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Discrete Markov Processes

Previous lectures
 Assume that the samples are i.i.d. (independent and identically distributed)

* But data often appears in sequences
 There is dependence (stochastic) between different elements of the sequence

Discrete Markov Processes
N-distinct state sy, ..., sy _
» g,= s, : system in state s,

State at time ¢ : g,

P(q,,, =95 |9, =529, = 55--)
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First-order Markov Model
P(q,., =3 |9, =529,y = 5;5--) = Pq,,, =9 g, =5,)
The future is independent of the past, except for the proceeding time
state
Transition probability a,=P(q,, =519, =s5,)

N
a, ZO,Zaij =1forall i
j=1

Transition probability is independent of time
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Observable Markov Model

Initial probability 7z, =P(q, =5,

In an observable Markov model, we can
directly observe the states {q,}

This enables us to learn the transition probabilities

Observation sequence 0=0={g,....,q,}

qr-197

T
P(0:Q|A>7Z):P(Q1)HP(% |Qt—1):7z-qlaqlq2 e d
t=2
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Observable Markov Model

Example Urns with 3 types of ball

s;=red, s,=blue, s;=green (state: the urn we draw the ball from)

Initial probability: 7 =[0.5,0.2,0.3]

Transition a;, A=[04 03 03]
0.2 0.6 0.2
0.1 0.1 08

Sequence O={s, S, S3, S5}

P(O| 4,7)=P(s))P(s, | s,)P(s;|5,)P(s5]5;3)
=7, ay, A Ay =0.5%0.4x0.3x0.8=0.048
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Learning Parameters for HMM

Suppose we have K sequence of length T ® g¢,: state at time 7 of ™" sequence

#[sequence starting with s,] Z A (%k =5,)

7Z'l-:

#[sequence] K
P #[transitions froms, tos;] Z thT:] (¢f =5, and g’ =5 D)
v #[ transition from s, | Zk Z:ll I(g" =s.)

E.G. g, is no. of times a blue ball is followed a red ball divided by the total no. of

red balls
NOTE These learning formula are intuitive

But it is important to realize that they are obtain by ML (maximum likelihood)

K
A,fz:argmaXHP(Oz O, 4,7)

k=1
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Hidden Markov Models (HMMs)

States are not directly observable, but we have an observation from each
state state ¢, e{s,,...,s,}

observable O, e {v,...,v,}

b,(m)=P(0,=v,|q,=s;) : observation prob. that we observe v, if the state is s;

Two sources of stochasticity:

The observation b,(m) is stochastic
The transition g, is stochastic

Back to the urn analogy: Let the urn contain balls with different colors

E.G. Urn: mostly red, Urn2: mostly blue, Urn3: mostly green

The observation is the ball color, but we don’t know which urn it comes from (the state)
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Hidden Markov Models

Elements: 1. N: Number of states S ={s,,...,s,}
2. M: Number of observation symbols in alphabet V ={v,...,v,,}
3. State transition probability 4={a,},a, = P(q,,, =s,|q, =5,)
4. Observation probabilities B ={b,(m)},b,(m)=P(O,=v, |q, =5,)
5. Initial state probabilities 7 =1{z}, 7, = P(q, =s,;)
A =(4,B,r) Specify the parameter set of an HMM

Three Basic Problems
(1) Given a model 4, evaluate the P(O|4) of any sequence O=(0O,, O,, ... Oy)

(2) Given a model and observation sequence O, find state sequence O={q,, ¢,, -.., 97},
which has highest probability of generating O. Q*=arg max, P(Q|0,4)

(3) Given training et of sequence X={0*}, find A"=arg max P(X|A)
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HMMs - Problem 1. Evaluation

Given an observation O=(0,, O,, ... O;) and a state sequence Q, the probability of
observing O given Q is

P0|0,2)=]]P(,149,4)=b,(0)b,(0,)-+b, (O;)

But we don’t know O
T
The prior probability of state sequence is P(O| 1) = P(‘]l)H P(q,lq,.)=m,a,, a, .

=2

Joint probability P(0,0]| 1) = P(g, )f[ P(q, | qt_l)]l[ PO, |q,)

t=2 t=1

= ﬂqlb‘h (Ol)a b (02) o a‘]T—lQTbQT (OT)

9492 492

We can compute p(0|2)=3" P(0,0| 1)
0

But this summation is impractical directly, because there are too many possible O (|O|=NT)
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HMMs - Problem 1. Evaluation

But there is an efficient procedure to calculate P(O|4) called the forward-backward
procedure (essentially — dynamic programming)
This exploits the Markov structure of the distribution

q, 4, dr
Divide the sequence into parts O—0O—0O
(I to?) &(t+1to 7) T T T

0, 0, Oy

Forward variable o,(7) is probability of observing the partial sequence and
being in state §, at time ¢, (given the model 4): «,(i)) = P(O,,...,0,,q,=s,| 1)
This can be computed recursively N
Initialization: «, (i) =P(O,,q, =s,| 1) Recursive: «,,,(i) ={Zat(i)a,-j}bj(0,+1)
=P(O, |q,=s,4)P(q,=s;| 1) o

:Hibi(ol)
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HMMs - Problem 1. Evaluation

Intuition: a.(7) explains first # observations and ends in state s,
X probability a; to get to state s; at +1
X probability of generating (#+1)th observation 5(O,+1)
Then sum over all possible states s; at time ¢
> P(OM)%IHO,%=s,u>=ZNIaT<i)

Computing a(i) is O(N°T)

This solves the first problem — computing the probability of generating the data given the model
An alternative algorithm (which we need later) is backward variable B (i) =P(O,,,,...0;|q, =s;,1)

Finalize recursion: B,(i)=1

IBZ (l) = Z aijbj (Ot+l)ﬁt+1 (])
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HMMs - Problem 2. Finding the state sequence

Again, exploit the linear structure
Greedy Define o/i) in probability of state s, at time t given O and 4

P(O|g, =5, DP(q, =512 _  ad)f()
P(O] 2) > a(DBG)

o,(i) = P(q, =s5,10,4) =

Forward variable o (i) explains the starting part of the sequence until time ¢
ending in s, backward variable (i) explains the remaining part of the sequence

uptotime T

We can try to estimate the state by choosing ¢, = arg max o0,(i) foreacht

But, this ignores the relations between neighboring states.

It may be inconsistent ¢, =s,,9,., =5, buta, =0
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HMMs - Viterbi Algorithm (Dynamic Programming)

Define 0,(i) is the probability of the highest probability path that accounts for all the
first t observations and ends in s,
0,(i) = max P(qy,qy,---2G,159, =5 D> 0, [ 4)

Calculate recursively
1. Initialize s,() =7.5,(0,),y,(i)=0
2. Recursion é‘t(j):m?x5t_l(i)al.j.bj(0[)
v, (j) =argmax o, (i)a,

Intuition

w(j) keeps track of the state that
maximizes o,(j) at time #-1

3. Termination p =maxs, (i) Same complexity O(N2T)

* .
g, = argmax s, (i)
l

4. Path (state sequence) backtracking: ¢ =y (¢"),t=T-1T-2,...,1
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HMMs — Baum-Welch algorithm (EM)

At each iteration,
E-step Compute {(i, ) & y(7) given current 2=(4,B,r)
M-step Recalculate 4 given { (i, j) & v,(7)
Alternate the two steps until convergence

Lif g, =, lifg, =5, &¢q,, =s,

Indicator variables Zj:{ and Z;:{

0, otherwise 0, otherwise

(Note, these are 0/1 in case of observable Markov model)
Estimate them in the E-step as E[Z]=y,(i)
E[Z;1=¢,3i, ))
In M-step, count the expected number of transitions from s; to S; (Ztgj(i,j))
and total number of transitions from s; (Ztyt(i))
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HMMs — Baum-Welch algorithm (EM)

This gives transition probability from s, to s,

T :
a. = Zl 1 C (i) b = ,:17t(])](Ot =v,) « Soft counts instead

U J T .
- 7/t (1) Zt:l 7.(J) of real counts
For multiple observation sequences: P
X:{Ok;kzl._.K} 4. = Z“Z,lé(l])

' Zk IZszl1 fk

2 2 DI =)
D 2 7 )

A Zk 171 ()

7T,

PX | ) =[], PO 2)

Z;j(m) =




B JOHNS HOPKINS

UNIVERSITY

HMMs -- Recapulation

We have given algorithm to solve the three problems:
(1) Compute P(O|A)
(2) Compute Q" =argmax P(Q |0, 1)
(3) Compute 1" = arg max P(X | )

P(0OJ/) is used for model selection
Suppose we have two alternative models for the data P(O|4,), P(O|4,)
Select model 1, if P(O|4)>P(O|4,))
model 2, otherwise
|.E. detect which model generates the sequences
This for multiple models with training data for each

*

A s A, :argm)gxP(Xl | AD)P(X?|A)...P(X" | A)
Use this to build speech recognition system
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Further extensions of HMMIs are described in the book

The basic idea is to exploit the one-dimensional structure of the model

N N N
Enables dynamic programming to ? T T T f f f
perform rapid computation

EM algorithm for learning the model parameters

Multiple models — model selection



