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In this article we present an overview of factorization methods for recovering
structure and motion from image sequences. We distinguish these methods from
general non-linear algorithms primarily by their bilinear formulation in motion
and shape parameters. The bilinear formulation makes possible powerful and e�-
cient solution techniques including Singular Value Decomposition. We show how
factorization methods apply under various a�ne camera models and under the
perspective camera model, and then we review factorization methods for various
features including points, lines, directional point features and line segments. An
extension to these methods enables them to segment and recover motion and
shape for multiple independently moving objects. Finally we illustrate the gen-
erality of the factorization methods with two applications outside structure from
motion.

1. Introduction

As we watch the video output from a camera moving in a three dimensional
(3D) scene, our minds naturally obtain a \feeling for" or estimate of the motion
of the camera as well as an idea of the geometry of the scene. Humans are well
adapted to recovering geometry and motion from image sequences. It has been
a computer vision goal to perform a similar task: from an image sequence taken
by a camera undergoing unknown motion, extract the 3D shape of the scene as
well as the camera motion. This is called the structure from motion problem.
The main challenge for structure from motion, as in many vision tasks, lies

not creating a model of the physics of the task, but rather lies in estimating
the parameters of the model. The image formation processes including the optics
of the camera are well understood and can be accurately modelled such that if
the scene geometry and camera motion are known, the resulting images can be
reliably calculated. However, since it is only the images that are known, solving
the structure from motion task corresponds to inverting the equations modelling
image formation to obtain model parameters. Mathematically this can be well de-
�ned modulo ambiguities, but the non-linearity and high sensitivity to parameter
variations causes many direct solutions to be numerically ill-conditioned, or else
results in computationally complex non-linear approaches with many convergence
hurdles.
In this article we discuss a class of algorithms known as factorization meth-

ods for structure from motion. These algorithms depend on the mathematical
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possibility of decomposing a set of image measurements into the product of two
separate factors:

image sequence, motion� shape:

Intuitively the projected images are considered to result from two factors: the rel-
ative motion between the camera and the object and the object shape. These are
composed in a bilinear form such that if either motion or shape is constant, then
the image sequence will be a linear function of the other. The motion parameters
refer to all of those parameters describing the interaction between the camera
and the object; namely the relative orientation and translation of the object and
intrinsic camera calibration parameters. These parameters may vary from image
to image in the sequence, but are the same for all features in a single image. The
shape parameters describe the 3D geometric characteristics of the object and are
assumed to remain constant over the sequence. Typically the 3D coordinates of
features on the surface of the object are used to specify shape.
The factorization method takes advantage of the bilinear formulation to decom-

pose the image measurements into the relevant motion and shape components.
This can be achieved by a number of techniques including Singular Value De-
composition (SVD) and can be performed much more e�ciently and with better
convergence properties than general non-linear optimizations. The factorization
method has been demonstrated to be a powerful approach to extracting structure
and motion from image sequences.
The factorization method was �rst introduced by Tomasi & Kanade (1990,1992)

for the orthographic case. It has since inspired numerous extensions and gener-
alizations. In this report we review the basic the factorization method and its
development along several research directions. Important developments include
the extension to alternate camera models, both a�ne and perspective, the ex-
tension of feature models from points to lines and to directional point feature
models, a multi-body case and the creation of alternative solution techniques.
There have also been applications of factorization methods in other domains.

2. The Factorization Method: Fundamentals

The use of features is a key factor in making the factorization and other struc-
ture from motion methods tractable and general. It is assumed that there exists
a set of features on the object that are tracked throughout the image sequence
providing a complete set of feature coordinates in all images. This assumption
enables the method to focus on geometric considerations and ignore all of the
image processing tasks. Object shape is interpreted to mean the 3D location of
the features with respect to a reference frame a�xed to the object. Object mo-
tion is the rotation and translation of this reference frame with respect to the
camera, and the image sequence means simply the coordinates of the projected
features in the images. The use of features enables factorization methods to be
used whenever a feature set is available, irrespective of object motion, shape or
illumination.
The core element of factorization that distinguishes it from similar methods is

its strong dependence on a bilinear formulation of structure and motion. With ap-
propriate choice of coordinates it is possible to encode both a�ne and perspective
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camera projections in the general bilinear form:

wfp = PfMfsp: (2.1)

The feature coordinate vector wfp for image f and feature p is formed as the
linear sum of the product of motion parameters in matrix Mf and shape param-
eters in vector sp weighted with the constant weighting or projection matrix Pf .
The projection and motion parameters will vary across the frames of the image
sequence but are the same for each object feature whereas the shape parameters
will vary between features but be identical for all frames. In the �rst stage of
factorization the projection parameters are included in the motion parameters.
The bilinear form then permits a convenient and e�cient decomposition of image
measurements into motion and shape.
The other important and distinguishing feature of factorization methods are

their uniform treatment of features and images from a large sequence. Many
algorithms are designed to recover structure from the minimum number of images.
Extension to the multi-image case typically requires partitioning the sequence into
subsets, solving the subsets and combining the results, or else selecting a \special
image" (or subset of images) to which all other images are compared in obtaining
motion and shape. The partitioning approach su�ers from not applying consistent
constraints across the sequence, and the \special image" approach results in high
sensitivity to noise in measurements of that image. Factorization, on the other
hand, provides true batch processing of the images with global application of
constraints over all images. Neither image pairs nor special images are relied on
by the algorithm.
Early work on obtaining structure from feature correspondences starting from

Longuet-Higgins (1981) and Tsai & Huang (1984) focussed on obtaining camera
orientation and object shape from minimal numbers of views. In 1990 Tomasi
& Kanade demonstrated a working scheme for structure from motion for many
images and features that they called the factorization algorithm. The authors re-
cently learned that Kontsevich et al. (1987) presented a paper proposing a math-
ematical formulation essentially the same as the factorization algorithm. In the
remainder of x 2 we describe the basic factorization algorithm.

(a ) Constructing the Equations

We assume that there is a set of P features on an object that are projected
into F images with coordinates fwfp = (ufp; vfp)

T jf = 1; : : : ; F; p = 1; : : : ; Pg
as illustrated in �gure 1. Initially we formulate the equations describing feature
projection assuming an orthographic camera model. These equations are further
generalized to other a�ne models in x 3(a ), and to the perspective case in x 3(b ).
The primary constraint on the object is its rigidity. All of the object features

can be described by their constant 3D positions in a reference frame a�xed to the
object. Each feature has coordinates given by a 3� 1 vector sp for p = 1; : : : ; P .
Object motion is described by a rotation, with matrix Rf , and translation, tf =

(tfx; tfy; tfz)
T , of this reference frame with respect to the camera in each image,

f . A feature point p in image f will thus have position sfp = Rfsp + tf with
respect to the camera. Under orthography with the z axis along the optical axis,
image feature wfp is given by:

wfp =Mfsp +w0
f ; (2.2)
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Figure 1. Feature tracked in an image sequence

where Mf consists of the top two rows of the rotation matrix Rf , and w0
f =

(tfx; tfy)
T is the image displacement between the origins of the world reference

frame and the object reference frame. We then choose and coordinate system
�xed to object and express the features in this new frame by displacing them by
w0
f to get w

o
fp = ww

fp�w
0
f . In this object centered frame equation (2.2) becomes:

wo
fp =Mfsp (2.3)

for f = 1; : : : ; F; p = 1; : : : ; P . By stacking rows and columns, these equations
can be written compactly in the form:

W =MS (2.4)

where

W =

2
6664
wo

11 wo
12 � � � wo

1P
wo

21 wo
22 � � � wo

2P
...

...
. . .

...
wo
F1 wo

F2 � � � wo
FP

3
7775
2F�P

;

M =

2
6664
M1

M2
...

MF

3
7775
2F�3

and S = [ s1 s2 � � � sP ]3�P :

Equation (2.4) contains the core of the factorization algorithm. It states that
the feature locations in object centered coordinates can be expressed as the prod-
uct of a motion matrix and a shape matrix projected onto the image. The key
property of this equation is the following theorem.

Theorem 1. In the ideal case with no corrupting noise, the measurement
matrix W has rank given by:

rank(W ) � 3: (2.5)
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Proof. This result is evident since M has three columns and the columns of
W are linear combinations of these. It also follows as an extension of work by
Ullman (1979) who he showed that three points and three frames are su�cient
to recover shape and motion under orthography. Here this property is applied to
the whole image sequence.

(b ) Solving the equations

An important reason for the success and popularity of the factorization al-
gorithm is its convergence to a globally optimum a�ne solution. We describe
here the original solution technique proposed by Kontsevich et al. (1987) and
Tomasi & Kanade (1990). Since the rank constraint only applies to the ideal case
where feature positions are measured with no error, when there is noise in the
measurement, a norm squared error can be de�ned:

ESVD(M;S) = kW �MSk2 (2.6)

where M and S are constrained to be of the form given in equation (2.4). This
least squares approximation can be achieved by performing SVD on the measure-
ment matrix:

W = U�V T : (2.7)

We let ~� be equal to the top left 3 � 3 block of � containing the three largest
singular values. These singular values correspond to the principal components of
W . Then selecting U3 and V3 to be the �rst three columns of U and V respectively,
we obtain the least squares approximation to W given by: Ŵ = U3

~�V T
3 . This

decomposition step results in a matrix U3 which measures inter-image di�erences
that are common for all features, namely the object motion, and a matrix V3 that
measures intra-image structure that is common in all images, namely the object
shape.
From here it is simple to factor this into motion and shape matrices. An arbi-

trary solution is to choose: M̂ = U3
~�1=2, and Ŝ = ~�1=2V T

3 . However, this solution
is unique only up to an a�ne transformation, since the motion and shape can
be transformed by any 3 � 3 invertible matrix A, with their product remaining
the same: W = M̂Ŝ = M̂AA�1Ŝ = MS. The Euclidean solution for the ortho-
graphic case which is unique up to a rotation and re
ection is obtained by �nding
transformation A that the rows of each Mf in M are orthonormal. Solutions for
other a�ne models are obtained by imposing the camera projection constraints
and the initial orientation information on the motion matrix as described in x 3.
By using SVD, the factorization algorithm remains numerically stable and is

guaranteed to converge to the global minimum of ESVD. It thus provides a reliable
algorithm for obtaining shape and motion from an image sequence; a major step
forward in structure from motion research.

3. Factorization Under Various Camera Models

The �rst step of the factorization algorithm recovers a�ne shape and motion.
Euclidean shape and motion are recovered by choosing a camera model and �nd-
ing the matrix A such that the motion matrixM = M̂A satis�es this model. This
is because M implicitly incorporates both rotation and projection information.
In this section we described various a�ne camera models used with factorization
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and give constraint equations for each. We then turn our attention to the full per-
spective factorization recently proposed by Triggs (1996), Sturm & Triggs (1996)
and Deguchi (1997).

(a ) A�ne Models

The general a�ne camera projection model is de�ned in homogeneous coordi-
nates by the projection equation:

� �wfp = PAf�sp: (3.1)

Here an object point �s = (sT ; 1)T is projected onto the image plane to point
�w = (wT ; 1)T by the projection matrix PA. The projection is in the form:

PAf =

2
4 p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 p34

3
5 � �

Mf 2�3 w0
f2�1

01�3 �

�
: (3.2)

Restricting consideration to points within the a�ne subspace not at in�nity,
equation (3.1) can be scaled by 1=� and so can be expressed in the form:

wfp =Mfsp +w0
f : (3.3)

Note that up to a choice of origin, w0
f , this is precisely the form in which SVD

decomposition obtains motion and shape.
The matrix Mf can be decomposed into a camera calibration matrix and a

rotation matrix in the form:

Mf = KAfRf =
1

zf

�
1 s
0 a

� �
if 1�3
jf 1�3

�
: (3.4)

Here zf is the depth in focal lengths of the object, s is the skew parameter, a
is the aspect ratio, and vectors if and jf are the two top orthonormal rows of a
rotation matrix. With this decomposition we obtain the identity:

MfM
T
f = KAfKA

T
f : (3.5)

In the remainder of this section we reinterpret elements of KAf according to par-
ticular sub-a�ne camera models. We �nd matrix A that transforms the recovered
motion, M = M̂A, to satisfy this identity up to a rotation and re
ection. The
rotation can be determined by choice of coordinate system, but the re
ection is
an inherent ambiguity of the projected a�ne model.

(i) Orthography

The orthographic camera model has the parameters given by:

KAf =

�
1 0
0 1

�
: (3.6)

It is typically a good approximation for imaging when the object thickness and
change in depth between images are small compared to its depth from the camera.
It is in these cases that depth recovery is di�cult and may be sensitive to noise
so an orthographic model is likely to be more reliable than more complicated
models. To recover Euclidean shape with this camera we seek a matrix A that
will enable Mf = M̂fA to satisfy equation (3.5) for all the images. From this we
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obtain the following equations:

M̂fAA
TM̂T

f = KAfKA
T
f =

�
1 0
0 1

�
for f = 1; : : : ; F: (3.7)

A linear set of equations are used to obtain Q = AAT as described by Morita
& Kanade (1994), and then Q is split into AAT .y Finally Euclidean motion and

shape are recovered as: M = M̂A and S = A�1S.

(ii) Weak Perspective

Weak perspective, also known as scaled orthography, has the following camera
parameters:

KAf =
1

zf

�
1 0
0 1

�
: (3.8)

Weak perspective can be interpreted as an orthographic projection of the object
features onto a plane through its centroid and parallel to the image plane, followed
by a perspective projection of this plane onto the image plane. This perspective
projection of the plane is simply a uniform scaling of the feature coordinates by
the inverse of their distance from the camera measured in focal lengths which is
here denoted as: 1=zf . Weak perspective thus models the scaling e�ects caused
by depth changes between images. Hence it is appropriate for shallow objects
making signi�cant changes in distance from the cameras in image to image. The
camera constraints for obtaining A become:

M̂fAA
T M̂T

f = KAfKA
T
f =

1

z2f

�
1 0
0 1

�
for f = 1; : : : ; F (3.9)

Both the depths zf and the transformation A can be solved for from these equa-
tions as described by Kontsevich et al. (1987) and Poelman (1995).

(iii) Paraperspective

The paraperspective model is another a�ne model and is a step closer to ap-
proximating perspective projection. Originally introduced by Ohta et al.(1981),
it models the scaling of weak perspective as well as the apparent rotation result-
ing from an object moving to the edge of the image. Modelling this e�ect is useful
when the object being viewed moves across the image. Poelman & Kanade (1994)
and Poelman (1995) showed how the paraperspective model could be incorpo-
rated into the factorization formulation and derived the constraint equations:

M̂fAA
T M̂T

f =
1

z2f

"
1 + x2f xfyf
xfyf 1 + y2f

#
for f = 1; : : : ; F: (3.10)

Here xf and yf are the image coordinates of the centroid of the object with
respect to the center of the image and so can be measured in each image. It just
remains for A and the depths to be recovered from these equations.

y If the recovered matrix, Q is not positive de�nite it cannot be factored in this form. Fortunately for

typical image noise Q is generally positive de�nite.
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(b ) Perspective Factorization

When the object thickness is signi�cant compared to its depth from the camera,
a�ne models become poor approximations to the imaging process and perspective
models should be used. Sturm & Triggs (1996), Triggs (1996) and Deguchi (1997)
proposed a generalization of the factorization algorithm to recover motion and
shape up to a projective transformation. Using calibration parameters this can
be transformed into the Euclidean shape. Here we summarize their projective
factorization formulation followed by a calibration step to obtain a perspective
factorization method.
The general projective camera model is a linear transformation of homoge-

neous points in P3 onto points in the plane, P2. Thus it is de�ned by a 3 � 4
projection matrix PP that maps object points, �s = (sT ; s4)

T , onto the points in
the image plane �w = (wT ; w3)

T where these points are described in homogeneous
coordinates. This projection occurs up to an unknown scale factor �fp called the
projective depth:

�fp �wfp = PP f�sp: (3.11)

Gathering these equations for each point in each image into a measurement matrix
of size 3F � P , we obtain the matrix equation:

W �

2
6664
�11 �w11 �12 �w12 � � � �1P �w1P

�21 �w21 �22 �w22 � � � �2P �w2P
...

...
. . .

...
�F1 �wF1 �F2 �wF2 � � � �FP �wFP

3
7775 =

2
6664
P1
P2
...
PF

3
7775 [ �s1 �s2 � � � �sP ] : (3.12)

With the correct projective depths, �fp, the measurement matrix will have at
most rank 4 and can be decomposed using SVD as is done in the a�ne case. The
key concept here is to view projective recovery as one of correctly rescaling the
measurement matrix. While the projective depth for a single point is arbitrary,
the projective depths for points in the same image have �xed ratios, and similarly
the projective depths for a single feature appearing in multiple images will have
�xed ratios. Thus the scale factors in the measurement matrix are only arbitrary
up to a scale factor for each triple of rows, corresponding to features in the same
image, and each column, corresponding to the same point in di�erent images.
Hence it is necessary to determine FP �F �P scale factors in order to correctly
re-scale W into the form of equation (3.12).
The projective depths can be determined modulo these arbitrary scales from

the fundamental matrices and epipolar lines of features in the images. Sturm &
Triggs (1996) derive the following result relating projective depths for point p in
images i and j:

(Fij �wjp)�jp = (eij ^ �wip)�ip; (3.13)

where Fij is the fundamental matrix and eij is the epipole. In part this is a restate-
ment of the epipolar constraint: that the epipolar line of �wjp (given by Fij �wjp)
is the line joining the epipole eij and point �wip (here denoted by the join or cross
product of these points, eij ^ �wip). It also says that given the correct projective
depths, these quantities are exactly equal, not just up to a scale factor. Using
this relationship and knowledge of the epipoles and the fundamental matrices, all
of the projective depths can be recovered modulo row and column scalings. The
fundamental matrices and epipoles can be calculated from pairwise point corre-
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spondences using standard algorithms such as the 8-point algorithm described
well by Hartley (1995). Sturm and Triggs calculate these matrices along with
projective depths by pairing images sequentially F12;F23; : : : ;FF�1;F . Calculat-
ing the depths by chaining together images can lead to an exponential growth
or decrease their size. This does not change the rank 4 property, but may cause
signi�cant roundo� errors in SVD. Since rows and columns are only de�ned up
to scale, they can be judiciously rescaled around unity.
The second step of factorization, following this rescaling and decomposition,

consists of obtaining the Euclidean shape and motion using camera calibration
parameters. The recovered projective shape and motion are unique only up to an
arbitrary, invertible, 4� 4 matrix H since:

W = PS = P̂HH�1Ŝ: (3.14)

If we know the camera calibration parameters then H can be obtained. Otherwise
a non-linear method such as that described by Hartley (1993) could be used to
perform camera calibration from the image sequence and so obtain the Euclidean
shape.
Unlike the a�ne case, not all of the steps of the perspective factorization

method work on all the images during the batch mode. The preprocessing to
�nd epipolar geometry occurs across images in a pairwise manner. Hence it loses
one of the bene�ts of a�ne factorization by not enforcing a globally consistent
geometry. If instead of a sequence of pair-wise calculations, the epipolar geometry
is estimated by comparing each image with the �rst image, this will ensure that
the geometry is consistent, but then one image is arbitrarily selected as a spe-
cial instance, creating greater sensitivity to errors. In practical terms, however,
assuming that the epipolar geometry is known may not be a signi�cantly greater
assumption than assuming that points are registered.

4. Factorization with Alternative Features

(a ) Point Features

In feature-based structure from motion, points are by far the most popular
choice for features. As one of the most primitive features, point features enjoy
many geometric advantages over other features. Points exist in all dimensions and
are invariant to projective transformations; they remain points when projected
onto an image and when rotated. Points are simple to describe and manipulate
mathematically, and more complicated features can often be compactly described
as a collection of point features. From the practical side, there are di�culties in
detecting and registering points. Points are not measurable by a discrete pixel grid
and so are typically de�ned by a template or window function. These templates
do not have the invariant nature of point features under projection changes and
so inaccuracies are introduced into the feature detection and registration. Despite
this, points are still the feature of choice for most algorithms.

(b ) Line Features

Another feature is the line. Lines share the primitive nature of points and
invariance under projective transformations. While there are no ideal lines in real
images, straight edges can be naturally modelled as lines, and in many cases can
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be localized more accurately than point features. Hence line features are also
attractive primitives for factorization. The main disadvantage of lines compared
to points is that the projection of a line in 3D to a line in the image only identi�es
a plane on which the feature lies; whereas the projection of a point in 3D onto a
point in the image identi�es a line on which the feature lies. Thus line features
provide less constraint information than point features.

(i) Lines with A�ne Factorization

Quan & Kanade (1996) proposed a factorization algorithm for a�ne structure
from line feature correspondences. The algorithm operates in four steps to retrieve
shape and motion from a minimum of seven lines in three images. We brie
y
describe the algorithm in this section.
A line in R3 passing through a point s0 with direction ds can be described in

the form: s = s0+�ds. Under an a�ne projection (3.2) this forms an image line:

w = PAs = w0 + �0dw ; (4.1)

where a point on the image line is w0 =Ms0+w0 and the direction is given by:

�00dw =Mds: (4.2)

Equation (4.2) relates the measured line directions, dw , to the a�ne motion, M ,
and the 3D line directions ds. Matrix M thus projects line directions in R3 to
directions in R2 up to a scale factor. An alternative interpretation is to consider
M as projecting a point in P2 to a point in P1 using homogeneous coordinates.
Thus it has the same form as the projective equation (3.11) except that it is a
1D camera instead of a 2D camera. It can be solved in an analogous manner to
perspective factorization. First the measurement matrix is formed:

WD =

2
6664
�11du11 �12du12 � � � �1Pdu1P
�21du21 �22du22 � � � �2Pdu2P

...
...

. . .
...

�F1duF1 �F2duF2 � � � �FPduFP

3
7775 (4.3)

and it is rescaled appropriately. It can then be factored into a�ne motion and
line directions:

WD =MDDD =

2
6664
M1

M2
...

MF

3
7775 [ ds1 ds2 � � � dsP ] : (4.4)

The second step of the algorithm is to recover the translation vectors tp, and
the third step is to recover points through which the lines pass, xp. Both of these
are described by Quan & Kanade (1996) and can be achieved by solving sets of
linear equations with SVD.
The �nal step is the conversion from a�ne results to Euclidean shape and

motion. This is done by applying the constraints for whichever a�ne camera is
being used in the same was as for point features described in x 3(a ). With this
algorithm a minimum seven line directions in three images are needed to recover
motion and shape, which is more than the four point features in three images
needed by the point-based a�ne factorization. Also shape recovery for lines is
typically more sensitive to noise than for point features.
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(ii) Lines with Perspective Factorization

There has not yet been a direct extension from a�ne to perspective factoriza-
tion for lines. Sturm & Triggs (1996) proposed an alternate route in which lines
are represented by two points. A pair of points for each line are chosen in the �rst
image and, using known epipolar geometry, the corresponding point positions on
the lines in the rest of the images are calculated. The projective depths can also
be calculated and then the perspective factorization for points (see x 3(b )) can
be applied to recover shape and motion.
As in perspective factorization for points, the epipolar geometry needs to be

established, and since this is typically calculated from point correspondences,
point features must be tracked in addition. On a deeper level, however, an im-
portant aspect of line features is lost by converting each into two point features.
A line gives a strong one-dimensional constraint orthogonal to its length and no
constraint along its length. Modelling a line with two point features results in an
equal constraint or weighting along and perpendicular to the line. Thus simply
using end-points to represent lines adds an arti�cial factor in the least squares
that may harm the line �tting.

(c ) Generalized Points and Line Segments

Up to this point factorization has been viewed as a least squares optimization
algorithm; the con�guration that minimizes the norm squared error from equation
(2.6) is deemed the best solution. Poelman (1995) extended this to a weighted
least squares optimization where each image point is given a separate weight so
that unreliable or occluded points can be given less in
uence or discarded. The
least squares solution is arbitrary in the sense that many error measures could
be used in place of norm squared error for ESVD, and it is unclear which will
give superior results. The norm square error is chosen mostly for its convenient
numerical properties including the SVD solution of ESVD.
An alternative approach taken by Morris & Kanade (1998) is to make prob-

abilistic assumptions about the data and then �nd the Maximum Likelihood
solution. True feature locations, xfp, are assumed to have known 2D Gaussian
probability densities in the image plane with covariances Cfp around the mea-
sured features, wfp:

�fp(xfp) = kfp exp(�
1

2
(wfp � xfp)

TC�1
fp (wfp � xfp)): (4.5)

Assuming independence this results in a total density function given by the prod-
uct of these: �T =

Q
fp �fp(xfp). The Maximum Likelihood solution to this is

obtained by minimizing the cost function, EB, given by:

EB =
X
fp

1

2
(wfp � xfp)

TC�1
fp (wfp � xfp): (4.6)

If feature position is given by the a�ne model, xfp =Mfsp, and all features have
unit covariance matrices, then EB and ESVD are equivalent up to scale. This im-
plies that the original factorization algorithm is the Maximum Likelihood solution
when feature uncertainty is modelled as having independent, identical Gaussian
distribution. Other choices of covariance matrices are possible permitting the use
of arbitrary Gaussian densities for feature positions. In particular directional un-
certainty of feature position may be modelled as illustrated in �gure 2(a). The
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L

σ 1

σ 2

Figure 2. (a) Directional feature uncertainty modelling, (b) Line segment modeling with
endpoints having large directional uncertainties along line length.

new cost EB can no longer be minimized with SVD, but Morris & Kanade (1998)
present an e�cient bilinear algorithm for achieving this and recovering motion
and shape.
This generalized point feature model can be extended to model line segments

as well. Practical line registration algorithms actually work with line segments
which are �t to edges in the images. The positions of the recovered line endpoints
may correspond to di�erent parts of the edge in any given image, but they are
restricted to fall within the physical limits of the object. Thus, by using line
segments which correspond to a particular region of the in�nite line, one can
extract more constraints than are available for in�nite lines. Line segments can
be de�ned by modelling their end-points as Gaussian density functions with large
uncertainty along the length of the line and small uncertainty perpendicular to
the line, as illustrated in �gure 2(b). The same factorization algorithm will thus
work with line segments modelled in this way.
Using the generalized point formulation increases the 
exibility and accuracy

of factorization and still leverages the bilinear nature of the problem, but it loses
the guarantee of global convergence. Yet the additional 
exibility is the ability to
naturally handle missing features. The original formulation required and iterative
\hallucination" scheme by Tomasi & Kanade (1992) to handle missing features,
but this negates much of the gains in the SVD formulation. With generalized
features the a missing feature is given zero probability.

5. Extension to the Multi-Body Case

A common and basic assumption of most structure from motion algorithms
is that features belong to a single rigid object. When there are multiple inde-
pendently moving objects in a scene with features tracked on each, the addi-
tional challenge becomes to segment features and then recover object motion and
shape. The di�culty introduced by multiple objects (particularly if the num-
ber is unknown) is that typically segmentation depends on object motion es-
timates and object motion estimation depends on a prior segmentation of the
features. Approaches to solving this cyclic dilemma have generally relied on re-
cursive clustering techniques such as by Boult & Brown (1991) and Gear (1994).
Costeira & Kanade (1995) showed that this multi-body problem could be de-
scribed in a bilinear formulation, and then decomposed and solved segmentation
and recovery of motion and shape at the same time using a factorization method.
Their algorithm, which uses an a�ne approximation, does not need to know the
number of shapes nor does it involve recursive application.
First the problem is formulated in a bilinear form. Since individual objects may

have di�erent translations, both rotation and translation must be incorporated
in the motion matrix. This is achieved using homogeneous coordinates for object
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Figure 3. The shape interaction matrix Q, is transformed into block diagonal form,Q�, with each
block representing a separate object|in this case three objects. Using the same transformation

T , the columns, cobjecti , of W can be reordered into a segmented form.

points: �s = (sT ; 1)T , so that the projection equation becomes:

wfp =
�
Mf w0

f

�
�s: (5.1)

A measurement matrix,W , analogous to that in equation (2.4) can be formed by
stacking features in rows and columns. The only di�erence is that since points
are not in object centered coordinates, matrix W produced by a single rigid
object will now have rank at most 4. When there are multiple rigid objects, the
columns of W , representing features, are from each of the objects and are mixed
in an unknown manner. The rank ofW increases with each independently moving
rigid object. Let us assume that r = rank(W ). The goal of segmentation is to
permute the columns of W into the form:

W � =
�
W a W b � � �

�
(5.2)

where each component, W a, W b, etc., is at most rank 4.
The �rst step of decomposition is to perform SVD onW to obtainW = U�V T .

We let Vr consist of the �rst r columns of V . We then form the shape interaction
matrix Q given by:

Q = VrV
T
r : (5.3)

The shape interaction matrix captures the structural information of the objects
and its entries are invariant to object translation and rotation. The p'th row and
p'th column correspond to the p'th feature, sp. Costeira & Kanade (1995) showed
that in the zero noise case Q can be transformed into a block diagonal form Q�

by applying a transform, which here we denote by T , such that:

Q� = TQTT : (5.4)
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T is a square matrix whose columns are a permutation of the identity matrix. Pre-
multiplying by T thus permutes rows of Q, and post-multiplying by TT permutes
columns of Q. An iterative technique described by Costeira & Kanade (1995)
is used to �nd the transform, T , that results in the block diagonal matrix Q�

illustrated in �gure 3. The rows and columns of each block in Q� identify those
features whose motions in the image sequence are linearly dependent on each
other and independent of other features, and hence are part of the same rigid
object.
The e�ect of post-multiplying Q orW by T is to reorder the respective columns

of Q or W from their initial sequential ordering by feature index to a new seg-
mented ordering where columns from the same feature are adjacent. Thus the
segmented measurement and shape matrices are obtained as:

W � = WTT (5.5)

S� = STT :

Subsequent to this the standard factorization procedure must be applied in an
analogous way to that described in x 3.
The multi-body factorization method performs a bilinear decomposition into

motion and shape components and so can eliminate the independent motions of
the objects. Then using only the linear dependences of rows and columns in the
shape interaction matrix, the object features can be segmented. The elimination
of motion leads to a simpler segmentation algorithm than that of Gear (1994)
who iteratively scaled and permuted columns of the measurement matrix based
on linear dependences to obtain segmentation. A weakness of the factorization-
based algorithm is that analysis is performed assuming zero noise. With noise
thresholds and other approximations must be introduced.

6. Factorization in Other Domains

There are other situations outside the structure from motion domain that can
be formulated as a bilinear decomposition and the factorization paradigm may be
a powerful tool for tackling the problems. Here we describe two such problems.

(a ) Force/Torque Sensor Calibration

Multi-axis force and torque sensing devices are used in applications such as
haptic interfaces. They are designed to convert a force and/or torque into an
electrical signal. Figure 4 illustrates a simple two degree of freedom force sensor
in which the four strain gauges measure bending of the cantilever along approx-
imately orthogonal directions. The device requires calibration because of sensi-
tivities of strain gauges are di�erent and they may not be placed precisely 90
degrees apart. Calibration typically requires applying a force and measuring it
and the response, and then repeating this in many directions. The transformation
equation is de�ned:

Cz =m (6.1)

for a vector m containing force and torque components, vector z containing sen-
sor output, and calibration matrix C. The sensor shown in �gure 4 only measures
forces and so here m contains just force components. The equation can be ex-
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Cantilever Beam

F1

F2Fi

θi

Figure 4. Two degree of freedom force sensor

pressed as:

�
c11 c12 c13 c14
c21 c22 c23 c24

�2664
z1
z2
z3
z4

3
775 =

�
mx

my

�
� mo

�
sin �
cos �

�
: (6.2)

A least squares solution for the calibration parameters can easily be formulated
given multiple corresponding mi and zi vectors. The main drawback with this

approach is that the applied force vector, mi = mo [ sin �i cos �i ]
T
, must be

known. The magnitude of the force, mo, for multiple measurements can easily be
made constant by suspending a known weight from the tip of the force sensor.
However, the direction, �i, of the force must be painstakingly acquired for each
electronic measurement of zi.
Voyles et al. (1997) show that the calibration task can be recast in a bilinear

form, and then solved using the factorization technique. Equation (6.1) is restated
in the form:

zTi =mT
i S; (6.3)

for the i'th measurement, and where C is the pseudo-inverse of S. With n mea-
surements this equation can be stacked to form a matrix equation:

Z =MS (6.4)

where

Z =

2
64
zT1
...
zTn

3
75 and M =

2
64
mT

1
...

mT
n

3
75 : (6.5)

We assume here only that the sensor data Z is available, and that the magnitude
of the force components, mo, is constant and known. The key advantage with
this approach is that the directions, �i, need not be measured. This equation is
thus analogous to bilinear camera equation (2.4) and can be solved using SVD
decomposition. The necessary requirements for this to be a useful least squares
solution technique is that the rank of Z be less than the number of columns,
and that there is a tractable technique to determine matrix A that removes the
ambiguity inherent in the solution: MS = M̂A�1AŜ. Voyles et al.(1997) show
how these conditions are met in their force/torque sensor domain.
The work by Voyles et al. can be seen as a recasting of the problem from the

linear domain, which needed careful measurements of force data, to a bilinear
problem in which both force/torque and calibration parameters are calculated.
This makes the task of performing measurements much simpler and faster and
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Figure 5. Experimental arrangement to model surface re
ectance properties of an object.
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Figure 6. The measurement matrix M contains the intensity of the RGB components of the
re
ected light for a single pixel as a function of illumination angle. It is decomposed into two
matricesM = GK: where the geometry matrix, G, contains the relative intensities of di�use and
specular components for each angle, and the colour matrix, K, contains the RGB components
for the di�use and specular re
ectance.

at the same time they report comparable or even slightly improved results using
the factorization method.

(b ) Object Colour Modelling from Image Sequences

Colour image sequences taken by a �xed camera and moving light source can
be used to recover the surface re
ectance properties of an object and surface ori-
entation of the object. Sato & Ikeuchi (1995) and Sato (1997) present a carefully
performed experiment in which a single light source illuminates an object from
multiple points along a circular trajectory as illustrated in �gure 5. Images are
taken from a �xed camera.
The red, green and blue (RGB) components are extracted for each object pixel

in each image. A measurement matrix is formed from the RGB components for
a single pixel and its corresponding pixels in all the images:

M =

2
64
R1 G1 B1
...

...
...

Rn Gn Bn

3
75 (6.6)

for n images. Sato & Ikeuchi (1995) derive the following decomposition of this
matrix into two matrices:

M = GK (6.7)

where G is a n � 2 geometry matrix and K is a 2 � 3 colour matrix. The ge-
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ometry matrix, which contains surface normal information, identi�es the relative
contribution of di�use and specular re
ectance to the total re
ection. Its form
is determined using a Lambertian model for di�use re
ection components and a
simpli�ed Torrence Sparrow model for specular re
ection components. The colour
matrix contains the RGB intensities of the di�use and specular re
ection.
The decomposition in equation (6.7) could be solved by �rst �nding one of the

matrices G or K, and then obtaining the least squares solution for the other, or
it could be decomposed using the factorization method. Sato & Ikeuchi (1995)
follow the former approach, using alternative techniques to obtain K and solving
for G with linear least squares method. They could have used SVD to obtain the
best rank 2 approximation to M , and then decomposed it into Ĝ and K̂ which
are de�ned up to a2�2 invertible such that G = ĜA and K = A�1K̂. The correct
transformation A is determined by applying geometric or colour constraints in
an analogous way to that described in x 3. Figure 6 shows a synthetic example of
the RGB components of a single pixel and their decomposition into the geometry
and colour matrices.
Whether a linear least squares or a bilinear decomposition approach is better

depends on the availability of information describing the recovered components.
If one of the two components is easily and accurately determined by alternate
means, then the linear least squares may be best. However if neither components
are accurately known and there are su�cient constraints that can be applied on
one or both of the components, then the factorization method may be the simpler
and more accurate approach.

7. Summary

The factorization method works in several steps. First the equations must be
formulated in a bilinear form. This is achieved for the a�ne case either by work-
ing in an object-based coordinate system or by using homogeneous coordinates.
In the perspective case it is necessary to �nd a rescaling of the homogeneous
coordinates in order to formulate the matrix equation. The decomposition then
produces only the a�ne or projective shape and motion. The next step consisted
of imposing, and possibly recovering, calibration and orientation constraints to
obtain Euclidean motion.
Since its inception in the late 1980's, the factorization method has proven to

be a powerful approach for the structure from motion problem. The factoriza-
tion method has performance improvements over direct non-linear methods, with
guaranteed global convergence for SVD calculations and rapid convergence in
other bilinear formulations. Its reliability is also due to uniformly applying con-
straints, such as the rigidity constraint, over all features and images, and avoiding
the use of special images.
Finally factorization methods have found application in areas beyond struc-

ture from motion where a bilinear decomposition into two components can be
formulated. Constraint information on the recovered components is then used to
transform these components into the desired form for the problem. These methods
have much greater power and 
exibility than direct linear methods.
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