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Abstract

We prove that the set of all reflectance functions (the mapping from surface normals to intensities)
produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This
implies that, in general, the set of images of a conver Lambertian object obtained under a wide variety
of lighting conditions can be approzimated accurately by a low-dimensional linear subspace, explaining
prior empirical results. We also provide a simple analytic characterization of this linear space. We
obtain these results by representing lighting using spherical harmonics and describing the effects of
Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for
object recognition based on linear methods as well as algorithms that use convex optimization to enforce
non-negative lighting functions. Finally, we show a simple way to enforce non-negative lighting when
the images of an object lie near a 4D linear space.
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1 Introduction

One of the most basic problems in vision is to understand how variability in lighting affects the images
that an object can produce. Even when lights are isotropic and distant, smooth Lambertian objects can
produce infinite-dimensional sets of images (Belhumeur and Kriegman [1]). But recent ezperimental
work ([7, 12, 30]) has indicated that the set of images produced by an object under a wide range of
lighting conditions lies near a low dimensional linear subspace in the space of all possible images. This
can be used to construct efficient recognition algorithms that handle lighting variations. In this paper
we explain these empirical results analytically and use this understanding to produce new recognition
algorithms.

When light is isotropic and distant from an object, we can describe its intensity as a function of
direction. Light, then, is a non-negative function on the surface of a sphere. Our approach begins by
representing these functions using spherical harmonics. This is analogous to Fourier analysis, but on
the surface of the sphere. To model the way surfaces turn light into an image we look at reflectance
as a function of the surface normal (assuming unit albedo). We show that reflectance functions are
produced through the analog of a convolution of the lighting function using a kernel that represents
Lambert’s reflection. This kernel acts as a low-pass filter with 99.2% of its energy in the first nine
components. We use this and the non-negativity of light to prove that under any lighting conditions,
a nine-dimensional linear subspace, for example, accounts for 98% of the variability in the reflectance
function. This suggests that in general the set of images of a convex, Lambertian object can be
approximated accurately by a low dimensional linear space. We further show how to analytically
derive this subspace from an object model.

This allows us to better understand several existing methods. For example, we show that the linear
subspace methods of Shashua [25] and Moses [20] use a linear space spanned by the three first order
harmonics, but that they omit the significant DC component. Also, it leads us to new methods of
recognizing objects with unknown pose and lighting conditions. In particular, we discuss how the
harmonic basis can be used in a linear-based object recognition algorithm, replacing bases derived by
performing SVD on large collections of rendered images. Furthermore, we show how we can enforce
non-negative light by projecting this constraint to the space spanned by the harmonic basis. With
this constraint recognition is expressed as a non-negative least-squares problem that can be solved
using convex optimization. This leads to an algorithm for recognizing objects under varying pose and
illumination that resembles Georghides et al. [9], but works in an analytically derived low-dimensional
space. The use of the harmonic basis, in this case, allows us to rapidly produce a representation to
the images of an object in poses determined at runtime. Finally, we discuss the case in which a first
order approximation provides an adequate approximation to the images of an object. The set of images
then lies near a 4D linear subspace. In this case we can express the non-negative lighting constraint
analytically. We use this expression to perform recognition in a particularly efficient way, without
complex, iterative optimization techniques.

It has been very popular in object recognition to represent the set of images that an object can
produce using low dimensional linear subspaces of the space of all images. Ullman and Basri [28]
analytically derive such a representation for sets of 3D points undergoing scaled orthographic projection.



Shashua [25] and Moses [20] (and later also [22, 31]) derive a 3D linear representation of the set of images
produced by a Lambertian object as lighting changes, but ignoring attached shadows. Hayakawa [13]
uses factorization to build 3D models using this linear representation. Koenderink and van Doorn [18]
extend this to a 4D space by allowing the light to include a diffuse component. Researchers have
collected large sets of images and performed PCA to build representations that capture within class
variations [16, 27, 4] and variations due to pose and lighting [21, 12, 30]. Hallinan [12], Epstein et
al. [7] and Yuille et al. [30] perform experiments that show that large numbers of images of Lambertian
objects, taken with varied lighting conditions, do lie near a low-dimensional linear space, justifying
this representation. More recently, analytically derived, convex representations have been used by
Belhumeur and Kriegman [1] to model attached shadows. Georghides et al. [8, 9] use this representation
for object recognition.

Spherical harmonics have been used in graphics to efficiently represent the bidirectional reflec-
tion distribution function (BRDF) of different materials by, e.g., Cabral [3] and Westin et al. [29]
(Koenderink and van Doorn [17] proposed replacing the spherical harmonics basis with the Zernike
polynomials, since BRDFs are defined over a half sphere.) Nimeroff et al. [23]. Dobashi et al. [5] and
Teo et al. [26] explore specific lighting configurations that can be represented efficiently as a linear
combination of basis lightings (e.g., daylight). Dobashi et al. [5] in particular use spherical harmonics
to form such a basis. D’Zmura [6] was first to point out that the process of turning incoming light
into reflection can be described in terms of spherical harmonics. With this representation, after trun-
cating high order components, the reflection process can be written as a linear transformation, and
so the low order components of the lighting can be recovered by inverting the transformation. He
used this analysis to explore ambiguities in lighting. We extend this work by deriving subspace results
for the reflectance function, providing analytic descriptions of the basis images, and constructing new
recognition algorithms that use this analysis while enforcing non-negative lighting. Independent of
and contemporaneous with our work, Ramamoorthi and Hanrahan [24] have described the effect of
Lambertian reflectance as a convolution. Like D’Zmura they use this analysis to explore the problem
of recovering lighting from reflectances. Also, preliminary comments on this topic can be found in
Jacobs, Belhumeur and Basri[15].

In summary, the main contribution of our paper is to show how to analytically find low dimensional
linear subspaces that accurately approximate the set of images that an object can produce. We can
then carve out portions of these subspaces corresponding to non-negative lighting conditions, and use
these descriptions for recognition.

2 Modeling Image Formation

Consider a convex object illuminated by distant isotropic light sources. Assume further that the
surface of the object reflects light according to Lambert’s law [19]. This relatively simple model
has been analyzed and used effectively in a number of vision applications. The set of images of a
Lambertian object obtained with arbitrary light has been termed the “illumination cone” by Belhumeur
and Kriegman [1]. Our objective is to analyze properties of the illumination cone. For the analysis it will
be useful to consider the set of reflectance functions obtained under different illumination conditions.



A reflectance function (also called reflectance map, see Horn [14], Chapters 10-11) associated with a
specific lighting configuration is defined as the light reflected by a sphere of unit albedo as a function
of the surface normal. A reflectance function is related to an image of a convex object illuminated by
the same lighting configuration by the following mapping. Every visible point on the object’s surface
inherits its intensity from the point on the sphere with the same normal, and this intensity is further
scaled by the albedo at the point. We will discuss the effect of this mapping later on in this section.

2.1 Image Formation as the Analog of a Convolution

Let S denote a unit sphere centered at the origin. Let p = (z,y, z) denote a point on the surface of S,
and let N, = (z,y, z) denote the surface normal at p. p can also be expressed as a unit vector using
the following notation:

(,y,2z) = (cos O sin ¢, sin O sin ¢, cos @), (1)

where 0 < 0 < 7 and 0 < ¢ < 27. In this coordinate frame the poles are set at (0,0,=+1), 6 denotes the
solid angle between p and (0,0,1), and it varies with latitude, and ¢ varies with longitude. Since we
assume that the sphere is illuminated by a distant and isotropic set of lights all points on the sphere see
these lights coming from the same directions, and they are illuminated by identical lighting conditions.
Consequently, the configuration of lights that illuminate the sphere can be expressed as a non-negative
function £(0, ¢), expressing the intensity of the light reaching the sphere from each direction (6, ¢).
Furthermore, according to Lambert’s law the difference in the light reflected by the points is entirely
due to the difference in their surface normals. Thus, we can express the light reflected by the sphere
as a function (6, ¢) whose domain is the set of surface normals of the sphere.

According to Lambert’s law, if a light ray of intensity [ reaches a surface point with albedo A
forming an angle # with the surface normal at the point, then the intensity reflected by the point due
to this light is given by

[A max(cos 6, 0). (2)

In a reflectance function we use A = 1. If light reaches a point from a multitude of directions then
the light reflected by the point would be the sum of (or in the continuous case the integral over) the
contribution for each direction. Denote by k(f) = max(cos 6, 0), then, for example, the intensity of the
point (0,0, 1) is given by:

r(0.0) = /0 % | /0 " k(6)0(6, ) sin 0d6dg. (3)

Similarly, the intensity r(6, ¢) reflected by a point p = (0, ¢) is obtained by centering k about p and
integrating its inner product with £ over the sphere. Thus, the operation that produces (6, ¢) is the
analog of a convolution on the sphere. We will refer to this as a convolution, and write:

r(0,¢) =k« L. (4)

The kernel of this convolution, k, is the circularly symmetric, “half-cosine” function. The convolution
is obtained by rotating k£ so that its center is aligned with the surface normal at p. This still leaves one
degree of freedom in the rotation of the kernel undefined, but since k is rotationally symmetric this
ambiguity disappears.



2.2 Properties of the Convolution Kernel

Just as the Fourier basis is convenient for examining the results of convolutions in the plane, similar
tools exist for understanding the results of the analog of convolutions on the sphere. The surface
spherical harmonics are a set of functions that form an orthonormal basis for the set of all functions
on the surface of the sphere. We denote these functions by Ay, withn =0,1,2,... and —n <m < n:

o (0, ) = \/ e P (cos )™, 6)

where P, are the associated Legendre functions, defined as
(1 _ Z2)m/2 qntm

2nn! dzntm

Z-1n (6)

In the course of this paper it will sometimes be convenient to parameterize h,,, as a function of space
coordinates (z,y, z) rather than angles. The spherical harmonics, written hyp,(z,y, z), then become

Pum(z) =

polynomials of degree n in (z,y, z).

We may express the kernel, k, and the lighting function, £, as harmonic series, that is, as linear com-
binations of the surface harmonics. We do this primarily so that we can take advantage of the analog to
the convolution theorem for surface harmonics. An immediate consequence of the Funk-Hecke theorem
(see, e.g., [10], Theorem 3.4.1, page 98) is that “convolution” in the function domain is equivalent to
multiplication in the harmonic domain. In the rest of this section we derive a representation of k as a
harmonic series. We use this derivation to show that k is nearly a low-pass filter. Specifically, almost
all of the energy of k resides in the first few harmonics. This will allow us to show that the possible
reflectances of a sphere all lie near a low dimensional linear subspace of the space of all functions defined
on the sphere.

In Appendix A we derive a representation of k as a harmonic series. In short, since k is rotationally
symmetric about the pole, under an appropriate choice of a coordinate frame its energy concentrates ex-
clusively in the zonal harmonics (the harmonics with m = 0), while the coefficients of all the harmonics
with m # 0 vanish. Thus, we can express k as:

k= i knhino, (7)
n=0
with N
ky = /0 /0 5 (0)ho (0, ) sin 0d6dg. (8)

After some tedious manipulation (detailed in Appendix A) we obtain that

4 n=>0
z n=1
oo VE )

1
( 71)!(%“)! n > 2, even
0 n > 2, odd



(o o [t [ 2 [ 4 ] 6 ] 8 |

Energy 375 50 | 11.72 | 059 | 0.12 | 0.04
Cumulative energy || 37.5 | 87.5 | 99.22 | 99.81 | 99.93 | 99.97
Lower bound 375 | 75 | 97.96 | 99.48 | 99.80 | 99.90

Table 1: The top row shows the energy captured by the n’th zonal harmonic for the Lambertian kernel (0 < n < 8).
The middle row shows the energy accumulated up to order n. This energy represents the quality of the n’th order
approximation of r(f, ) (measured in relative squared error). The bottom row shows a lower bound on the quality of
this approximation due to the non-negativity of the light. The n = 3, 5, and 7 are omitted because they contribute no
energy. Relative energies are given in percents.

The first few coeflicients, for example, are

ko = YT~ 0.8862 ko = 3T x0.4954 ke = Y137 ~0.0499 (10
ko= /T ~1.0233 ki = YT~ 0.1108 ks = YT~ 0.0285.

(ks = ks = k7 = 0) A graph representation of the coefficients is shown in Figure 1.

The energy captured by every harmonic term is measured commonly by the square of its respective
coefficient divided by the total squared energy of the transformed function. The total squared energy
in the half cosine function is given by

2w jus 2
/ / k(6) sin 0dfdgp = 27?/2 cos? 0 sin 0d6) = ?” (11)
0 0 0

Table 1 shows the relative energy captured by each of the first several coefficients. It can be seen that
the kernel is dominated by the first three coefficients. Thus, a second order approximation already
accounts for 99.22% of the energy. With this approximation the half cosine function can be written as:

1 1 )
-+ = — cos 26. 12
k(0) 4+2cos9+16cos 0 (12)
The quality of the approximation improves somewhat with the addition of the fourth order term
(99.81%) and deteriorates to 87.5% when a first order approximation is used. Figure 2 shows a 1D
slice of the Lambertian kernel and its various approximations.

2.3 Approximating the Reflectance Function

The fact that the Lambertian kernel has most of its energy concentrated in the low order terms implies
that the set of Lambertian reflectance functions can be well approximated by a low dimensional linear
space. This space is spanned by a small set of what we call harmonic reflectances. The harmonic
reflectance r,,,, (0, ¢) denotes the reflectance of the sphere when it is illuminated by the harmonic “light”
hnm- Note that harmonic lights generally are not positive everywhere, so they do not correspond to real,
physical lighting conditions; they are abstractions. As is explained below every reflectance function
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Figure 1: From left to right: a graph representation of the first 11 coefficients of the Lambertian kernel, the relative

energy captured by each of the coefficients; and the accumulated energy
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Figure 2: A slice of the Lambertian kernel (solid) and its approximations of first (left, dotted), second (middle), and

fourth (right) order.



r(0, ¢) will be approximated to an excellent accuracy by a linear combination of a small number of
harmonic reflectances.

To evaluate the quality of the approximation consider first, as an example, lighting generated by
a point source at the z direction (8 = ¢ = 0). A point source is a delta function. The reflectance
of a sphere illuminated by a point source is obtained by a convolution of the delta function with the
kernel, which results in the kernel itself. Due to the linearity of the convolution, if we approximate the
reflectance due to this point source by a linear combination of the first three zonal harmonics, rqg, 710,
and 790, we account for 99.22% of the energy. In other words

: , oo — k|2
min 1070 om0 Fazra “ KT 6600 (13)
(ao,a1,a2) &

where k, the Lambertian kernel, is also the reflectance of the sphere when it is illuminated by a point
source at the z direction. Similarly, first and fourth order approximations yield respectively 87.5% and
99.81% accuracy.

If the sphere is illuminated by a single point source in a direction other than the z direction the
reflectance obtained would be identical to the kernel, but shifted in phase. Shifting the phase of a
function distributes its energy between the harmonics of the same order n (varying m), but the overall
energy in each n is maintained. The quality of the approximation, therefore, remains the same, but
now for an N’th order approximation we need to use all the harmonics with n < N for all m. Recall
that there are 2n 4+ 1 harmonics in every order n. Consequently, a first order approximation requires
four harmonics. A second order approximation adds five more harmonics yielding a 9D space. The
third order harmonics are eliminated by the kernel, and so they do not need to be included. Finally, a
fourth order approximation adds nine more harmonics yielding an 18D space.

We have seen that the energy captured by the first few coefficients k; (1 < i < N) directly indicates
the accuracy of the approximation of the reflectance function when the light includes a single point
source. Other light configurations may lead to different accuracy. Better approximations are obtained
when the light includes enhanced diffuse components of low-frequency. Worse approximations are
anticipated if the light includes mainly high frequency patterns.

However, even if the light includes mostly high frequency patterns the accuracy of the approximation
is still very high. This is a consequence of the non-negativity of light. A lower bound on the accuracy
of the approximation for any light function can be derived as follows. It is simple to show that for any
non-negative function the amplitude of the DC component must be at least as high as the amplitude of
any of the other components.! One way to see this is by representing such a function as a non-negative
sum of delta functions. In such a sum the amplitude of the DC component is the weighted sum of
the amplitudes of all the DC components of the different delta functions. The amplitude of any other
frequency may at most reach the same level, but often will be lower due to interference. Consequently,
in an N’th order approximation the worst scenario is obtained when the amplitudes in all frequencies

4T
2n+1°

Consequently the coefficient of the DC component may be smaller than that of other components, while the amplitude
may not. The Funk-Hecke theorem applies to the amplitudes.

'Note that to obtain the amplitude of the n’th component we must normalize its coefficient, multiplying it by



higher than N saturate to the same amplitude as the DC component, while the amplitude of orders
1 <n < N are set to zero. In this case the relative squared energy becomes

kg _ kg
kg + o1 B2 %ﬂ - k2

(14)

Table 1 shows the bound obtained for several different approximations. It can be seen that using a
second order approximation (involving nine harmonics) the accuracy of the approximation for any light
function exceeds 97.96%. With a fourth order approximation (involving 18 harmonics) the accuracy
exceeds 99.48%. Note that the bound computed in (14) is not tight, since the case that all the higher
order terms are saturated yields a function with negative values. Consequently, the worst case accuracy
may even be higher than the bound.

2.4 Generating Harmonic Reflectances

Constructing a basis to the space that approximates the reflectance functions is straightforward and
can be done analytically. To construct the basis we can simply invoke the Funk-Hecke theorem. Recall
that this space is spanned by the harmonic reflectances, i.e., the reflectances obtained when a unit
albedo sphere is illuminated by harmonic lights. These reflectances are the result of convolving the
half cosine kernel with single harmonics. Due to the orthonormality of the spherical harmonics such a
convolution cannot produce energy in any of the other harmonics. Consequently, denote the harmonic
light by Ay, then the reflectance due to this harmonic is the same harmonic, but scaled. Formally,

Tnm = & * Rpm = cnhnm.- (15)

(It can be readily verified that the harmonics of the same order n but different phase m share the same
scale factor ¢,.) It is therefore left to determine c,,.

To determine ¢, (which is important when we enforce non-negative lighting in Sections 3.2 and 3.3)
we can use the fact that the half-cosine kernel k is an image obtained when the light is a delta function
centered in the z direction. The transform of the delta function is given by

> [2n+1
d= Z An o, (16)
n=0

k=" knhno, (17)
n=0

and the image it produces is

where the coefficients k,, are given in (9). ¢, determines by how much the harmonic is scaled following
the convolution; therefore, it is the ratio between k, and the respective coefficient of the delta function,
that is,

47
2n+1

k. (18)

Cp =



The first few harmonic reflectances are given by

rop = whoo Tom = Thom Tem = gghem (19)
2
"tm = ?ﬂhlm T'am = 27r_4h4m 8Sm = ﬁﬂghSm

for —n < m <n (and 73, = r5m;, = T7m = 0).

For the construction of the harmonic reflectances it is useful to express the harmonics using space
coordinates (z,y, z) rather than angles (6, ¢). This can be done by substituting the following equations
for the angles:

0 = coslz

— -1y (20)
¢ = tan " 2.
The first nine harmonics then become
1 3 5
ho = &= i1 = \iry 91 = 3\ 1Ryr
3 1 /5 2 2 2 3 [ 5 (.2 2
hio = /172 hao = 3v/7x(22° — 2" —y7) 5% = 5\ — YY) (21)
/3 5 5
1= an T 51 = 31z 22 = 3\ 1Ry,
where the superscripts ¢ and o denote the even and the odd components of the harmonics respectively
(80 hpm = hZ\m\ +1 ,Z‘m‘, according to the sign of m; in fact the even and odd versions of the harmonics

are more convenient to use in practice since the reflectance function is real). Notice that the harmonics
are simply polynomials in these space coordinates. Below we invariably use hy., (0, ¢) and hpp (2, y, 2)
to denote the harmonics expressed in angular and space coordinates respectively.

2.5 From Reflectances to Images

Up to this point we have analyzed the reflectance functions obtained by illuminating a unit albedo
sphere by arbitrary light. Our objective is to use this analysis to efficiently represent the set of images
of objects seen under varying illumination. An image of an object under certain illumination conditions
can be constructed from the respective reflectance function in a simple way: each point of the object
inherits its intensity from the point on the sphere whose normal is the same. This intensity is further
scaled by its albedo. In other words, given a reflectance function r(x,y, z), the image of a point p with
surface normal n = (n,,n,,n,) and albedo A is given by

I(p) = Ar(ng, ny,n;). (22)

We now wish to discuss how the accuracy of our low dimensional linear approximation to a model’s
images can be affected by the mapping from the reflectance function to images. We will make two
points. First, in the worst case, this can make our approximation arbitrarily bad. Second, in typical
cases it will not make our approximation less accurate.

There are two components to turning a reflectance function into an image. One is that there is
a rearrangement in the z,y position of points. That is, a particular surface normal appears in one

10



location on the unit sphere, and may appear in a completely different location in the image. This
rearrangement has no effect on our approximation. We represent images in a linear subspace in which
each coordinate represents the intensity of a pixel. The decision as to which pixel to represent with
which coordinate is arbitrary, and changing this decision by rearranging the mapping from (z,y) to a
surface normal merely reorders the coordinates of the space.

The second and more significant difference between images and reflectance functions is that occlu-
sion, shape variation and albedo variations affect the extent to which each surface normal on the sphere
helps determine the image. For example, occlusion ensures that half the surface normals on the sphere
will be facing away from the camera, and will not produce any visible intensities. A discontinuous
surface may not contain some surface normals, and a surface with planar patches will contain a single
normal over an extended region. In between these extremes, the curvature at a point will determine
the extent to which its surface normal contributes to the image. Albedo has a similar effect. If a point
is black (zero albedo) its surface normal has no effect on the image. In terms of energy, darker pixels
contribute less to the image than brighter pixels. Overall, these effects are captured by noticing that
the extent to which the reflectance of each point on the unit sphere influences the image can range
from zero to the entire image.

We will give an example to show that in the worst case this can make our approximation arbitrarily
bad. First, one should notice that at any single point, a low-order harmonic approximation to a function
can be arbitrarily bad (this can be related to the Gibbs phenomenon in the Fourier domain). Consider
the case of an object that is a sphere of constant albedo (this example is adapted from Belhumeur
and Kriegman [1]). If the light is coming from a direction opposite the viewing direction, it will not
illuminate any visible pixels. We can then shift the light slightly, so that it illuminates just one pixel
on the boundary of the object; by varying the intensity of the light we can give this pixel any desired
intensity. A series of lights can do this for every pixel on the rim of the sphere. If there are n such
pixels, the set of images we get fully occupies the positive orthant of an n-dimensional space. Obviously,
points in this space can be arbitrarily far from any 9D space. What is happening is that all the energy
in the image is concentrated in those surface normals for which our approximation happens to be poor.

However, generally, things will not be so bad. In general, occlusion will render an arbitrary half of
the normals on the unit sphere invisible. Albedo variations and curvature will emphasize some normals,
and deemphasize others. But in general, the normals whose reflectances are poorly approximated
will not be emphasized more than any other reflectances, and we can expect our approximation of
reflectances on the entire unit sphere to be about as good over those pixels that produce the intensities
visible in the image.

Therefore, we assume that the subspace results for the reflectance functions carry on to the images
of objects. Thus we approximate the set of images of an object by a linear space spanned by what we
call harmonic images, denoted b,,,,,. These are images of the object seen under harmonic light. These
images are constructed as in (22) as follows:

bum (10) = Arnm(naza Toy, nz) (23)

Note that bgg is an image obtained under constant, ambient light, and so it contains for every point
simply the surface albedo at the point (scaled by a constant factor). The first order harmonic images
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Figure 3: We show the first nine harmonic images for a model of a face. The top row contains the zero’th harmonic (left)
and the three first order harmonic images (right). The second row shows the images derived from the second harmonics.
Negative values are shown in black, positive values in white.

b1, are images obtained under cosine lighting centered at the three main axes. These images are,
for every point, the three components of the surface normals scaled by the albedos, and an additional
constant. (See a discussion of past use of these images in Section 3.) The higher order harmonic images
contain polynomials of the surface normals scaled by the albedo. Figure 3 shows the first nine harmonic
images derived from a 3D model of a face.

We can write this more explicitly, combining Equations 21 and 23. Let p; denote the i’th object
point. Let A denote a vector of the object’s albedos, that is, A; is the albedo of p;. Similarly, let
n,,ny, n, denote three vectors of the same length that contain the z, y and z components of the surface
normal, so that, for example, n, ; (the i’th component of ny) is the z component of the surface normal
of p;. Further, let ny> denote a vector such that n,»; = ng;n, ;. We define ny2,n,2, ny,, ny,, nyy
similarly, where, for example, n;y; = ng;ny;. Finally, we will write A. * v to denote the component-
wise product of A with any vector v (this is MATLAB’s notation). That is, this product scales the
components of a vector by the albedo associated with the point that produced that component. So
A. % ny is just the £ components of the surface normals scaled by their albedos. Using this notation,
the first nine harmonic images become:

_ 1 o __ 3 o _ 5
boo = —/E)‘ 11 =/37A *ny 21 = 3\/ Tor A * Ny

bng\/iA * Ny 5202%\/i>\-* (2n,2 — ny2 — ny2) 52: 127r>‘ * (N2 — ny2) (24)

e __ o __
1=\ ir 3\ # ny bS5, =3 127r)\ * Nyy 22—3\/1%)\ * Nyy .

3 Recognition

We have developed an analytic description of the linear subspace that lies near the set of images that
an object can produce. We now show how to use this description to recognize objects. Although our
method is suitable for general objects, we will give examples related to the problem of face recognition.
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We assume that an image must be compared to a data base of models of 3D objects. We will assume
that the pose of the object is already known, but that its identity and lighting conditions are not. For
example, we may wish to identify a face that is known to be facing the camera. Or we may assume
that either a human or an automatic system have identified features, such as the eyes and the tip of
the nose, that allow us to determine pose for each face in the data base, but that the data base is too
big to allow a human to select the best match.

Recognition proceeds by comparing a new image to each model in turn. To compare to a model
we compute the distance between the image and the nearest image that the model can produce. We
present two classes of algorithms that vary in their representation of a model’s images. The linear
subspace can be used directly for recognition, or we can restrict ourselves to a subset of the linear
subspace that corresponds to physically realizable lighting conditions.

We will stress the advantages we gain by having an analytic description of the subspace available,
in contrast to previous methods in which PCA could be used to derive a subspace from a sample of an
object’s images. One advantage of an analytic description is that we know this provides an accurate
representation of an object’s images, not subject to the vagaries of a particular sample of images. A
second advantage is efficiency; we can produce a description of this subspace much more rapidly than
PCA would allow. The importance of this advantage will depend on the type of recognition problem
that we tackle. In particular, we are interested in recognition problems in which the position of an
object is not known in advance, but can be computed at run-time using feature correspondences. In this
case, the linear subspace must also be computed at run-time, and the cost of doing this is important.
Finally, we will show that when we use a 4D linear subspace, an analytic description of this subspace
allows us to incorporate the constraint that the lighting be physically realizable in an especially simple
and efficient way.

3.1 Linear Methods

The most straightforward way to use our prior results for recognition is to compare a novel image to
the linear subspace of images that correspond to a model (D’Zmura [6] also makes this suggestion). To
do this, we produce the harmonic basis images of each model, as described in Section 2.5. Given an
image I we seek a vector a that minimizes ||Ba — I||, where B denotes the basis images, B is p X r, p
is the number of points in the image, and r is the number of basis images used. As discussed above,
nine is a natural value to use for r, but r = 4 provides greater efficiency while = 18 offers even better
potential accuracy. Every column of B contains one harmonic image b,y,. These images form a basis
for the linear subspace, though not an orthonormal one. So we apply a QR decomposition to B to
obtain such a basis. We compute @), a p X r matrix with orthonormal columns, and R, an r X r matrix
so that QR = B and Q7' Q is an r x r identity matrix. We can then compute the distance from the
image, I, and the space spanned by B as ||QQ*T — I||. The cost of the QR decomposition is O(pr?),
assuming p >> r.

In contrast to this, prior methods have sometimes performed PCA on a sample of images to find a
linear subspace representing an object. Hallinan [12] performed experiments indicating that PCA can
produce a five or six dimensional subspace that accurately models a face. Epstein et al. [7] and Yuille
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et al. [30] describe experiments on a wider range of objects that indicate that images of Lambertian
objects can be approximated by a linear subspace of between three and seven dimensions. Specifically,
the set of images of a basketball were approximated to 94.4% by a 3D space and to 99.1% by a 7D
space, while the images of a face were approximated to 90.2% by a 3D space and to 95.3% by a 7D
space. Georghides et al. [9] render the images of an object and find an 11D subspace that approximates
these images.

These numbers are roughly comparable to the 9D space that, according to our analysis, approx-
imates the images of a Lambertian object. Additionally, we note that the basis images of an object
will not generally be orthogonal, and can in some cases be quite similar. For example, if the z com-
ponents of the surface normals of an object do not vary much, then some of the harmonic images will
be quite similar, such as A vs. Az. This may cause some components to be less significant, so that a
lower-dimensional approximation can be fairly accurate.

When s sampled images are used (typically s >> r), with s << p PCA requires O(ps?). Also, in
MATLAB, PCA of a thin, rectangular matrix seems to take exactly twice as long as its QR decomposi-
tion. Therefore, in practice, PCA on the matrix constructed by Georghides et al. would take about 150
times as long as using our method to build a 9D linear approximation to a model’s images (this is for
s =100 and r = 9. One might expect p to be about 10,000, but this does not effect the relative costs
of the methods). This may not be too significant if pose is known ahead of time and this computation
takes place off line. But when pose is computed at run time, the advantages of our method can become
very great.

It is also interesting to compare our method to another linear method, due to Shashua [25] and
Moses [20]. Shashua points out that in the absence of attached shadows, every possible image of an
object is a linear combination of the z, y and z components of the surface normals, scaled by the albedo.
He therefore proposes using these three components to produce a 3D linear subspace to represent a
model’s images. Notice that these three vectors are identical, up to a scale factor, to the basis images
produced by the first order harmonics in our method.

While this equivalence is clear algebraicly, we can also explain it as follows. The first order harmonic
images are images of any object subjected to a lighting condition described by a single harmonic. The
Funk-Hecke theorem ensures that all components of the kernel describing the reflectance function will
be irrelevant to this image except for the first order components. In Shashua’s work, the basis images
are generated by using a point source as the lighting function, which contains all harmonics. But the
kernel used is the full cosine function of the angle between the light and the surface normal. This kernel
has components only in the first harmonic. So all other components of the lighting are irrelevant to
the image. In either case, the basis images are due only to the first set of harmonics.

We can therefore interpret Shashua’s method as also making an analytic approximation to a model’s
images, using low order harmonics. However, our previous analysis tells us that the images of the first
harmonic account for only 50% percent of the energy passed by the half-cosine kernel. Furthermore,
in the worst case it is possible for the lighting to contain no component in the first harmonic. Most
notably, Shashua’s method does not make use of the DC component of the images, i.e., of the zero’th
harmonic. These are the images produced by a perfectly diffuse light source. Non-negative lighting must
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always have a significant DC component. Koenderink and van Doorn [18] have suggested augmenting
Shashua’s method with this diffuse component. This results in a linear method that uses the four most
significant harmonic basis images, although Koenderink and van Doorn propose this as apparently an
heuristic suggestion, without analysis or reference to a harmonic representation of lighting.

3.2 Enforcing Positive Light

When we take arbitrary linear combinations of the harmonic basis images, we may obtain images that
are not physically realizable. This is because the corresponding linear combination of the harmonics
representing lighting may contain negative values. That is, rendering these images may require negative
“light”, which of course is physically impossible. In this section we show how to use the basis images
while enforcing the constraint of non-negative light. Belhumeur and Kriegman [1] have shown that
the set of images of an object produced by non-negative lighting is a convex cone in the space of all
possible images. They call this the illumination cone. We show how to compute approximations to
this cone in the space spanned by the harmonic basis images.

Specifically, given an image I we attempt to minimize ||Ba — I|| subject to the constraint that the
light is non-negative everywhere along the sphere. A straightforward method to enforce positive light
is to infer the light from the images by inverting the convolution. This would yield linear constraints
in the components of a, Ha > 0, where the columns of H contain the spherical harmonics h,,.
Unfortunately, this naive method is problematic since the light may contain higher order terms that
cannot be recovered from a low order approximation of the images of the object. In addition, the
harmonic approximation of non-negative light may at times include negative values. Forcing these
values to be non-negative will lead to an incorrect recovery of the light. Below we describe a different
method in which we project the illumination cone [1] onto the low dimensional space and use this
projection to enforce non-negative lighting.

We first present a method that can use any number of harmonic basis images. A non-negative
lighting function can be written as a non-negative combination of delta functions, each representing
a point source. Denote by dg,4, the function returning a non-zero value at (6o, ¢o), 0 elsewhere, and
integrating to 1. This lighting function represents a point source at direction (6y, ¢g). To project the
delta function onto the first few harmonics we need to look at the harmonic transform of the delta
function. Since the inner product of dy,4, with a function f returns simply f(6o, ¢y), we can conclude
that the harmonic transform of the delta function is given by

690¢0 = Z Z hnm(907¢0)hnm (25)

n=0m=—n

The projection of the delta function onto the first few harmonics, therefore, is obtained by taking the
sum only over the first few terms.

Suppose now that a non-negative lighting function £(6, ¢) is expressed as a non-negative combination
of delta functions

J
/= Zaj59j¢j, (26)
j=1
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for some J. Obviously, due to the linearity of the harmonic transform, the transform of ¢ is a non-
negative combination of the transforms of the delta functions with the same coefficients. That is,

EeEE

9]7 ¢]) (27)

|‘\ MS

Likewise, the image of an object illuminated by £ can be expressed as a non-negative combination as
follows

T
M&
HMS

Z nm Gjad)] nms (28)
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where by, are the harmonic images defined in the previous section.

Given an image our objective is to recover the non-negative coefficients a;. Assume we consider an
approximation of order N, and denote the number of harmonics required for spanning the space by
r =r(N) (e.g., if N =2 then r =9). In matrix notation, denote the harmonic functions by H, H is
s X r, where s is the number of sample points on the sphere. The columns of H contain a sampling
of the harmonic functions, while its rows contain the transform of the delta functions. Further, denote
by B the basis images, B is p x r, where p is the number of points in the image. Every column of B
contains one harmonic image by,,,,. Finally, denote a” = (ay, ..., as). Then, our objective is to solve the
non-negative least squares problem:

min||BH a — I|| st. a>0. (29)
a

We can further project the image to the r-dimensional space spanned by the harmonic images and
solve the optimization problem in this smaller space. To do so we apply a QR decomposition to B, as
described previously. We obtain:

min |[RH a — QTI| st. a>0. (30)
a

Now R is 7 x r and Q”I is an r-vector.

Note that this method is similar to that presented in Georghides et al. [8]. The primary difference
is that we work in a low dimensional space constructed for each model using its harmonic basis images.
Georghides et al. perform a similar computation after projecting all images into a 100-dimensional
space constructed using PCA on images rendered from models in a ten-model data base. Also we do
not need to explicitly render images using a point source, and project them into a low-dimensional
space. In our representation the projection of these images is simply H”.

3.3 Recognition with Four Harmonics
A further simplification can be obtained if the set of images of an object is approximated only up

to first order. Four harmonics are required in this case. One is the DC component, representing the
appearance of the object under uniform ambient light, and three are the basis images also used by
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Shashua. Again, we attempt to minimize ||Ba — I|| (now B is p X 4) subject to the constraint that the
light is non-negative everywhere along the sphere.

As before, we determine the constraints by projecting the delta functions onto the space spanned
by the first four harmonics. However, now this projection takes a particularly simple form. Consider
a delta function dg,4,. Its first order approximation is given by

1 n
0090 & Z Z Pm (60, $0) hum- (31)

n=0m=-n
Using space coordinates this approximation becomes

1 3
S000 (2,Y,2) = pp + E(m sin 6y cos ¢g + y sin By sin ¢y + z cos ). (32)
Let

L=~ ag+air+ay + azz (33)

be the first order approximation of a non-negative lighting function £. £ is a non-negative combination
of delta functions. It can be readily verified that such a combination cannot decrease the zero order co-
efficient relative to the first order ones. Consequently, any non-negative combination of delta functions
must satisfy

9a2 > a? + a3 + a3. (34)
(Equality is obtained when the light is a delta function, see (32).) Therefore, we can express the

problem of recognizing an object with a 4D harmonic space as minimizing ||Ba — I|| subject to (34).

In the four harmonic case the harmonic images are just the albedos and the components of the
surface normals scaled by the albedos, each scaled by some factor. It is therefore natural to use those
directly and hide the scaling coefficients within the constraints. Let I be an image of the object
illuminated by ¢, then, using (19) and (23),

2
~ mag\ + %(al)\nz + agAny + azAn,). (35)

where X and (n,,n,,n,) are respectively the albedo and the surface normal of an object point. Using
the unscaled basis images, A, An,, An,, and An,, this equation can be written as:

I = by + by Ang + boAny + b3An,, (36)
with by = mag and b; = Zfa; (1 <i < 3). Substituting for the a;’s we obtain
Qb% 9 9 2, 12
g 4—(b + b5 + b3), (37)
which simplifies to
4bg > by + b3 + b3, (38)
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Figure 4: Test images used in the experiments.

Consequently, to find the nearest image in the space spanned by the first four harmonic images with
non-negative light we may minimize the difference between the two sides of (36) subject to (38). This

problem has the general form:
min ||Az —b| s.t. z’ Bz =0. (39)
€T

We show in Appendix B that by diagonalizing A and B simultaneously and introducing a Lagrange mul-
tiplier the problem can be solved by finding the roots of a six degree polynomial with a single variable,
the Lagrange multiplier. With this manipulation solving the minimization problem is straightforward.

3.4 Experiments

We have experimented with these recognition methods using a database of faces collected at NEC,
Japan. The database contains 3D models of 42 faces, including models of their albedos in the red,
green and blue color channels. As query images we use 42 images each of ten individuals, taken across
seven different poses and six different lighting conditions (shown in Figure 4). In our experiment, each
of the query images is compared to each model.

In all methods, we first obtain a 3D alignment between the model and the image, using the algorithm
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Figure 5: ROC curves for our recognition methods.

of Blicher and Roy [2]. In brief, features on the faces were identified by hand, and then a 3D rigid
transformation was found to align the 3D features with the corresponding 2D image features.

In all methods, we only pay attention to image pixels that have been matched to some point in
the 3D model of the face. We also ignore image pixels that are of maximum intensity, since these may
be saturated, and provide misleading values. Finally, we subsample both the model and the image,
replacing each m X m square with its average values. Preliminary experiments indicate that we can
subsample quite a bit without significantly reducing accuracy. In the experiments below, we ran all
algorithms subsampling with 16x16 squares, while the original images were 640 x 480.

Our methods produce coefficients that tell us how to linearly combine the harmonic images to
produce the rendered image. These coefficients were computed on the sampled image, but then applied
to harmonic images of the full, unsampled image. This process was repeated separately for each color
channel. Then, a model was compared to the image by taking the root mean squared error, derived
from the distance between the rendered face model and all corresponding pixels in the image.

Figure 5 shows ROC curves for three recognition methods: the 9D linear method, and the methods
that enforce positive lighting in 9D and 4D. The curves show the percentage of query images for which
the correct model is classified among the top k, as k varies from 1 to 40. The 4D positive lighting
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method performs significantly less well than the others, getting the correct answer about 60% of the
time. However, it is much faster, and seems to be quite effective under the simpler pose and lighting
conditions. The 9D linear method and 9D positive lighting method each pick the correct model first 86%
of the time. With this data set, the difference between these two algorithms is quite small compared
to other sources of error. These may include limitations in our model for handling cast shadows and
specularities, but also includes errors in the model building and pose determination processes. In fact,
on examining our results we found that one pose (for one person) was grossly wrong because a human
operator selected feature points in the wrong order. We eliminated the six images (under six lighting
conditions) that used this pose from our results.

4 Specularity

In general, it is a subject of future work to consider how this sort of analysis may be applied to more
complex imaging situations that include specularities and cast shadows. However, in this section we
will make one basic remark about these situations.

We note that a low-dimensional set of images can also result when the lighting itself is low-
dimensional. This can occur when the lights are all diffuse, as when the sun is behind clouds or
lighting is due to inter-reflections. In this case, the lighting itself may be well approximated by only
low order harmonics. If the lighting is a linear combination of a small number of harmonics, then
images will be a linear combination of those produced when the scene is rendered separately by each
of these harmonics. This low-dimensionality is due simply to the linearity of lighting, the fact that the
sum of two images produced by any two lighting conditions will be the image produced by the sum
of these lighting conditions. Therefore, this will be true under the most general imaging assumptions,
including cast shadows and specularities.

We also note that with specular objects, the bidirectional reflection distribution function (BRDF)
is generally much more sharply peaked than it is with the cosine function. This provides the intuition
that specular objects will be more affected by high-order harmonic components of the lighting. In the
extreme case of a mirror, the entire lighting function passes into the reflectance function, preserving all
components of the lighting. Therefore, we expect that for specular objects, a low order approximation
to the image set will be less accurate. A representation in terms of harmonic images may still provide
a useful approximation, however. This is consistent with the experiments of Epstein et al. [7].

5 Conclusions

Lighting can be arbitrarily complex. But in many cases its effect is not. When objects are Lambertian,
we show that a simple, nine-dimensional linear subspace can capture the set of images they produce.
This explains prior empirical results. It also gives us a new and effective way of understanding the
effects of Lambertian reflectance as that of a low-pass filter on lighting.
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Moreover, we show that this 9D space can be directly computed from a model, as low-degree
polynomial functions of its scaled surface normals. This description allows us to produce efficient
recognition algorithms in which we know we are using an accurate approximation to the model’s
images. We can compare models to images in a 9D space that captures at least 98% of the energy of
all the model’s images. We can enforce the constraint that lighting be positive by performing a non-
negative least squares optimization in this 9D space. Or, if we are willing to settle for a less accurate
approximation, we can compute the positive lighting that best matches a model to an image by just
solving a six-degree polynomial in one variable. We evaluate the effectiveness of all these algorithms
using a data base of models and images of real faces.

Appendix

A The Harmonic Transform of the Lambertian Kernel

The Lambertian kernel is given by k(#) = max(cosf,0), where 6 denotes the solid angle between the
light direction and the surface normal. The harmonic transform of k is defined as

n

n=0m=—n

where the coefficients k,,,,, are given by

2 ™
Fonm = /0 /0 k(0) hym (6, ¢) sin 0dOd.

Without loss of generality, we set the coordinate system on the sphere as follows. We position one of
the poles at the center of k, 6 then represents the angle along a longitude and varies from 0 to m, and ¢
represents an angle along a latitude and varies from 0 to 27. In this coordinate system k is independent
of ¢ and is rotationally symmetric about the pole. Consequently, all its energy is split between the
zonal harmonics (the harmonics with m = 0), and the coefficients for every m # 0 vanish. Below we
denote k,, = kyo.

We next determine an explicit form for the coefficients k,. First, we can limit the integration to
the positive portion of the cosine function by integrating over 6 only to 7/2, that is,

21 z 3
k, = / /2 cos Oh,,o(0) sin 0dOde = 27r/2 cos Bhy,o(0) sin 0d6.
o Jo

0

Now,

2 1

hno = nt P,(cos @),
4

where P,(z) is the associated Legendre function of order n defined by

1 dr

Pule) = g & 1"
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Substituting z = cos # we obtain

kn =/(2n + 1)7?/01 2P, (2)dz.

We now turn to computing the integral

/01 2P, (2)dz.

This integral is equal to
1 Logn

2 n
Sl Jy Zdz—"(z —1)"dz.

Integrating by parts yields

1 dnfl 9 1 1 dnfl 5
Sl lz—dznl (z2=1)" . ; T (2 = 1)"dz
The first term vanishes and we are left with
1 tart o, 1 a2 !
onp) o dzn1 (27— 1)"dz = Conpl dyn—2 (27— 1)" 0

This formula vanishes for z = 1 and so we obtain

1 dn72

2
2l dzn—2 (27— 1)

2=0 ’

Now,
n
2 n n n—k 2k
z2—=1)" = —1 z°".
@ =3 (e
k=0

When we take the n — 2 derivative all terms whose exponent is less than n — 2 disappear. Moreover,
since we are evaluating the derivative at z = 0 all the terms whose exponent is larger than n — 2 vanish.

Thus, only the term whose exponent is 2k = n — 2 survives. Denote the n — 2 coefficient by b,, o, then,
when n is odd b,,_9 = 0, and when n is even

b o — (En )(_1)%+1_

In this case

and we obtain

1 Rt o n ) (1) (- 2)!
/Oan(z)dz— . ( >—2n(%_1)!(%+1)!.



The above derivation holds for n > 2. The special cases that n = 0 and n = 1 should be handled
separately. In the first case Py(z) = 1 and in the second case P;(z) = z. For n = 0 the integral becomes

1 1
/ zdz = —,
0 2

and for n = 1 it becomes

! 1
/ 22dz = =.
Jo 3
Consequently,
z .y
1 i _
3
kn =1/(2n + 1)7r/0 2P, (2)dz = o1 (2T
(—1)2 PR e yic==y n > 2, even
0 n > 2, odd

B Recognition with Four Harmonics

Finding the nearest image in the 4D harmonic space subject to the constraint that the light is non-
negative has the general form
min ||Az — b| s.t. 2’ Bz =0,
€T

with A (n x4), b (n x 1), and B (4 x 4). In this representation the columns of A contain the unscaled
harmonic images, b is the image to be recognized, and B = diag(4,—1,—1,—1). (The method we
present below, however, can be used with an arbitrary nonsingular matrix B.)

First, we can solve the linear system
min || Az — b||
€T

and check if this solution satisfies the constraint. If it does, we are done. If not, we must seek a
minimum that occurs when the constraint is satisfied at equality. We will divide the solution into two
parts. In the first part we will convert the problem to the form:

st. 2I'Dz >0,

min||z — ¢
z

Later, we will show how to turn the new problem into a sixth degree polynomial.
Step 1:

First, we can assume WLOG that b resides in the column space of A, since the component of b
orthogonal to this space does not affect the solution to the problem. Furthermore, since b lies in the
column space of A we can assume that A is 4 x 4 full rank and b is 4 x 1. This can be achieved, for
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example, using a QR decomposition. Now, define b’ such that Ab' = b (this is possible because A is
full rank). Then, Az —b = A(xz — V'), implying that our problem is equivalent to:

min |A(z — )| st. 2’ Bz =0.
€T

Using the method presented in Golub and van Loan [11] (see the second edition, pages 466 471,
especially algorithm 8.7.1) we simultaneously diagonalize A’ A and B. This will produce a non-singular
matrix X such that X7 ATAX =TI and X" BX = D, I denotes the identity matrix, and D is a 4 x 4
diagonal matrix. Thus, we obtain

min | X '(z — )| st. 2’X DX 'z=0.
x
where X ! denotes the inverse of X, and X 7 denotes its transpose. Denote z = X 'z and ¢ = X ¥/,

then we obtain
st. 2I'Dz=0.

This has the desired form.
Step 2:
At this point we attempt to solve a problem of the form

st. 2I'Dz=0.

We solve this minimization problem using Lagrange multipliers. That is,
min ||z — ¢|| + Az' Dz.
z
Taking the derivatives with respect to x and A we get

z—c+ADz =0,

and
2'Dz=0.
From the first equation we get
z=(I+ D)}
Since D is diagonal the components of z are given by
C
Zp = ———
! 14+ \d; ’
where z = (21, ..., 24), ¢ = (¢1,...,cq4), and D = dlag(dl, ..., dq). The constraint z” Dz = 0 thus becomes

4
=0,
> iy
which, after multiplying out the denominator, becomes a sixth degree polynomial in A. This polynomial
can be efficiently and accurately solved using standard techniques (we use the MATLAB function roots).
We plug in all solutions to determine z, as indicated above, and choose the real solution that minimizes
our optimization criteria.
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