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The problem of reconstructing the -shape of a three-dimensional object from sev-
eral plane projections is analyzed. A general approach is pointed out which .
leads to recurrence algorithms for solving various versions of this problem.
This approach is illustrated with two examples: 1) reconstructing the shape of
an object from an arbitrary set of orthogonal projections which are known with-
in a scale factor; 2) reconstructing the shape of an object from two central
projections with known parameters of the internal orientation.

INTRODUCTION

In this paper we wish to examine some mathematical questions which arise in the
course of solving problems involving the interpretation of depth on the basis of the paral-
lax of motion and binocular parallax.

We start by formulating a general problem. We assume that a finite set of pbints
A={a} has been singled out in a three-dimensional Euclidean space S. This set (which con-
tains n points) is called the "object." We assume that m projection operators p'j act on

S in two-dimensional Euclidean spaces FJ. In each FJ, a point &=4 corresponds to a point

ax == py(a) .

~Let us assume that we know neither 4<S§ nor pJ. We know only the aji and their cor-

respondence (i.e., we know which points are different projections of a common point). We
also know.a class of possible mappings of Py - We are to reconstruct A.

We will describe the solutions of the following problems of this type:
1) reconstructing the shape of an object from three or more orthogonal projections;

2) reconstructing the shape of an object from two central projections in the case in
which the base of the perpendicular drawn from the center of the projection to the projec-

tion plane and its length are known for each projection.

We will not discuss questions related to dlstinguishing a figure from a background
or establishing a correspondence between point in different projections.

The first of the problems listed above corresponds to the observation of a rotating
object whose linear dimensions are much smaller than the distance to it. 1In this case
the object must contain at least four points of general position. A solution which is
found is determined within isometric transformations (i.e., the distance between any pair
of points can be reconstructed). In almost the same way we solve the problem of recon-
Structing the depth in the case in which the projections are known within a similarity
(this situation corresponds to large displacements along the depth of a small and remote
object). 1In this case the salution is determined within an affine transformation which
préserves angles (i.e., we can reconstruct the ratio of distances between any two pairs
of points). : .

The second of these problems corresponds to a binocular observation of an object
whose linear dimensions are comparable to the distance to the object. For the method which
we are proposing here for solving this problem, we must require that the object contain
at least eight points (although five points of general position would, generally speaking,
be sufficient for reconstructing a shape). The solution of this problem is again deter-

mined within an angle-preserving affine transformation. Furthermore, if we do not know
© 1987 by Allerton Prass, inc.
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the orientation of the projections, two different solutions may appear.

Solutions based on the traditional apparatus of projective geometry have been propos-
ed in many places for problems of this class [1-3]. That approach, however, has several
shortcomings:

1) the algorithms turn out to be very complicated;

2) the points of an object are nonequivalent in the calculations. Specifically, the
order in which the points .are processed must conform to certain conditions, otherwise:,
incorrect results may be found;

) 3) the algorithms which are found do not in principle make use of the integral infor-
mation on all points. In order to improve the accuracy of the algorithms it is necessary
to partition the sets of polnts of the object into subsets (which may be intersecting)

-and to solve in each resulting subset the problem of reconstructing the depth. The results
are then averaged.

It is pleasant to note an exceptional case. Longuet-Higgins [4], in solving the sec-
ond of these problems, proposed an algorithm which is free of the shortcomings just listed
and which agrees with our own in certain regards. On the whole, however, that algorithm
seems to have been found more by a bit of luck than by applying a universal approach to a
particular problem. ,

The method which we are proposing here makes it possible to uniformly utilize the in-
formation on all points simultaneously in the reconstruction of object A (there is no upper
bound on the number of these points). The effect is to substantially improve the accuracy
of the solution of the metric-reconstruction problem on the basis of inexact information
about aji' The fagt that the problem can be linearized completely, i.e., that the solu-

tion of the problem can be reduced to standard operations on vectors and matricds, should
also be counted as an important advantage of this method. Additional information about
the object (the existence of a symmetry plane in the object, information about the abso-
lute or relative orientation of a projection, images on projections of the centers of .
other projections ("core points"), etc.) can easily be employed with appropriate modifica-
tions of the proposed calculation methods. .

In developing specific algorithms we strive to make use of recurrence procedures,
which make it possible to add new points rapidly and to subsequently correct the parame-
ters of the affine (projective) structure of the object. For the second problem, this re-
quirement is met completely. The program reconstructs the projective structure of the
object and the metric by making use of a memory volume which does not depend on the number
of points being processed (the coordinates of the points are stored in a memory which
does not pertain to the program). :

The resulting algorithms have proved to be extremely fast. In the second, and more
complicated problem, for example, the addition of a new point and the cycle of recalcula-
tions by the recurrence procedure requires about four hundred operations with real num-
bers. : .

Some of the problems have not been solved in the course of constructing solutions:

1) in problem 1, it has not been‘found possible to construct a recurrence method for
adding new points and new projections;

2) in problem 2, we ran into serious difficulties in moving up to a larger number of
projections (more than two) or moving down to a smaller number of points (less than
eight).

We realize that not all of the readers who need to use these algorithms will be in-
terested in their mathematical underpinnings. = Consequently, for each problem we will go
immediately from the general discussion to an explicit description of a possible algorithm.

All the algorithms have been tested on a computer, and all have proved to be quite
stable with respect to errors in the localization of points on the projections during the
reconstruction of an affine (projective) structure of an object. They have also proved
to be highly accurate in reconstructing a Euclidean structure in a case in which these
errors are sufficiently small. Both of the algorithms include intermediate checks, so
they are stable with respect to errors of a "malfunction" type during the entry of the co-
ordinates of points of the projections.
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1. RECONSTRUCTION OF THE DEPTH OF AN OBJECT FROM SEVERAL PARALLEL PROJECTIONS

1.1. Reconstruction of an object within an affine transformation. We consider the
mapping p=p,®...8p,:S+F,®,..8F,. If m > 2, in the case of a general position, p is injec-
tive, and S can be identified as an affine space with p(S). In using- S below, we will
have p(S) in mind.

The problem thus reduces to one of drawing a three-dimensional affine subspace through
a finite set of points p(A). If this problem is to have a single-valued solution, the
object must not be a plane figure. :

1.2. Reconstruction of a Euclidean structure of an object. We recall thét.s and F

have a Euclidean structure. We transform from affine spaces to linear spaces, choosing
as the origin of coordinates one of the points of the set and its images. We consider
the case in which the pJ are orthogonal projections. Imposing these conditions on pJ is

equivalent to requiring that the conjugate images p}:F{-»S‘ be isometric injectives. Each
pj determines three independent linear conditions on the quadratic form Q¥, which speci-

fies a Euclidean structure in S* which 1s the conjugate of the scalar product in S. The
matrix of the corresponding scalar product in S 1s the inverse of the matrix of the form
Q* in the conjugate basis.

J

It is not difficult to see that in order to reconstruct a Euclidean structure of an
object we need at least three projections (although a Euclidean struéture of S 1s deter-
mined by six parameters, and two projections give us six equations for these parameters;
the rank of the system of linear equations which is constructed would be five).

If the orthogonal projections pJ are given within a scaling factor, one could work

in a corresponding way to reconstruct a scalar product within a factor. The only differ-
ence is that in this case each pJ determines two independent linear conditions on the

quadratic form Q¥. In this case, the form is reconstructed within a homothetic transfor-
mation, again on the basis of three or more projections.

1.3. Algorithm. 1. For points ayy on the projections FJ we write coordinates

(x, ¥.s) In a 2m x n matrix M:

Ji’ ‘ji Iu...zm
=l
Zmies o Tmn
Ymypo oo Ymn

2. We find a three-dimensional affine subspace which 1s constructed (approximately)
on the column vectors of this matrix. One way to do this 1s as follows: from all the
columns of M we subtract the first (we perform a linearization p(S)). Using the standard
procedure, we carry out the singular decomposition M = °1D°2’ where Ol and O2 are ortho-

gonal matrices, and D is diagonal [5]. We assume D=diag(A, A ...), where A,=4,>..,30. If
A>A (1.e., 1f the matrix M is approximately a third-rank matrix), we assume that the
system of projections is matched, and we set M: = OlD"oZ’ where D’ =diag(A As Asy O, ..., 0), and

rank(M) = 3. We denote by B the 2m x 3 matrix which consists of the first three columns
of 0. The columns of B form an orthonormal basis (in the usual metric R?M) in the image

of the operator M.

3. We decompose the columns of M in accordance with the basis of B. The object is

thereby injective in coordinate space R3. If the basis of B is chosen as outline above,
the three-dimensional vector associated with the point a&=4, consists of the first three
components of column i of the matrix D'OZ. Our remaining task is to find the matrix of

the scalar prqduct in R3.

4. We decompose the matrix B into m blocks {Bj} of size 2 x 3. We find linear

equations for the symmetric 3 x 3 matrix Q¥ from the relationsle”Bf==dhgu,n for the ortho-
gonal projection, and-B;@®Bf is equal to a matrix of the form diag(A, A) for the version with
scaling. The resulting system of 3m (or, respectively, 2m) linear equations is then solved
by any suitable method.
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5. Q = (Q*)_l. Diagonalizing Q, we find a Euclidean model of the object.
2. RECONSTRUCTION OF AN OBJECT FROM‘THO CENTRAL PROJECTIONS

2.1. Reconstruction of an object within a projection transformation. We denote by
V an affine space. With it we associate the vector product V, in which V is identified
with a hyperplane which does not pass through the origin. The projective space P(V) con-
sists of points V and infinitely remote points. The mapping of the central projection,
p;:S—F;, can be raised to a linear mapping p;:8—=F;within a factor. The points ay in the

space S and a 1 in the projection Fj are associated with one-dimensional spaces &i and
4,y in S and Fy, respectively. Here we have f:&->d. -

Let us consider the mapping p=p5@5:5~F,®F,. If the centers of the projection do
not coincide we have Ker(p)=Ker(p,)NKer(f:)=7,Nf,=0 (here fi=S_1s the center of projection j).
Consequently, S can be identified as a linear space with p(S). The reconstruction of the
projective structure of the object thus reduces to finding, in the six-dimensional space
1®F,, a four-dimensional subspace S such that we have dim(SN(@x® &@))=>1 for arbitrary i.
This condition is equivalent to the existence of a point}ai which projects onto a4 and

Any+ We show below that these restrictions on S, with a sufficient number of points in

A, determine a single-parameter family of possible solutions which are equivalent from the
standpoint of projective structure. In the specific calculations, it is sufficient to
construct simply one of the solutions. '

Since the codimensionality of S is two, it corresponds to a 2-form @€ A ((F,® F,)*), de-
fined within a scalar factor. We denote by T the component w in the term FleFiin the
decomposition into a direct sum, M ((F,@F)")=A'(F})@ (Fi@F) ®A*(F). It can be shown that
the tensor T determines the space S within the action of independent homothetic transfor-

~

mations in Fl and F2. The limitations on S can be rewritten in the form

<T' Cu/\au>-((o, BuAﬂn)‘O.v

Let us write the conditions on T explicitly. The subspace is determined by the
two linear equations r r .
(e, ad) (v, v)T =0

(pli..v 5:) (vlo ”z)r =0.

Here u=Fjof ffefj. In matrix form, we would have T=fai —afl. The conditions on the sub-
space S imply
T T 4
@1814 2y
det (gau Brau) =0 = (Biax) («fans) — (afas)(BTaw) = tr ((a%BsaTay) —

— (afizBay)) =tr ((B,af — @.B]) (ayiaky)) = tr (T (a11aX)).

We thus find linear equations which determine the tensor T. Since rank(T) = 2, T can be

written as the difference between two matrices of rank 1:T = 'I‘l - Tz. Decomposing Tl and

T2 into a product of a column and a row, we find the coefficients of the equations which

Specify one of the possible subspaces of S (it was mentioned above that the solution of
the problem is not single-valued).

2.2. Reconstruction of the Euclidean structure of the object. We introduce a non-
degenerate scalar product in Fj in the following way. Since Fj 1s determined by an opti-

cal system with a known focal length, ﬁj can be identified canonically with a three-di-

mensional physical space in which the focal.length would naturally be regarded as the unit
of length. . .

We can show that a Euclidean structure (within a scalar factor) in 8 determines the
quadratic form Q¥ of signature (+++0) in 3% (within a factor), and vice versa. Specifical-
ly, S contains a linear subspace L which is parallel to S and which therefore has a non-
degenerate quadratic form. We have thus defined a scalar product in L*=3*/Ann(L) and thus
in S#*, 1Inversely, the quadratic form Q* of this signature has a one-dimensional nucleus
whose annulator is a hyperplane L in 3. The metric in L can be extended to any hyperplane
parallel to L and thus, within a factor, to the region P(S)\P(L) of the projective space.
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As in the preceding problem, p;:F;—3°are isometric injective functions within a fac-
tor. )

The space M =P (F) N p3(F}) 1s two-dimensional, and the two quadratic forms in it which
appear from Euclidean structures in ﬁiﬂ and ﬁg must be proportional. We multiply one of
the quadratic forms in Fg by the corresponding coefficient to make their limitations on M
compatible. In M we choose an orthonormal ‘basis ef and e). To it we add vectors e§ and
eﬁ (from 5;(771').and§;(7’:)), respectively) to form orthonormal bases in these subspaces. In
the basis ej, e, e;,e; the Gram matrix is

Q=

[N - NN
COO
> 00
= OO

where A is an unknown number. From the condition det(Q*) = 0 we find A = *1. Choosing
one of these values of A, we find two solutions of the problem. :

With a point from p(S) with the coordinates (xl, X5 X35 xu) in the basis e, we as-
sociate a point of the space R3 with the coordinates 2/(z:—Aiz), z./(z,—Az,), (25 Faz)/ (23— Azy)-
The mapping p(S) into R3 which is COnstructed is an isometry.

2.3. Algorithm. 1. OnAprojection Fj we introduce an orthogonal coordinate system.

As the origin we choose the point in the projection plane which i1s closest to the center
of projection. We choose the corresponding focal length as the unit of length in the co-
ordinate system associated with projection j. We denote the coordinates of points a, in
the resulting coordinate "system as xji’ y,ji' J

2. We find the matrix T from a syétem of linear equations of the type

Tag Tot Tyt Yo Tui
tel T yus Tas Yo Ysi Yu | |=0.
T2t Yzt 1

This 1s a homogeneous sytem of equations with nine unknowns. A nonvanishing solution is
determined within a linear factor by eight points.

To solve the indefinite system of linear equations it is convenient to use a recur-
rence method based on a Greville pseudoinversion algorithm [6]. -

This pseudoinversion algorithm makes it possible to reconstruct T within about n-l/2
(n is the number of points of the object) at a fixed error in the coordinates of the points
on the projections. The matrix T is determined by the relative positions of the centers
and the projection planes and determines it within a scaling factor. We can find T much
more accurately than we can find the shape of the object itself, and doing so may prove
to be a problem of independent interest; however, it goes beyond the scope of the present
paper.

If the predeterminant of the matrix T which is found turns out to be zero (within a
given error, of course), the calculations can be pursued. Otherwise, the projections are
incompatible.

3. We decompose T into the difference between rank-l matrices 'I'l and T2 in an arbi-

trary way. For example, we could use the standard procedure of singular decomposition.
We write the rank-l matrices Tl and T2 as products of a column and a row (in an arbitrary

way): T-Tx—Tz-ngf—a,ﬂf.
We thus find columns of coefficients @, @, B, Bi. Since we have used a singular decom-
position, we have (@, B)=(as, B:)=0 and (@i, a)=(ps, Bi)=1. The condition of the compatibility

of quadratic forms means (@, as)=(g,, fs)==c. This condition must be checked: if this condition
does not hold, the problem does not have a solution.

4. The basis in the spéce §*, thought of as the factor R'/(.(::).;..(g:)), is
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eo - (al) ea - (ﬁl) ] - (¢1 X Bl L 0 /
. 1 WA 2 0/’ €3 0 y €4 == oy X pz C.
5. For each point a; we construct its representative weS<R* vi=ci(Tw, yu 1, 0, 0, 0)T+

+¢2(0, 0, 0, Zz, Yoo 1)7- We choose the coefficients ¢y and c5 in such a way that we have
(Gf, af) =0, For example, we could choose & --af(zw Yat» 1)’ and cg-—af(zu, Yib 1)1'.

6. TFor each point a; we calculate four coordinates zy(a)=erv;. Using the formula
given above, and choosing A = +1 or A = =1, we f}nd two.Eucli@ean models of the objects.

We wish to thank M. N. Vaintsvaig, P. P. Nikolaev, and A. M. Bonch-Osmolovskii,
whose advice was of no small assistance in the appearance of this paper.
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