
Manhattan World: Compass Direction from a Single Image byBayesian InferenceJames M. Coughlan A.L. YuilleSmith-Kettlewell Eye Research Institute2318 Fillmore St.San Francisco, CA 94115AbstractWhen designing computer vision systems for theblind and visually impaired it is important to deter-mine the orientation of the user relative to the scene.We observe that most indoor and outdoor (city) scenesare designed on a Manhattan three-dimensional grid.This Manhattan grid structure puts strong constraintson the intensity gradients in the image. We demon-strate an algorithm for detecting the orientation of theuser in such scenes based on Bayesian inference usingstatistics which we have learnt in this domain. Our al-gorithm requires a single input image and does not in-volve pre-processing stages such as edge detection andHough grouping. We demonstrate strong experimentalresults on a range of indoor and outdoor images. Wealso show that estimating the grid structure makes itsigni�cantly easier to detect target objects which arenot aligned with the grid.1 IntroductionRecently there has been growing interest in build-ing computer vision navigational systems for the blind[9], [10]. These systems can be used, for example, fornavigation and for the detection and reading of infor-mational signs. The goal of this paper is to determinethe orientation of the viewer in the scene (indoor oroutdoor) from a single image. A useful spin-o� is theability to detect target objects which are not alignedwith the Manhattan grid.Most indoor and outdoor city scenes are based on acartesian coordinate system [3, 6] which we can referto as a Manhattan grid. This grid de�nes an~i;~j;~k co-ordinate system. This gives a natural reference framefor the viewer. If the viewer can determine his/her po-sition relative to this frame { in other words, estimatethe ~i;~j or ~k directions { then it becomes signi�cantlyeasier to interpret the scene. In particular, it will be alot easier to determine the most important lines in the

scene (corridor boundaries and doors, street bound-aries and tra�c lights) because they will typically liein either the ~i;~j or ~k directions. Knowledge of thisreference frame will make it signi�cantly easier andfaster to detect informational signs. We will assumethat the camera direction lies approximately in thehorizontal plane and so lines in the ~k direction mapto approximately vertical lines in the image. There is,of course, an ambiguity in the orientations of ~i and ~jso the compass heading can only be obtained modulo90�.2 Previous Work and Three- Dimen-sional GeometryThere has been an enormous amount of work inprojective geometry [3, 6]. Techniques from projectivegeometry have been applied to �nding the vanishingpoints [1], [5]. For a recent application to vision sys-tems for the blind see [9] for the detection of pedes-trian crossings using projection geometry. This work,however, has typically proceeded through the stages ofedge detection, Hough transforms, and �nally the cal-culation of the geometry. Alternatively, a sequence ofimages over time can be used to estimate the geome-try, see for example [8]. In this paper, we demonstratethat accurate results can be obtained from a single im-age directly without the need for techniques such asedge detection and Hough transforms.For completeness, we give the basic geometry. Weassume that the camera is oriented in the horizontalplane. This is a reasonable assumption and it turnedout to be approximately correct for the images in ourdatasets (all of which were photographed without tak-ing this into account). (In our current work we arerelaxing this constraint to allow for any camera con-�guration.)We de�ne 	 to be the compass angle. This de-�nes the orientation of the camera with respect to
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Figure 1: (Left). Geometry of an~i line projected onto(u; v) image plane. � is the normal orientation of theline in the image. Because our camera is assumed topoint in a horizontal direction, the vanishing point lieson the u axis. (Right) Histogram of edge orientationerror (displayed modulo 180�). Observe the strongpeak at 0�, indicating that the image gradient direc-tion at an edge is usually very close to the true normalorientation of the edge. We modelled this distributionusing a simple box function.the Manhattan grid: the camera points in directioncos	~i � sin	~j. Camera coordinates ~u = (u; v) arerelated to the Cartesian scene coordinates (x; y; z) bythe equations:u = ff�x sin	� y cos	gx cos	� y sin	 ; v = fzx cos	� y sin	 ;(1)where f is the focal length of the camera (which wedetermined to be 797 pixel units for our images).By standard geometry, the vanishing points of linesin the ~i and ~j directions lie at (�f tan	; 0) and(f cot	; 0) respectively in the (u; v) plane. (Lines inthe ~k direction are all vertical in the image given ourcompass-world assumption.)It is a straightforward calculation to show thata point in the image at ~u = (u; v) with intensitygradient at (cos �; sin �) is consistent with an ~i linein the sense that it points to the vanishing point if�v tan � = u + f tan	 (observe that this equation isuna�ected by adding �� to � and so it does not de-pend on the polarity of the edge). We get a similarexpression v tan � = �u+ f cot	 for lines in the ~j di-rection. (See Figure 1 (left) for an illustration of thisgeometry.)3 Pon and Poff : Characterizing EdgesStatisticallyA key element of our approach is that we do notuse a binary edge map. Such edge maps make prema-ture decisions based on too little information. (Thepoor quality of some of the images { underexposed
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Figure 2: Poff (y) (left) and Pon(y)(right), the em-pirical histograms of edge responses o� and on edges,respectively. Here the response y = ���~rI��� is quantizedto take 20 values and is shown on the horizontal axis.Note that the peak of Poff (y) occurs at a lower edgeresponse than the peak of Pon(y). These distributionswere very consistent for a range of images.and overexposed { makes edge detection particularlydi�cult).Instead we use the power of statistics. Followingwork by Konishi et al. [4], we determine probabil-ities Pon(E~u) and Poff (E~u) for the probabilities ofthe response E~u of an edge �lter at position ~u inthe image conditioned on whether we are on or o�an edge. These distributions were learnt by Kon-ishi et al for the Sowerby image database which con-tain one hundred presegmented images. The moredi�erent Pon is from Poff then the easier edge de-tection becomes, see Figure 2. A suitable mea-sure of di�erence is the Cherno� Information [2]C(Pon; Poff ) = �min0���1 logPy P �on(y)P 1��off (y).Konishi et al tested a variety of di�erent edge �ltersand ranked them by their e�ectiveness based on theirCherno� information. For this project, we chose avery simple edge detector ���~rG�=1 � I���{ the magnitudeof the gradient of the grayscale image I �ltered by aGaussian G�=1 with standard deviation � = 1 pixelunits { which has a Cherno� of 0:26 nats. More ef-fective edge detectors are available { for example, thegradient at multiple scales using colour has a Cherno�of 0:51 nats. But we do not need these more sophisti-cated detectors.We extend the work of Konishi et al by puttingprobability distributions on how accurately the edge�lter gradient estimates the true perpendicular direc-tion of the edge. These were learnt for this datasetby measuring the true orientations of the edges andcomparing them to those estimated from the imagegradients.This gives us distributions on the magnitude and di-rection of the intensity gradient Pon( ~E~uj�); Poff ( ~E~u),where ~E~u = (E~u; �~u), � is the true normal orientationof the edge, and �~u is the gradient direction measured



at point ~u. We make a factorization assumption thatPon( ~E~uj�) = Pon(E~u)Pang(�~u � �) and Poff ( ~E~u) =Poff (E~u)U(�~u). Pang(:) (with argument evaluatedmodulo 2� and normalized to 1 over the range 0 to2�) is based on experimental data, see Figure 1 (right),and is peaked about 0 and �. In practice, we use asimple box function model: Pang(��) = (1 � �)=4� if�� is within angle � of 0 or �, and �=(2� � 4�) other-wise (i.e. the chance of an angular error greater than�� is � ). In our experiments � = 0:1 and � = 4� forindoors and 6� outdoors. By contrast, U(:) = 1=2� isthe uniform distribution.4 Bayesian ModelWe devised a Bayesian model which combinesknowledge of the three-dimensional geometry of theManhattan world with statistical knowledge of edgesin images. The model assumes that, while the major-ity of pixels in the image convey no information aboutcamera orientation, most of the pixels with high edgeresponses arise from the presence of ~i;~j;~k lines in thethree-dimensional scene. The edge orientations mea-sured at these pixels provide constraints on the cameraangle, and although the constraining evidence fromany single pixel is weak, the Bayesian model allows usto pool the evidence over all pixels (both on and o�edges), yielding a sharp posterior distribution on thecamera angle. An important feature of the Bayesianmodel is that it does not force us to decide prematurelywhich pixels are on and o� (or whether an on pixel isdue to~i;~j; or ~k), but allows us to sum over all possibleinterpretations of each pixel.4.1 Evidence at one pixelThe image data ~E~u at pixel ~u is explained by oneof �ve models m~u: m~u = 1; 2; 3 mean the data isgenerated by an edge due to an ~i;~j;~k line, respec-tively, in the scene; m~u = 4 means the data is gen-erated by a random edge (not due to an ~i;~j;~k line);and m~u = 5 means the pixel is o�-edge. The priorprobability P (m~u) of each of the edge models was es-timated empirically to be 0:02; 0:02; 0:02; 0:04; 0:9 form~u = 1; 2; : : : ; 5.Using the factorization assumption mentioned be-fore, we assume the probability of the image data ~E~uhas two factors, one for the magnitude of the edgestrength and another for the edge direction:P ( ~E~ujm~u;	; ~u) = P (E~ujm~u)P (�~ujm~u;	; ~u) (2)where P (E~ujm~u) equals Poff (E~u) if m~u = 5 orPon(E~u) if m~u 6= 5. Also, P (�~ujm~u;	; ~u) equalsPang(�~u��(	;m~u; ~u)) ifm~u = 1; 2; 3 or U(�~u) ifm~u =4; 5. Here �(	;m~u; ~u)) is the predicted normal orien-tation of lines determined by the equation �v tan � =

u + f tan	 for ~i lines, v tan � = �u + f cot	 for ~jlines, and � = 0 for ~k lines.In summary, the edge strength probability is mod-eled by Pon for models 1 through 4 and by Poff formodel 5. For models 1,2 and 3 the edge orientation ismodeled by a distribution which is peaked about theappropriate orientation of an ~i;~j;~k line predicted bythe compass angle at pixel location ~u; for models 4and 5 the edge orientation is assumed to be uniformlydistributed from 0 through 2�.Rather than decide on a particular model at eachpixel, we marginalize over all �ve possible models (i.e.creating a mixture model):P ( ~E~uj	; ~u) = 5Xm~u=1P ( ~E~ujm~u;	; ~u)P (m~u) (3)In this way we can determine evidence about the cam-era angle 	 at each pixel without knowing which of the�ve model categories the pixel belongs to.4.2 Evidence over all pixelsTo combine evidence over all pixels in the image,denoted by f ~E~ug, we assume that the image data isconditionally independent across all pixels, given thecompass direction 	:P (f ~E~ugj	) =Y~u P ( ~E~uj	; ~u) (4)Thus the posterior distribution on the compass di-rection is given by Q~u P ( ~E~uj	; ~u)P (	)=Z where Z isa normalization factor and P (	) is a uniform prior onthe compass angle.To �nd the MAP (maximum a posterior) estimate,we need to maximize the log posterior term (ignoringZ, which is independent of 	) log[P (f ~E~ugj	)P (	)] =logP (	) +P~u log[Pm~u P ( ~E~ujm~u;	; ~u)P (m~u)]. Ouralgorithm evaluates the log posterior numerically forthe compass direction 	 in the range �45� to +45�,in increments of 1�.5 Experimental ResultsWe tested our model on two datasets of indoor andoutdoor scenes. These images were taken by an un-skilled photographer unfamiliar with the goals of thestudy. No special attempt was made to hold the cam-era horizontal. The camera was set on automatic sosome images are over- or under- exposed. Experimentsperformed by a blind user (W. Gerrey) at the Smith-Kettlewell Institute demonstrate that similar qualityimages can be attained by a camera mounted on thechest of a blind user (personal communication { Dr. J.Brabyn, Director of the Rehabilitation, Engineering,



Figure 3: Estimates of the compass angle and geome-try obtained by our algorithm. The estimated orien-tations of the ~i;~j lines are indicated by the black linesegments drawn on the input image. At each point ona subgrid two such segments are drawn { one for~i andone for ~j. Observe how the ~i directions align with thewall on the right hand side and with features parallelto this wall. The ~j lines align with the wall on the left(and objects parallel to it). (Indoor 17).and Research Center, Smith-Kettlewell Eye ResearchInstitute, San Francisco, CA 94115. 1998).Our results show strong success of our approach inboth domains.5.1 Indoor ScenesA total of twenty-�ve images were tested. Ontwenty-three images, the estimated angle was accu-rate to within 5�. On two images, the orientation ofthe camera was far from horizontal and the estima-tion was poor. Examples of successes, demonstratingthe range of images used, are shown in Figures 3,4,5,6. The log posteriors for typical images, plotted as afunction of 	, are shown in Figure 7.5.2 Outdoor ScenesWe next tested the accuracy of estimation on out-door scenes. Again we used twenty-�ve test images(taken by a naive photographer). In these scenes thevast majority of the results (twenty-two) were accu-rate up to 10�. On three of the images the angleswere worse than 10�, see Figure 8. Inspection of theseimages showed that the log posterior had multiplepeaks, see Figure 10. There was always a peak corre-sponding to the true compass angle (to within 10�),however, there were false peaks which were higher inthese cases. What causes these errors? Observe in Fig-ure (8) that the vanishing point of the ~i lines occursnear a car whose edges are aligned only approximatelyto the Manhattan grid. The car's edges may thereforecause a small distortion in the vanishing point esti-

Figure 4: Another indoor scene. Standard conven-tions for display of ~i;~j directions. Observe that the~i;~j directions align with the appropriate walls despitethe poor quality of the image (i.e. under-exposed).(Indoor 15).mate. The correct alignment for this image can beobtained, see Figure (9), by ignoring the image datawithin a circle of radius 100 pixels centered aroundthe vanishing point for each compass angle considered(this means the car will no longer contribute whenevaluating the likelihood of the compass angle corre-sponding to the false vanishing point). Observe thedi�erence, see Figure (10), between the log posteriorsfor the compass angle with and without this procedure(i.e. ignoring, or not ignoring, the circle). This newprocedure, however, is intended only to show proof ofconcept and a thorough stability analysis is required(this is current work).On twenty-two of the twenty-�ve images, however,the algorithm gave estimates accurate to 10� which issu�cient for the task (observe that a blind user willtypically have access to a sequence of images whichcan be used to improve the compass estimate). SeeFigure 11 for a representative set of images on whichthe algorithm was successful.6 Detecting Objects in ManhattanworldWe now consider applying the Manhattan assump-tion to the alternative problem of detecting target ob-jects in background clutter. To perform such a task ef-fectively requires modelling the properties of the back-ground clutter in addition to those of the target object.It has recently been appreciated [7] that simple modelsof background clutter based on Gaussian probability



Figure 5: Another indoor scene and its exterior. Sameconventions as above. The vanishing points are esti-mated to within 5� (perfectly adequate for our pur-poses). Note poor quality of the indoor image (i.e.over-exposed). (Indoor 23 and Outdoor 12).

Figure 6: Another indoor scene. Same conventions asabove. (Indoor 8).distributions are often inadequate and that better per-formance can be obtained using alternative probabilitymodels [11].The Manhattan world assumption gives an alter-native way of probabilistically modelling backgroundclutter. The background clutter will correspond tothe regular structure of buildings and roads and itsedges will be aligned to the Manhattan grid. The tar-get object, however, is assumed to be unaligned (atleast, in part) to this grid. Therefore many of theedges of the target object will be assigned to model4 by the algorithm. (Note the algorithm �rst �ndsthe MAP estimate 	� of the compass angle, see sec-tion (4), and then estimates the model by doing MAPof P (m~uj ~E~u;	�; ~u) to estimate m~u for each pixel ~u.)This enables us to signi�cantly simplify the detectiontask by removing all edges in the images except those

Figure 7: The log posteriors as a function of compassangle (from �45� to 45� along the horizontal axis) forimages Indoor 17 (left) and Indoor 15 (right). Theseresults are typical for both the indoor and outdoordataset. See Figure 10 for an exception where thereare multiple peaks.

Figure 8: Incorrect estimation of compass angle foroutdoor scene. The algorithm computes the vanishingpoint to be more than 10� to the right of the truevanishing point. (Outdoor 35).assigned to model 4.This idea is demonstrated in Figure (12) where thetarget is a bike and a robot respectively. Observe howmost of the edges in the image are eliminated as targetobject candidates because of their alignment to theManhattan grid. The bike and the robot stand out asoutliers to the grid.This simple example illustrates a method of mod-elling background clutter which we refer to as sceneclutter because it is e�ectively the same as de�ning aprobability model for the entire scene. Observe thatscene clutter models require external variables { inthis case the 	 angle { to determine the orientationof the viewer relative to the scene axes. These vari-ables must be estimated to help distinguish betweentarget and clutter. This di�ers from standard modelsused for background clutter [7],[11] where no externalvariable is used.



Figure 9: A correct estimate of the compass angle forthe previous �gure can be obtained by ignoring datafrom image points within a circle of radius 100 pixelscentered about the vanishing point for each compassangle considered.
Figure 10: Log posterior as a function of compass an-gle for the previous two �gures. Observe that for theseimages the log posterior has multiple peaks. For theoriginal algorithm, the false peak had higher prob-ability (left). For the modi�ed algorithm which ig-nores the central circle of data (right) the true peak ishigher.7 Summary and ConclusionsOur work has demonstrated proof of concept andshows the potential of our approach. The system,however, needs to be tested more extensively beforeit will be suited for blind users.One obvious limitation is that we have assumedthat the only unknown variable is the compass angle.This is only correct if the camera is held approximatelyhorizontal although our results have shown robustnessto this condition. It is straightforward to adjust ourtheory to extend the theory to estimate all three ori-entation angles simultaneously.Other improvements would come from using better�lters. As demonstrated by Konishi et al [4] the useof colour and multi-scale can give quanti�ably bettermeasures of edgeness (improving the Cherno� infor-mation from 0.26 nats to 0.51 nats). We anticipatethat such �lters will give more accurate angle esti-

Figure 11: Results on four outdoor images. Sameconventions as before. Observe the accuracy of the~i;~j projections in these varied scenes despite the poorquality of some of the images.mates.Further statistical analysis of the domains is alsorequired. We should quantify the amount of outliers,particularly in the outdoor scenes. In particular, weshould investigate the number of structured outliersand determine techniques to detect them. In addition,we should use error analysis to improve our estimatesof the probability distributions and, in particular, tosee how the angle errors change as a function of dis-tance from a vanishing point. This will enable us to doperformance analysis such as estimating Cramer-Raolower bounds for the accuracy of the estimates.We should mention the issues of algorithmic speed.At present the algorithm takes a minute which is tooslow for practical use. However, this is for unopti-mized code when it is run on images of size 640� 480.Optimizing the code (e.g. by using look-up tablesto pre-compute trigonometric functions) and subsam-pling the image will allow the algorithm to work sig-ni�cantly faster. Other techniques involve rejectingimage pixels where the edge detector response is solow that there is no realistic chance of an edge beingpresent. This would mean that at least 70% of theimage pixels could be removed from the computation.We observe that the algorithm is entirely paralleliz-able. Overall, there seems little di�culty in gettingthis algorithm to work in a few seconds {which is per-fectly adequate for blind users.AcknowledgmentsWe want to acknowledge funding from NSF withaward number IRI-9700446, support from the Smith-



Figure 12: Detecting bikes (left column) and robots(right column) in urban scenes. The original image(top row) and the edge maps (centre row) computedas logPon(E~u)=Poff (E~u) { see Konishi et al 1999 { dis-played as a grey-scale image where black is high andwhite is low. In the bottom row we show the edges as-signed to model 4 (i.e. the outliers) in black. Observethat the edges of the bike and the robot are now highlysalient (and make detection straightforward) becausemost of them are unaligned to the Manhattan grid.Kettlewell core grant, and from the Center for ImagingSciences with Army grant ARO DAAH049510494. Itis a pleasure to acknowledge email conversations withSong Chun Zhu about scene clutter.References[1] B. Brillault-O'Mahony. \New Method for Vanish-ing Point Detection". Computer Vision, Graphics,and Image Processing. 54(2). pp 289-300. 1991.[2] T. M. Cover and J. A. Thomas. Elements of In-formation Theory. Wiley Interscience Press. NewYork. 1991.[3] O.D. Faugeras. Three-Dimensional ComputerVision. MIT Press. 1993.
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