

Discrete Markov Processes

Previous lectures

- Assume that the samples are i.i.d. (independent and identically distributed)
- But data often appears in sequences
 - There is dependence (stochastic) between different elements of the sequence

Discrete Markov Processes

N-distinct state s_1 , ..., s_N

State at time $t:q_t$

 $q_t = s_i$: system in state s_i

$$P(q_{t+1} = s_j | q_t = s_i, q_{t-1} = s_k,...)$$

First-order Markov Model

$$P(q_{t+1} = s_j \mid q_t = s_i, q_{t-1} = s_k, ...) = P(q_{t+1} = s_j \mid q_t = s_i)$$

The future is independent of the past, except for the proceeding time state

Transition probability
$$a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$$

 $a_{ij} \ge 0, \sum_{j=1}^{N} a_{ij} = 1 \text{ for all } i$

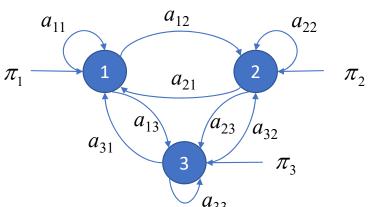
Transition probability is independent of time

Observable Markov Model

Initial probability $\pi_i \equiv P(q_i = s_i)$

In an observable Markov model, we can directly observe the states $\{q_t\}$

This enables us to learn the transition probabilities



Observation sequence $O = Q = \{q_1, ..., q_T\}$

$$P(O = Q \mid A, \pi) = P(q_1) \prod_{t=2}^{T} P(q_t \mid q_{t-1}) = \pi_{q_1} a_{q_1 q_2} \cdots a_{q_{T-1} q_T}$$

Observable Markov Model

Example Urns with 3 types of ball

 s_1 =red, s_2 =blue, s_3 =green (state: the urn we draw the ball from)

Initial probability: $\pi = [0.5, 0.2, 0.3]$

Transition
$$a_{ij}$$

$$A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

Sequence $O=\{s_1, s_1, s_3, s_3\}$

$$P(O \mid A, \pi) = P(s_1)P(s_1 \mid s_1)P(s_3 \mid s_1)P(s_3 \mid s_3)$$

= $\pi_1 \cdot a_{11} \cdot a_{13} \cdot a_{13} \cdot a_{13} = 0.5 \times 0.4 \times 0.3 \times 0.8 = 0.048$

Learning Parameters for HMM

Suppose we have K sequence of length $T \Rightarrow q_t$: state at time t of kth sequence

$$\hat{\pi}_{i} = \frac{\#[\text{sequence starting with } s_{i}]}{\#[\text{sequence}]} = \frac{\sum_{k} I(q_{1}^{k} = s_{i})}{K}$$

$$\hat{a}_{ij} = \frac{\#[\text{transitions from } s_{i} \text{ to } s_{j}]}{\#[\text{transition from } s_{i}]} = \frac{\sum_{k} \sum_{t=1}^{T-1} I(q_{t}^{k} = s_{i} \text{ and } q_{t+1}^{k} = s_{j})}{\sum_{k} \sum_{t=1}^{T-1} I(q_{t}^{k} = s_{i})}$$

E.G. \hat{a}_{ij} is no. of times a blue ball is followed a red ball divided by the total no. of red balls

NOTE These learning formula are intuitive

But it is important to realize that they are obtain by ML (maximum likelihood)

$$\hat{A}, \hat{\pi} = \arg\max \prod_{k=1}^{K} P(O = Q_k \mid A, \pi)$$

Hidden Markov Models (HMMs)

States are not directly observable, but we have an observation from each

state state
$$q_t \in \{s_1, ..., s_N\}$$

observable
$$O_t \in \{v_1, \dots, v_M\}$$

 $b_j(m) \equiv P(O_t = v_m \mid q_t = s_j)$: observation prob. that we observe v_m if the state is s_j

Two sources of stochasticity:

The observation $b_j(m)$ is stochastic The transition a_{ij} is stochastic

Back to the urn analogy: Let the urn contain balls with different colors

E.G. Urn: mostly red, Urn2: mostly blue, Urn3: mostly green

The observation is the ball color, but we don't know which urn it comes from (the state)

Hidden Markov Models

- Elements: 1. N: Number of states $S = \{s_1, ..., s_N\}$
 - 2. M: Number of observation symbols in alphabet $V = \{v_1, ..., v_M\}$
 - 3. State transition probability $A = \{a_{ij}\}, a_{ij} = P(q_{t+1} = s_i \mid q_t = s_i)$
 - 4. Observation probabilities $B = \{b_j(m)\}, b_j(m) = P(O_t = v_m \mid q_t = s_j)$
 - 5. Initial state probabilities $\pi = {\pi_i}, \pi_i = P(q_1 = s_i)$
 - $\lambda = (A, B, \pi)$ Specify the parameter set of an HMM

Three Basic Problems

- (1) Given a model λ , evaluate the $P(O|\lambda)$ of any sequence $O=(O_1, O_2, \dots O_T)$
- (2) Given a model and observation sequence O, find state sequence $Q=\{q_1, q_2, ..., q_T\}$, which has highest probability of generating $O: Q^*=\arg\max_Q P(Q|O,\lambda)$
- (3) Given training et of sequence $X=\{O^k\}$, find $\lambda^*=\arg\max P(X|\lambda)$

HMMs – Problem 1. Evaluation

Given an observation $O=(O_1, O_2, \dots O_T)$ and a state sequence Q, the probability of observing O given Q is

$$P(O | Q, \lambda) = \prod_{t=1}^{T} P(O_t | q_t, \lambda) = b_{q_1}(O_1)b_{q_2}(O_2)\cdots b_{q_T}(O_T)$$

But we don't know Q

The prior probability of state sequence is $P(O \mid \lambda) = P(q_1) \prod_{t=2}^T P(q_t \mid q_{t-1}) = \pi_{q_1} a_{q_1 q_2} \cdots a_{q_{T-1} q_T}$ Joint probability $P(O, Q \mid \lambda) = P(q_1) \prod_{t=2}^T P(q_t \mid q_{t-1}) \prod_{t=1}^T P(O_t \mid q_t)$ $= \pi_{q_1} b_{q_1}(O_1) a_{q_1 q_2} b_{q_2}(O_2) \cdots a_{q_{T-1} q_T} b_{q_T}(O_T)$

We can compute $P(O | \lambda) = \sum_{O} P(O, Q | \lambda)$

But this summation is impractical directly, because there are too many possible Q ($|Q|=N^T$)

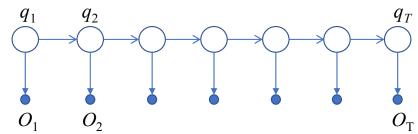
HMMs – Problem 1. Evaluation

But there is an efficient procedure to calculate $P(O|\lambda)$ called the forward-backward procedure (essentially – dynamic programming)

This exploits the Markov structure of the distribution

Divide the sequence into parts

$$(1 \text{ to } t) \& (t+1 \text{ to } T)$$



Forward variable $\alpha_t(i)$ is probability of observing the partial sequence and being in state S_t at time t, (given the model λ): $\alpha_t(i) = P(O_1, ..., O_t, q_t = s_i \mid \lambda)$

This can be computed recursively

This can be computed recursively Initialization:
$$\alpha_1(i) = P(O_1, q_1 = s_i \mid \lambda)$$

$$= P(O_1 \mid q_1 = s_i, \lambda) P(q_1 = s_i \mid \lambda)$$

$$= \prod_i b_i(O_1)$$
Recursive: $\alpha_{t+1}(i) = \left\{\sum_{i=1}^N \alpha_t(i) a_{ij}\right\} b_j(O_{t+1})$

$$= \left\{\sum_{i=1}^N \alpha_t(i) a_{ij}\right\} b_j(O_{t+1})$$
Lecture

Recursive:
$$\alpha_{t+1}(i) = \left\{ \sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right\} b_{j}(O_{t+1})$$

HMMs – Problem 1. Evaluation

Intuition: $\alpha_t(i)$ explains first t observations and ends in state s_i

 \times probability a_{ij} to get to state s_j at t+1

 \times probability of generating (t+1)th observation $b_i(O_t+1)$

Then sum over all possible states S_i at time t

$$P(O \mid \lambda) = \sum_{i=1}^{N} P(O, q_T = s_i \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Computing $\alpha_t(i)$ is $O(N^2T)$

This solves the first problem – computing the probability of generating the data given the model An alternative algorithm (which we need later) is backward variable $\beta_t(i) \equiv P(O_{t+1}, \dots O_T \mid q_t = s_i, \lambda)$

Finalize recursion: $\beta_T(i) = 1$

$$\beta_{t}(i) = \sum_{j=1}^{N} a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j)$$

HMMs – Problem 2. Finding the state sequence

Again, exploit the linear structure

Greedy Define $\delta_i(i)$ in probability of state s_i at time t given O and λ

$$\delta_{t}(i) = P(q_{t} = s_{t} \mid O, \lambda) = \frac{P(O \mid q_{t} = s_{i}, \lambda)P(q_{t} = s_{i} \mid \lambda)}{P(O \mid \lambda)} = \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{j=1}^{N} a_{t}(j)\beta_{t}(j)}$$

Forward variable $\alpha_t(i)$ explains the starting part of the sequence until time t ending in s_i , backward variable $\beta_t(i)$ explains the remaining part of the sequence up to time T

We can try to estimate the state by choosing $q_t^* = \arg \max_i \delta_t(i)$ for each t

But, this ignores the relations between neighboring states.

It may be inconsistent $q_t^* = s_i$, $q_{t+1}^* = s_j$ but $a_{ij} = 0$

HMMs – Viterbi Algorithm (Dynamic Programming)

Define $\delta_t(i)$ is the probability of the highest probability path that accounts for all the first t observations and ends in s_i

$$\delta_{t}(i) = \max_{q_{1},...,q_{t}} P(q_{1}, q_{2},..., q_{t-1}, q_{t} = s_{i}, O_{1},...O_{t} \mid \lambda)$$

Calculate recursively

- 1. Initialize $s_1(i) = \pi_i b_i(O_1), \psi_1(i) = 0$
- 2. Recursion $\delta_t(j) = \max_i \delta_{t-1}(i) a_{ij} b_j(O_t)$ $\psi_t(j) = \arg\max_i \delta_{t-1}(i) a_{ij}$
- 3. Termination $p^* = \max_i s_T(i)$ $q_T^* = \arg \max_i s_T(i)$

Intuition

 $\psi_t(j)$ keeps track of the state that maximizes $\delta_t(j)$ at time t-1 Same complexity $O(N^2T)$

4. Path (state sequence) backtracking: $q_T^* = \psi_{t+1}(q_{t+1}^*), t = T-1, T-2, ..., 1$

HMMs – Baum-Welch algorithm (EM)

At each iteration,

E-step Compute $\zeta_t(i,j)$ & $\gamma_t(i)$ given current $\lambda = (A,B,\pi)$

M-step Recalculate λ given $\zeta_t(i,j) \& \gamma_t(i)$

Alternate the two steps until convergence

Indicator variables
$$Z_i^t = \begin{cases} 1, & \text{if } q_t = s_i \\ 0, & \text{otherwise} \end{cases}$$
 and $Z_{ij}^t = \begin{cases} 1, & \text{if } q_t = s_i \& q_{t+1} = s_j \\ 0, & \text{otherwise} \end{cases}$

(Note, these are 0/1 in case of observable Markov model)

Estimate them in the E-step as $E[Z_i^t] = \gamma_t(i)$

$$E[Z_{ij}^t] = \zeta_t(i,j)$$

In M-step, count the expected number of transitions from s_i to s_j $\left(\sum_t \zeta_t(i,j)\right)$ and total number of transitions from s_i $\left(\sum_t \gamma_t(i)\right)$

HMMs – Baum-Welch algorithm (EM)

This gives transition probability from s_i to s_i

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \zeta_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \qquad \hat{b}_j = \frac{\sum_{t=1}^{T} \gamma_t(j) I(O_t = v_m)}{\sum_{t=1}^{T} \gamma_t(j)} \qquad \bullet \qquad \bullet \qquad \text{Soft counts instead}$$

For multiple observation sequences:

$$X = \{O^k : k = 1, ..., K\}$$
$$P(X \mid \lambda) = \prod_{k=1}^{K} P(O^k \mid \lambda)$$

ple observation sequences:
$$X = \{O^k : k = 1, ..., K\}$$

$$\hat{a}_{ij} = \frac{\sum_{k=1}^K \sum_{t=1}^{T_{k-1}} \zeta_t^k(i, j)}{\sum_{k=1}^K \sum_{t=1}^{T_{k-1}} \gamma_t^k(i)}$$

$$\hat{b}_j(m) = \frac{\sum_{k=1}^K \sum_{t=1}^{T_{k-1}} \gamma_t^k(j) I(O_t^k = v_m)}{\sum_{k=1}^K \sum_{t=1}^{T_{k-1}} \gamma_t^k(j)}$$

$$\hat{\pi}_i = \frac{\sum_{k=1}^K \gamma_1^k(i)}{K}$$

HMMs -- Recapulation

We have given algorithm to solve the three problems:

- (1) Compute $P(O|\lambda)$
- (2) Compute $Q^* = \arg \max P(Q \mid O, \lambda)$
- (3) Compute $\lambda^* = \arg \max P(X \mid \lambda)$

$P(O|\lambda)$ is used for model selection

Suppose we have two alternative models for the data $P(O|\lambda_1)$, $P(O|\lambda_2)$

Select model 1, if
$$P(O | \lambda_1) > P(O | \lambda_2)$$

model 2, otherwise

I.E. detect which model generates the sequences

This for multiple models with training data for each

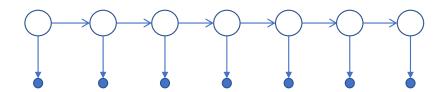
$$\lambda_1^*, \dots, \lambda_w^* = \arg\max_{X} P(X^1 \mid \lambda) P(X^2 \mid \lambda) \dots P(X^w \mid \lambda)$$

Use this to build speech recognition system

Further extensions of HMMs are described in the book

The basic idea is to exploit the one-dimensional structure of the model

Enables dynamic programming to perform rapid computation



EM algorithm for learning the model parameters

Multiple models – model selection