21 = 3q 512�xz ho22 = 3q 512�xy; (21)where the superscripts e and o denote the even and the odd components of the harmonics respectively(so hnm = henjmj� ihonjmj, according to the sign of m; in fact the even and odd versions of the harmonicsare more convenient to use in practice since the re
ectance function is real). Notice that the harmonicsare simply polynomials in these space coordinates. Below we invariably use hnm(�; �) and hnm(x; y; z)to denote the harmonics expressed in angular and space coordinates respectively.2.5 From Re
ectances to ImagesUp to this point we have analyzed the re
ectance functions obtained by illuminating a unit albedosphere by arbitrary light. Our objective is to use this analysis to e�ciently represent the set of imagesof objects seen under varying illumination. An image of an object under certain illumination conditionscan be constructed from the respective re
ectance function in a simple way: each point of the objectinherits its intensity from the point on the sphere whose normal is the same. This intensity is furtherscaled by its albedo. In other words, given a re
ectance function r(x; y; z), the image of a point p withsurface normal n = (nx; ny; nz) and albedo � is given byI(p) = �r(nx; ny; nz): (22)We now wish to discuss how the accuracy of our low dimensional linear approximation to a model'simages can be a�ected by the mapping from the re
ectance function to images. We will make twopoints. First, in the worst case, this can make our approximation arbitrarily bad. Second, in typicalcases it will not make our approximation less accurate.There are two components to turning a re
ectance function into an image. One is that there isa rearrangement in the x; y position of points. That is, a particular surface normal appears in one10



location on the unit sphere, and may appear in a completely di�erent location in the image. Thisrearrangement has no e�ect on our approximation. We represent images in a linear subspace in whicheach coordinate represents the intensity of a pixel. The decision as to which pixel to represent withwhich coordinate is arbitrary, and changing this decision by rearranging the mapping from (x; y) to asurface normal merely reorders the coordinates of the space.The second and more signi�cant di�erence between images and re
ectance functions is that occlu-sion, shape variation and albedo variations a�ect the extent to which each surface normal on the spherehelps determine the image. For example, occlusion ensures that half the surface normals on the spherewill be facing away from the camera, and will not produce any visible intensities. A discontinuoussurface may not contain some surface normals, and a surface with planar patches will contain a singlenormal over an extended region. In between these extremes, the curvature at a point will determinethe extent to which its surface normal contributes to the image. Albedo has a similar e�ect. If a pointis black (zero albedo) its surface normal has no e�ect on the image. In terms of energy, darker pixelscontribute less to the image than brighter pixels. Overall, these e�ects are captured by noticing thatthe extent to which the re
ectance of each point on the unit sphere in
uences the image can rangefrom zero to the entire image.We will give an example to show that in the worst case this can make our approximation arbitrarilybad. First, one should notice that at any single point, a low-order harmonic approximation to a functioncan be arbitrarily bad (this can be related to the Gibbs phenomenon in the Fourier domain). Considerthe case of an object that is a sphere of constant albedo (this example is adapted from Belhumeurand Kriegman [1]). If the light is coming from a direction opposite the viewing direction, it will notilluminate any visible pixels. We can then shift the light slightly, so that it illuminates just one pixelon the boundary of the object; by varying the intensity of the light we can give this pixel any desiredintensity. A series of lights can do this for every pixel on the rim of the sphere. If there are n suchpixels, the set of images we get fully occupies the positive orthant of an n-dimensional space. Obviously,points in this space can be arbitrarily far from any 9D space. What is happening is that all the energyin the image is concentrated in those surface normals for which our approximation happens to be poor.However, generally, things will not be so bad. In general, occlusion will render an arbitrary half ofthe normals on the unit sphere invisible. Albedo variations and curvature will emphasize some normals,and deemphasize others. But in general, the normals whose re
ectances are poorly approximatedwill not be emphasized more than any other re
ectances, and we can expect our approximation ofre
ectances on the entire unit sphere to be about as good over those pixels that produce the intensitiesvisible in the image.Therefore, we assume that the subspace results for the re
ectance functions carry on to the imagesof objects. Thus we approximate the set of images of an object by a linear space spanned by what wecall harmonic images, denoted bnm. These are images of the object seen under harmonic light. Theseimages are constructed as in (22) as follows:bnm(p) = �rnm(nx; ny; nz): (23)Note that b00 is an image obtained under constant, ambient light, and so it contains for every pointsimply the surface albedo at the point (scaled by a constant factor). The �rst order harmonic images11



Figure 3: We show the �rst nine harmonic images for a model of a face. The top row contains the zero'th harmonic (left)and the three �rst order harmonic images (right). The second row shows the images derived from the second harmonics.Negative values are shown in black, positive values in white.b1m are images obtained under cosine lighting centered at the three main axes. These images are,for every point, the three components of the surface normals scaled by the albedos, and an additionalconstant. (See a discussion of past use of these images in Section 3.) The higher order harmonic imagescontain polynomials of the surface normals scaled by the albedo. Figure 3 shows the �rst nine harmonicimages derived from a 3D model of a face.We can write this more explicitly, combining Equations 21 and 23. Let pi denote the i'th objectpoint. Let � denote a vector of the object's albedos, that is, �i is the albedo of pi. Similarly, letnx;ny;nz denote three vectors of the same length that contain the x, y and z components of the surfacenormal, so that, for example, nx;i (the i'th component of nx) is the x component of the surface normalof pi. Further, let nx2 denote a vector such that nx2;i = nx;inx;i. We de�ne ny2 ;nz2 ;nxz;nyz;nxysimilarly, where, for example, nxy;i = nx;iny;i. Finally, we will write �: � v to denote the component-wise product of � with any vector v (this is MATLAB's notation). That is, this product scales thecomponents of a vector by the albedo associated with the point that produced that component. So�: � nx is just the x components of the surface normals scaled by their albedos. Using this notation,the �rst nine harmonic images become:b00 = 1p4�� bo11 = q 34��: � ny bo21 = 3q 512��: � nyzb10 = q 34��: � nz b20 = 12q 54��: � (2nz2 � nx2 � ny2) be22 = 32q 512��: � (nx2 � ny2)be11 = q 34��: � nx be21 = 3q 512��: � nxz bo22 = 3q 512��: � nxy: (24)3 RecognitionWe have developed an analytic description of the linear subspace that lies near the set of images thatan object can produce. We now show how to use this description to recognize objects. Although ourmethod is suitable for general objects, we will give examples related to the problem of face recognition.12



We assume that an image must be compared to a data base of models of 3D objects. We will assumethat the pose of the object is already known, but that its identity and lighting conditions are not. Forexample, we may wish to identify a face that is known to be facing the camera. Or we may assumethat either a human or an automatic system have identi�ed features, such as the eyes and the tip ofthe nose, that allow us to determine pose for each face in the data base, but that the data base is toobig to allow a human to select the best match.Recognition proceeds by comparing a new image to each model in turn. To compare to a modelwe compute the distance between the image and the nearest image that the model can produce. Wepresent two classes of algorithms that vary in their representation of a model's images. The linearsubspace can be used directly for recognition, or we can restrict ourselves to a subset of the linearsubspace that corresponds to physically realizable lighting conditions.We will stress the advantages we gain by having an analytic description of the subspace available,in contrast to previous methods in which PCA could be used to derive a subspace from a sample of anobject's images. One advantage of an analytic description is that we know this provides an accuraterepresentation of an object's images, not subject to the vagaries of a particular sample of images. Asecond advantage is e�ciency; we can produce a description of this subspace much more rapidly thanPCA would allow. The importance of this advantage will depend on the type of recognition problemthat we tackle. In particular, we are interested in recognition problems in which the position of anobject is not known in advance, but can be computed at run-time using feature correspondences. In thiscase, the linear subspace must also be computed at run-time, and the cost of doing this is important.Finally, we will show that when we use a 4D linear subspace, an analytic description of this subspaceallows us to incorporate the constraint that the lighting be physically realizable in an especially simpleand e�cient way.3.1 Linear MethodsThe most straightforward way to use our prior results for recognition is to compare a novel image tothe linear subspace of images that correspond to a model (D'Zmura [6] also makes this suggestion). Todo this, we produce the harmonic basis images of each model, as described in Section 2.5. Given animage I we seek a vector a that minimizes kBa� Ik, where B denotes the basis images, B is p� r, pis the number of points in the image, and r is the number of basis images used. As discussed above,nine is a natural value to use for r, but r = 4 provides greater e�ciency while r = 18 o�ers even betterpotential accuracy. Every column of B contains one harmonic image bnm. These images form a basisfor the linear subspace, though not an orthonormal one. So we apply a QR decomposition to B toobtain such a basis. We compute Q, a p� r matrix with orthonormal columns, and R, an r� r matrixso that QR = B and QTQ is an r � r identity matrix. We can then compute the distance from theimage, I, and the space spanned by B as kQQT I � Ik. The cost of the QR decomposition is O(pr2),assuming p >> r.In contrast to this, prior methods have sometimes performed PCA on a sample of images to �nd alinear subspace representing an object. Hallinan [12] performed experiments indicating that PCA canproduce a �ve or six dimensional subspace that accurately models a face. Epstein et al. [7] and Yuille13



et al. [30] describe experiments on a wider range of objects that indicate that images of Lambertianobjects can be approximated by a linear subspace of between three and seven dimensions. Speci�cally,the set of images of a basketball were approximated to 94.4% by a 3D space and to 99.1% by a 7Dspace, while the images of a face were approximated to 90.2% by a 3D space and to 95.3% by a 7Dspace. Georghides et al. [9] render the images of an object and �nd an 11D subspace that approximatesthese images.These numbers are roughly comparable to the 9D space that, according to our analysis, approx-imates the images of a Lambertian object. Additionally, we note that the basis images of an objectwill not generally be orthogonal, and can in some cases be quite similar. For example, if the z com-ponents of the surface normals of an object do not vary much, then some of the harmonic images willbe quite similar, such as � vs. �z. This may cause some components to be less signi�cant, so that alower-dimensional approximation can be fairly accurate.When s sampled images are used (typically s >> r), with s << p PCA requires O(ps2). Also, inMATLAB, PCA of a thin, rectangular matrix seems to take exactly twice as long as its QR decomposi-tion. Therefore, in practice, PCA on the matrix constructed by Georghides et al. would take about 150times as long as using our method to build a 9D linear approximation to a model's images (this is fors = 100 and r = 9. One might expect p to be about 10,000, but this does not e�ect the relative costsof the methods). This may not be too signi�cant if pose is known ahead of time and this computationtakes place o� line. But when pose is computed at run time, the advantages of our method can becomevery great.It is also interesting to compare our method to another linear method, due to Shashua [25] andMoses [20]. Shashua points out that in the absence of attached shadows, every possible image of anobject is a linear combination of the x, y and z components of the surface normals, scaled by the albedo.He therefore proposes using these three components to produce a 3D linear subspace to represent amodel's images. Notice that these three vectors are identical, up to a scale factor, to the basis imagesproduced by the �rst order harmonics in our method.While this equivalence is clear algebraicly, we can also explain it as follows. The �rst order harmonicimages are images of any object subjected to a lighting condition described by a single harmonic. TheFunk-Hecke theorem ensures that all components of the kernel describing the re
ectance function willbe irrelevant to this image except for the �rst order components. In Shashua's work, the basis imagesare generated by using a point source as the lighting function, which contains all harmonics. But thekernel used is the full cosine function of the angle between the light and the surface normal. This kernelhas components only in the �rst harmonic. So all other components of the lighting are irrelevant tothe image. In either case, the basis images are due only to the �rst set of harmonics.We can therefore interpret Shashua's method as also making an analytic approximation to a model'simages, using low order harmonics. However, our previous analysis tells us that the images of the �rstharmonic account for only 50% percent of the energy passed by the half-cosine kernel. Furthermore,in the worst case it is possible for the lighting to contain no component in the �rst harmonic. Mostnotably, Shashua's method does not make use of the DC component of the images, i.e., of the zero'thharmonic. These are the images produced by a perfectly di�use light source. Non-negative lighting must14



always have a signi�cant DC component. Koenderink and van Doorn [18] have suggested augmentingShashua's method with this di�use component. This results in a linear method that uses the four mostsigni�cant harmonic basis images, although Koenderink and van Doorn propose this as apparently anheuristic suggestion, without analysis or reference to a harmonic representation of lighting.3.2 Enforcing Positive LightWhen we take arbitrary linear combinations of the harmonic basis images, we may obtain images thatare not physically realizable. This is because the corresponding linear combination of the harmonicsrepresenting lighting may contain negative values. That is, rendering these images may require negative\light", which of course is physically impossible. In this section we show how to use the basis imageswhile enforcing the constraint of non-negative light. Belhumeur and Kriegman [1] have shown thatthe set of images of an object produced by non-negative lighting is a convex cone in the space of allpossible images. They call this the illumination cone. We show how to compute approximations tothis cone in the space spanned by the harmonic basis images.Speci�cally, given an image I we attempt to minimize kBa� Ik subject to the constraint that thelight is non-negative everywhere along the sphere. A straightforward method to enforce positive lightis to infer the light from the images by inverting the convolution. This would yield linear constraintsin the components of a, Ha � 0, where the columns of H contain the spherical harmonics hnm.Unfortunately, this naive method is problematic since the light may contain higher order terms thatcannot be recovered from a low order approximation of the images of the object. In addition, theharmonic approximation of non-negative light may at times include negative values. Forcing thesevalues to be non-negative will lead to an incorrect recovery of the light. Below we describe a di�erentmethod in which we project the illumination cone [1] onto the low dimensional space and use thisprojection to enforce non-negative lighting.We �rst present a method that can use any number of harmonic basis images. A non-negativelighting function can be written as a non-negative combination of delta functions, each representinga point source. Denote by ��0�0 the function returning a non-zero value at (�0; �0), 0 elsewhere, andintegrating to 1. This lighting function represents a point source at direction (�0; �0). To project thedelta function onto the �rst few harmonics we need to look at the harmonic transform of the deltafunction. Since the inner product of ��0�0 with a function f returns simply f(�0; �0), we can concludethat the harmonic transform of the delta function is given by��0�0 = 1Xn=0 nXm=�nhnm(�0; �0)hnm: (25)The projection of the delta function onto the �rst few harmonics, therefore, is obtained by taking thesum only over the �rst few terms.Suppose now that a non-negative lighting function `(�; �) is expressed as a non-negative combinationof delta functions ` = JXj=1 aj��j�j ; (26)15



for some J . Obviously, due to the linearity of the harmonic transform, the transform of ` is a non-negative combination of the transforms of the delta functions with the same coe�cients. That is,` = JXj=1aj 1Xn=0 nXm=�nhnm(�j ; �j)hnm: (27)Likewise, the image of an object illuminated by ` can be expressed as a non-negative combination asfollows I = JXj=1 aj 1Xn=0 nXm=�nhnm(�j; �j)bnm; (28)where bnm are the harmonic images de�ned in the previous section.Given an image our objective is to recover the non-negative coe�cients aj . Assume we consider anapproximation of order N , and denote the number of harmonics required for spanning the space byr = r(N) (e.g., if N = 2 then r = 9). In matrix notation, denote the harmonic functions by H, H iss � r, where s is the number of sample points on the sphere. The columns of H contain a samplingof the harmonic functions, while its rows contain the transform of the delta functions. Further, denoteby B the basis images, B is p � r, where p is the number of points in the image. Every column of Bcontains one harmonic image bnm. Finally, denote aT = (a1; :::; as). Then, our objective is to solve thenon-negative least squares problem:mina kBHTa� Ik s.t. a � 0: (29)We can further project the image to the r-dimensional space spanned by the harmonic images andsolve the optimization problem in this smaller space. To do so we apply a QR decomposition to B, asdescribed previously. We obtain: mina kRHTa�QT Ik s.t. a � 0: (30)Now R is r � r and QT I is an r-vector.Note that this method is similar to that presented in Georghides et al. [8]. The primary di�erenceis that we work in a low dimensional space constructed for each model using its harmonic basis images.Georghides et al. perform a similar computation after projecting all images into a 100-dimensionalspace constructed using PCA on images rendered from models in a ten-model data base. Also we donot need to explicitly render images using a point source, and project them into a low-dimensionalspace. In our representation the projection of these images is simply HT .3.3 Recognition with Four HarmonicsA further simpli�cation can be obtained if the set of images of an object is approximated only upto �rst order. Four harmonics are required in this case. One is the DC component, representing theappearance of the object under uniform ambient light, and three are the basis images also used by16



Shashua. Again, we attempt to minimize kBa� Ik (now B is p� 4) subject to the constraint that thelight is non-negative everywhere along the sphere.As before, we determine the constraints by projecting the delta functions onto the space spannedby the �rst four harmonics. However, now this projection takes a particularly simple form. Considera delta function ��0�0 . Its �rst order approximation is given by��0�0 � 1Xn=0 nXm=�nhnm(�0; �0)hnm: (31)Using space coordinates this approximation becomes��0�0(x; y; z) � 14� + 34� (x sin �0 cos�0 + y sin �0 sin�0 + z cos �0): (32)Let ` � a0 + a1x+ a2y + a3z (33)be the �rst order approximation of a non-negative lighting function `. ` is a non-negative combinationof delta functions. It can be readily veri�ed that such a combination cannot decrease the zero order co-e�cient relative to the �rst order ones. Consequently, any non-negative combination of delta functionsmust satisfy 9a20 � a21 + a22 + a23: (34)(Equality is obtained when the light is a delta function, see (32).) Therefore, we can express theproblem of recognizing an object with a 4D harmonic space as minimizing kBa� Ik subject to (34).In the four harmonic case the harmonic images are just the albedos and the components of thesurface normals scaled by the albedos, each scaled by some factor. It is therefore natural to use thosedirectly and hide the scaling coe�cients within the constraints. Let I be an image of the objectilluminated by `, then, using (19) and (23),I � �a0�+ 2�3 (a1�nx + a2�ny + a3�nz): (35)where � and (nx; ny; nz) are respectively the albedo and the surface normal of an object point. Usingthe unscaled basis images, �, �nx, �ny, and �nz, this equation can be written as:I � b0�+ b1�nx + b2�ny + b3�nz; (36)with b0 = �a0 and bi = 2�3 ai (1 � i � 3). Substituting for the ai's we obtain9b20�2 � 94�2 (b21 + b22 + b23); (37)which simpli�es to 4b20 � b21 + b22 + b23: (38)17



Figure 4: Test images used in the experiments.Consequently, to �nd the nearest image in the space spanned by the �rst four harmonic images withnon-negative light we may minimize the di�erence between the two sides of (36) subject to (38). Thisproblem has the general form: minx kAx� bk s.t. xTBx = 0: (39)We show in Appendix B that by diagonalizingA and B simultaneously and introducing a Lagrange mul-tiplier the problem can be solved by �nding the roots of a six degree polynomial with a single variable,the Lagrange multiplier. With this manipulation solving the minimization problem is straightforward.3.4 ExperimentsWe have experimented with these recognition methods using a database of faces collected at NEC,Japan. The database contains 3D models of 42 faces, including models of their albedos in the red,green and blue color channels. As query images we use 42 images each of ten individuals, taken acrossseven di�erent poses and six di�erent lighting conditions (shown in Figure 4). In our experiment, eachof the query images is compared to each model.In all methods, we �rst obtain a 3D alignment between the model and the image, using the algorithm18
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Figure 5: ROC curves for our recognition methods.of Blicher and Roy [2]. In brief, features on the faces were identi�ed by hand, and then a 3D rigidtransformation was found to align the 3D features with the corresponding 2D image features.In all methods, we only pay attention to image pixels that have been matched to some point inthe 3D model of the face. We also ignore image pixels that are of maximum intensity, since these maybe saturated, and provide misleading values. Finally, we subsample both the model and the image,replacing each m �m square with its average values. Preliminary experiments indicate that we cansubsample quite a bit without signi�cantly reducing accuracy. In the experiments below, we ran allalgorithms subsampling with 16�16 squares, while the original images were 640 � 480.Our methods produce coe�cients that tell us how to linearly combine the harmonic images toproduce the rendered image. These coe�cients were computed on the sampled image, but then appliedto harmonic images of the full, unsampled image. This process was repeated separately for each colorchannel. Then, a model was compared to the image by taking the root mean squared error, derivedfrom the distance between the rendered face model and all corresponding pixels in the image.Figure 5 shows ROC curves for three recognition methods: the 9D linear method, and the methodsthat enforce positive lighting in 9D and 4D. The curves show the percentage of query images for whichthe correct model is classi�ed among the top k, as k varies from 1 to 40. The 4D positive lighting19



method performs signi�cantly less well than the others, getting the correct answer about 60% of thetime. However, it is much faster, and seems to be quite e�ective under the simpler pose and lightingconditions. The 9D linear method and 9D positive lighting method each pick the correct model �rst 86%of the time. With this data set, the di�erence between these two algorithms is quite small comparedto other sources of error. These may include limitations in our model for handling cast shadows andspecularities, but also includes errors in the model building and pose determination processes. In fact,on examining our results we found that one pose (for one person) was grossly wrong because a humanoperator selected feature points in the wrong order. We eliminated the six images (under six lightingconditions) that used this pose from our results.4 SpecularityIn general, it is a subject of future work to consider how this sort of analysis may be applied to morecomplex imaging situations that include specularities and cast shadows. However, in this section wewill make one basic remark about these situations.We note that a low-dimensional set of images can also result when the lighting itself is low-dimensional. This can occur when the lights are all di�use, as when the sun is behind clouds orlighting is due to inter-re
ections. In this case, the lighting itself may be well approximated by onlylow order harmonics. If the lighting is a linear combination of a small number of harmonics, thenimages will be a linear combination of those produced when the scene is rendered separately by eachof these harmonics. This low-dimensionality is due simply to the linearity of lighting, the fact that thesum of two images produced by any two lighting conditions will be the image produced by the sumof these lighting conditions. Therefore, this will be true under the most general imaging assumptions,including cast shadows and specularities.We also note that with specular objects, the bidirectional re
ection distribution function (BRDF)is generally much more sharply peaked than it is with the cosine function. This provides the intuitionthat specular objects will be more a�ected by high-order harmonic components of the lighting. In theextreme case of a mirror, the entire lighting function passes into the re
ectance function, preserving allcomponents of the lighting. Therefore, we expect that for specular objects, a low order approximationto the image set will be less accurate. A representation in terms of harmonic images may still providea useful approximation, however. This is consistent with the experiments of Epstein et al. [7].5 ConclusionsLighting can be arbitrarily complex. But in many cases its e�ect is not. When objects are Lambertian,we show that a simple, nine-dimensional linear subspace can capture the set of images they produce.This explains prior empirical results. It also gives us a new and e�ective way of understanding thee�ects of Lambertian re
ectance as that of a low-pass �lter on lighting.20



Moreover, we show that this 9D space can be directly computed from a model, as low-degreepolynomial functions of its scaled surface normals. This description allows us to produce e�cientrecognition algorithms in which we know we are using an accurate approximation to the model'simages. We can compare models to images in a 9D space that captures at least 98% of the energy ofall the model's images. We can enforce the constraint that lighting be positive by performing a non-negative least squares optimization in this 9D space. Or, if we are willing to settle for a less accurateapproximation, we can compute the positive lighting that best matches a model to an image by justsolving a six-degree polynomial in one variable. We evaluate the e�ectiveness of all these algorithmsusing a data base of models and images of real faces.AppendixA The Harmonic Transform of the Lambertian KernelThe Lambertian kernel is given by k(�) = max(cos �; 0), where � denotes the solid angle between thelight direction and the surface normal. The harmonic transform of k is de�ned ask = 1Xn=0 nXm=�n knmhnm;where the coe�cients knm are given byknm = Z 2�0 Z �0 k(�)hnm(�; �) sin �d�d�:Without loss of generality, we set the coordinate system on the sphere as follows. We position one ofthe poles at the center of k, � then represents the angle along a longitude and varies from 0 to �, and �represents an angle along a latitude and varies from 0 to 2�. In this coordinate system k is independentof � and is rotationally symmetric about the pole. Consequently, all its energy is split between thezonal harmonics (the harmonics with m = 0), and the coe�cients for every m 6= 0 vanish. Below wedenote kn = kn0.We next determine an explicit form for the coe�cients kn. First, we can limit the integration tothe positive portion of the cosine function by integrating over � only to �=2, that is,kn = Z 2�0 Z �20 cos �hn0(�) sin �d�d� = 2� Z �20 cos �hn0(�) sin �d�:Now, hn0 = r2n+ 14� Pn(cos �);where Pn(z) is the associated Legendre function of order n de�ned byPn(z) = 12nn! dndzn (z2 � 1)n:21



Substituting z = cos � we obtain kn = q(2n+ 1)� Z 10 zPn(z)dz:We now turn to computing the integral Z 10 zPn(z)dz:This integral is equal to 12nn! Z 10 z dndzn (z2 � 1)ndz:Integrating by parts yields 12nn! "z dn�1dzn�1 (z2 � 1)n ����10 � Z 10 dn�1dzn�1 (z2 � 1)ndz# :The �rst term vanishes and we are left with� 12nn! Z 10 dn�1dzn�1 (z2 � 1)ndz = � 12nn! dn�2dzn�2 (z2 � 1)n ����10 :This formula vanishes for z = 1 and so we obtain12nn! dn�2dzn�2 (z2 � 1)n ���z=0 :Now, (z2 � 1)n = nXk=0 nk!(�1)n�kz2k:When we take the n� 2 derivative all terms whose exponent is less than n� 2 disappear. Moreover,since we are evaluating the derivative at z = 0 all the terms whose exponent is larger than n�2 vanish.Thus, only the term whose exponent is 2k = n� 2 survives. Denote the n� 2 coe�cient by bn�2, then,when n is odd bn�2 = 0, and when n is evenbn�2 =  nn2 � 1!(�1)n2+1:In this case dn�2dzn�2 (z2 � 1)n ���z=0 = (n� 2)!bn�2 = (n� 2)! nn2 � 1!(�1)n2+1;and we obtain Z 10 zPn(z)dz = (�1)n2+1(n� 2)!2nn!  nn2 � 1! = (�1)n2+1(n� 2)!2n(n2 � 1)!(n2 + 1)! :22



The above derivation holds for n � 2. The special cases that n = 0 and n = 1 should be handledseparately. In the �rst case P0(z) = 1 and in the second case P1(z) = z. For n = 0 the integral becomesZ 10 zdz = 12 ;and for n = 1 it becomes Z 10 z2dz = 13 :Consequently,kn = q(2n+ 1)� Z 10 zPn(z)dz = 8>>>>><>>>>>: p�2 n = 0q�3 n = 1(�1)n2+1 (n�2)!p(2n+1)�2n(n2�1)!(n2+1)! n � 2; even0 n � 2; oddB Recognition with Four HarmonicsFinding the nearest image in the 4D harmonic space subject to the constraint that the light is non-negative has the general form minx kAx� bk s.t. xTBx = 0;with A (n� 4), b (n� 1), and B (4� 4). In this representation the columns of A contain the unscaledharmonic images, b is the image to be recognized, and B = diag(4;�1;�1;�1). (The method wepresent below, however, can be used with an arbitrary nonsingular matrix B.)First, we can solve the linear system minx kAx� bkand check if this solution satis�es the constraint. If it does, we are done. If not, we must seek aminimum that occurs when the constraint is satis�ed at equality. We will divide the solution into twoparts. In the �rst part we will convert the problem to the form:minz kz � ck s.t. zTDz � 0;Later, we will show how to turn the new problem into a sixth degree polynomial.Step 1:First, we can assume WLOG that b resides in the column space of A, since the component of borthogonal to this space does not a�ect the solution to the problem. Furthermore, since b lies in thecolumn space of A we can assume that A is 4 � 4 full rank and b is 4 � 1. This can be achieved, for23



example, using a QR decomposition. Now, de�ne b0 such that Ab0 = b (this is possible because A isfull rank). Then, Ax� b = A(x� b0), implying that our problem is equivalent to:minx kA(x� b0)k s.t. xTBx = 0:Using the method presented in Golub and van Loan [11] (see the second edition, pages 466{471,especially algorithm 8.7.1) we simultaneously diagonalize ATA and B. This will produce a non-singularmatrix X such that XTATAX = I and XTBX = D, I denotes the identity matrix, and D is a 4 � 4diagonal matrix. Thus, we obtainminx kX�1(x� b0)k s.t. xTX�TDX�1x = 0:where X�1 denotes the inverse of X, and X�T denotes its transpose. Denote z = X�1x and c = X�1b0,then we obtain minz kz � ck s.t. zTDz = 0:This has the desired form.Step 2:At this point we attempt to solve a problem of the formminz kz � ck s.t. zTDz = 0:We solve this minimization problem using Lagrange multipliers. That is,minz kz � ck+ �zTDz:Taking the derivatives with respect to x and � we getz � c+ �Dz = 0;and zTDz = 0:From the �rst equation we get z = (I + �D)�1c:Since D is diagonal the components of z are given byzi = ci1 + �di ;where z = (z1; :::; z4), c = (c1; :::; c4), and D = diag(d1; :::; d4). The constraint zTDz = 0 thus becomes4Xi=1 c2i di(1 + �di)2 = 0;which, after multiplying out the denominator, becomes a sixth degree polynomial in �. This polynomialcan be e�ciently and accurately solved using standard techniques (we use the MATLAB function roots).We plug in all solutions to determine x, as indicated above, and choose the real solution that minimizesour optimization criteria. 24
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