
Lecture: Learning Exponential Distributions

Learning Exponential Distributions

I Learning probability distributions by Maximum Likelihood (ML)

I Exponential distributions, sufficient statistics, and ML learning

I Kullback-Leibler divergence, learning “approximate” distributions

I Advanced topics: Maximum Entropy Principle, Model Pursuit; Model
Selection

I This lecture deals with learning probability distributions like p(x), p(x , y).
This can be applied to the classification task – i.e. learn the conditional
probabilities p(x |y = 1), p(x |y = −1), p(y). Then apply Bayes Decision
Theory to obtain a decision rule.

Lecture: Learning Exponential Distributions

Learn Exponential Distributions Overview

I Firstly we describe basic ML for a parametric probability model.

I Secondly we introduce exponential models and sufficient statistics which
give a general form for representing probability models. ML has a very
simple and intuitive interpretation for this case (and yields a simple
decision rule for binary classification based on the log-likelihood rule).

I Thirdly, we re-interpret ML in terms of making the ”best” approximation
to the data. This has a nice interpretation within information geometry.
This explains why ML makes sense if you have the wrong model. It also
leads to a strategy where you ”pursue” the probability model within a
space of probability models.

I Finally, as an advanced topic, we describe the maximum entropy principle
which enables us to derive the probability models from their statistics and
gives another perspective. (It is surprising that such a simple idea as ML
leads to these rich interpretations.

Lecture: Learning Exponential Distributions

Learning probability distributions by ML (1)

I The basic idea of ML was introduced a century ago by Fisher.

I Assume a parameterized model for the distribution of form p(x | θ), θ :
model parameter. For example, a Gaussian distribution:

p(x | µ, σ) = 1√
2πσ

e
− (x−µ)2

2σ2 , θ = (µ, σ).

I We also assume that the data XN = {x1, ..., xN} is independent identically
distributed (iid) from an (unknown) distribution p(x). Using the product
for independence, p(XN) = p(x1, . . . , xN) =

∏N
i=1 p(xi). Now assume that

p(x) is of form p(x |θ) for some θ which we have to estimate.

I The Maximum Likelihood Estimator is:

θ̂ = arg max
θ

p(x1, . . . , xN | θ)

= arg min
θ
{− log p(x1, . . . , xN | θ)}.

Equivalently, p(x1, . . . , xN | θ̂) ≥ p(x1, . . . , xN | θ), for all θ.

Lecture: Learning Exponential Distributions

Learning by ML example

I Example: Gaussian distribution.
− log p(x1, . . . , xN | µ, σ) = −

∑N
i=1 log p(xi | µ, σ)

=
∑N

i=1
(xi−µ)2

2σ2 +
∑N

i=1 log
√

2πσ

I To estimate the parameters θ = (µ̂, σ̂) we differentiate w.r.t. µ, σ, i.e,
maximize log p(XN |µ, σ), which gives:

I ∂
∂µ

log p(x1, . . . , xN | µ, σ) = 1
σ2

∑N
i=1(xi − µ)

I ∂
∂σ

log p(x1, . . . , xN | µ, σ) = 1
σ3

∑N
i=1 (xi − µ)2 − N

σ

I The solution occurs at: µ̂ = 1
N

∑N
i=1 xi , σ̂

2 = 1
N

∑N
i=1 (xi − µ̂)2. Note that

the Gaussian is a special case because it gives a simple analytic formula for
µ̂, σ̂2.

Lecture: Learning Exponential Distributions

Learning by ML

I This illustrates the ML estimator. What happens with the Maximum a
Posteriori (MAP) estimator? If we use a prior p(θ), we have:

θ̂MAP = arg max
θ

p(XN |θ)p(θ)

p(XN)
(note: p(XN) is independent of θ)

= arg max
θ
{log p(XN |θ) + log p(θ)}

= arg max
θ
{

N∑
i=1

log p(xi |θ) + log p(θ)},

(11)

where we have N data terms and 1 prior term, log p(θ).

I If N is large, then the prior will have little effect, except in special cases.
For example, if we are tossing a coin, we may start with a prior (fair coin,
or some other), but after a large number of tosses the prior doesn’t have
much effect, and what really matters is the number of heads and tails
obtained.

I We can also use loss functions and all the machinery of Bayes Decision
Theory. In practice, loss functions are often not used when learning
probability distributions – but they are used for learning classifiers (later in
the course).

Lecture: Learning Exponential Distributions

Exponential Distributions: Sufficient Statistics
I Exponential distributions are a general way for representing probability

distributions p(.) in terms of sufficient statistics ~φ(.) and parameters ~λ.
I The general form of an exponential distribution is:

p(~x |~λ) = 1

Z [~λ]
exp{~λ · ~φ(~x)}, where Z [~λ] is the normalization factor,

~λ = (λ1, λ2, ..., λM) are the parameters and
~φ(~x) = (φ1(~x), φ2(~x), ..., φM(~x)) are the statistics. The distribution

depends on the data ~x only by the function ~φ(~x), hence ~φ(.) is called the
sufficient statistics.

I Almost every named distribution can be expressed as an exponential
distribution. (If you allow hidden variables – see later in the course).

I Example: For a Gaussian distribution in 1 dimension: ~φ(x) = (x , x2)

~λ = (λ1, λ2), p(~x |~λ) = 1

Z [~λ]
eλ1x+λ2x

2

. Compare this to 1√
2πσ

e
−(x−µ)2

2σ2 .

Translation: 
λ2 = − 1

2σ2

λ1 = µ
σ2

Z [~λ] =
√

2πσ exp µ2

2σ2

I Similar translations into exponential distribution can be made for Poisson,
Beta, Dirichlet, and almost all distributions (some require
hidden/latent/missing variables – see later in the course).

Lecture: Learning Exponential Distributions

Learning Exponential Distributions by ML (1)

I We can learn exponential distributions by MLE. This gives a very intuitive
interpretation. MLE selects the parameter such that the expected
statistics of the model (a function of ~λ) are equal to the expected
statistics of the data.

I We want to maximize with respect to ~λ:

p(XN) = p({~x1, ~x2, · · · , ~xN}) =
∏N

i=1

e
~λ·~φ(~xi)

Z [~λ]
. This has a very nice form,

which occurs because the exponential distribution depends on the data ~xi
only in terms of the function ~φ(~xi), that is, the sufficient statistics.

I An important factor is that the normalization term Z [~λ] is a function of ~λ,

Z [~λ] =
∑
~x

e
~λ·~φ(~x)

I Claim:
∂ logZ [~λ]

∂~λ
=
∑
~x
~φ(~x)p(~x |~λ).

where the notation
∑
~x means the sum over states of a probability

distribution (e.g.,
∑
~x ~xp(~x) is the expected value). It could also be

written as an integral for the continuous case, but we will use the
summation notation.

Lecture: Learning Exponential Distributions

Learning Exponential Distributions by ML (2)
I Proof:

∂ logZ [~λ]

∂~λ
=

1

Z [~λ]

∂Z [~λ]

∂~λ
=

1

Z [~λ]

∑
~x
~φ(~x)e

~λ·~φ(~(x) =
∑
~x
~φ(~x)p(~x |~λ).

I Claim: For exponential distributions, ML corresponds to finding the value
of ~λ s.t. the model statistics are equal to the data statistics. This consists

in solving
∑
~x
~φ(~x)p(~x |~λ) =

1

N

∑N
i=1

~φ(~xi)

I E.g., for a Gaussian the expectation of the model statistics ~x are∫
d~x~x

1√
(2πσ2)d

exp{−(1/2σ2)(~x − ~µ)2} = ~µ. The data statistics are

1/N
∑N

i=1 ~xi .

I Proof: ML minimizes

− log
N∏
i=1

p(~xi |~λ) = −
N∑
i=1

log p(~xi |~λ).

For exponential distributions this is

F [~λ] = N logZ [~λ]−
N∑
i=1

~λ · ~φ(~xi).

Differentiating with respect to ~λ,
∂F

∂~λ
= N

∑
~x
~φ(~x)p(~x |~λ)−

∑N
i=1

~φ(~xi)

Lecture: Learning Exponential Distributions

Learning Exponential Distributions by ML (3)

I Note: for some exponential distributions it is possible to compute the
expected statistics of the model analytically to obtain a function
f (λ) =

∑
x φ(x)p(x |λ). In this case, MLE reduces to solving the equation

λ = f −1(
1

N

N∑
i=1

φ(xi)).

I But for other exponential distributions we cannot compute
∑

x φ(x)p(x |λ)

as a function of λ. Instead we use an algorithm to minimize F [~λ] with

respect to ~λ. Fortunately F [~λ] is a convex function of ~λ and hence has
only a single minimum.

Lecture: Learning Exponential Distributions

Convexity of F [~λ], Uniqueness of MLE, and Iterative Algorithms (1)

I It can be shown that F [~λ] is a convex function which is bounded below,

see figure (??). Convexity can be shown because the Hessian ∂2F

∂~λ∂~λ
is

positive semi-definite (requires using the Cauchy-Schwartz inequality).

This means that F [~λ] has a unique minimum and hence there is a unique
solution to MLE (for exponentials).

I The convexity of F [~λ] means that we can specify algorithms which
estimate λ̂ – for the cases where we cannot compute the model statistics
analytically (see earlier). These algorithms require only that we can

compute the expected statistics
∑
~x
~φ(~x)p(~x |~λ) for any value of ~λ, which

is a weaker requirement. (Also these methods can be extended to
approximate techniques if this summation can only be approximated –
beyond the scope of this course). These algorithms are guaranteed to

converge (due to the convexity of F [~λ]).

Lecture: Learning Exponential Distributions

Convexity of F [~λ], Uniqueness of MLE, and Iterative Algorithms (2)

I Algorithm 1: Steepest Descent:

I ~λt+1 = ~λt −∆{
∑
~x
~φ(~x)p(~x |~λt)− 1

N

∑N
i=1

~φ(~xi)}. Here ∆ is a ”time step”
constant.

I The continuous form of steepest descent is the differential equation
d~λ
dt

= − 1
N
∂F [~λ]

∂~λ
. We approximate d~λ

dt
by

~λt+1−~λt

∆
we compute

1
N
∂F [~λ]

∂~λ
=
∑
~x
~φ(~x)p(~x |~λ)− 1

N

∑N
i=1

~φ(~xi). Convergence of ”differential

steepest descent” follow by dF
dt

= ∂F [~λ]

∂~λ

d~λ
dt

(the chain rule) which yields

dF
dt

= − ∂F [~λ]

∂~λ
· ∂F [~λ]

∂~λ
≤ 0. So the algorithm converges to the unique (by

convexity) value of λ where ∂F [~λ]

∂~λ
= 0. The choice of ∆ is important. If ∆

is too large, then the discrete equation may poorly approximate the
continuous version, and so convergence may not occur. But if ∆ is too
small, then the algorithm can be very slow.

Lecture: Learning Exponential Distributions

Convexity of F [~λ], Uniqueness of MLE, and Iterative Algorithms (3)

I Algorithm 2: Generalized Iterative Scaling. This algorithm is similar to
steepest descent, but does not need a time step parameter ∆. This can be
derived from variational bounding and CCCP.

I ~λt+1 = ~λt − log
∑
~x

~φ(~x)p(~x |~λt) + log
1

N

N∑
i=1

~φ(~xi)

I Both algorithms are guaranteed to converge to the correct solution
independent of the starting point λ0 (provided ∆ is sufficiently small).

I Both algorithms require computing the quantity:
∑
~x
~φ(~x)p(~x | ~λt) for

each iteration step, which is difficult to perform numerically for some
distributions. In that case, stochastic sampling methods like Markov Chain
Monte Carlo (MCMC) may be used. We will return to this issue in later
lectures.

Lecture: Learning Exponential Distributions

Examples of learning Exponential Distributions: Gaussian Distribution

I The Gaussian distribution has a density function

p(x |~λ) =
1√
2πσ

e

−(x − µ)2

2σ2 .

Let its statistics be ~φ(x) = (x , x2). Note: in the general case with N
dimensions we would have N-dimensional vectors ~x and statistics
~φ(~x) = (~x , ~x~xT).

I The model statistics have to be equal to the data statistics:

∑
x

p(x |~λ)(x , x2) =
1

N

N∑
i=1

(xi , x
2
i).

Note: Really should be
∫
p(~x |~λ)dx for Gaussian.

I Left-hand side of the equation:
∫
p(x |~λ)x = µ and

∫
p(x |~λ)x2 = µ2 + σ2.

Hence, µ̂ =
1

N

∑N
i=1 xi and µ̂2 + σ̂2 =

1

N

∑N
i=1 x

2
i , so

σ̂2 =
1

N

∑N
i=1(xi − µ̂)2, which are the estimators for mean and variance.

Lecture: Learning Exponential Distributions

Examples of learning Exponential Distributions: Letter Distribution
I Let x be a letter of the alphabet, x ∈ A = {a, b, c, d , · · · , y , z}. The

probability of each letter can be represented by an exponential distribution
p(x) = (1/Z(λ)) exp{~λ · ~φ(x) where ~φ(x) = (δx,a, δx,b, · · · , δx,z), with
δx,a = 1 if x = a, δx,a = 0 otherwise. For instance, if the letter is c then
~φ(c) = (0, 0, 1, 0, 0, · · · , 0).

I For a given dataset of letters XN = {x1, · · · , xN}, the data statistics are:
1

N

∑N
i=1

~φ(xi) =

(
#a’s

N
,

#b’s

N
, · · · , #z’s

N

)
, where #a’s =

∑N
i=1 δxi ,a is

the number of a’s in the dataset. The parameters of the distribution are
~λ = (λa, λb, · · · , λz).

I Hence the exponential distribution representing the dataset is of form:

p(x |~λ) =
1

Z [~λ]
eλaδx,a+···+λzδx,z , where Z(~λ) = eλa + ...+ eλz .

I The expected value of the statistics can be computed to be:∑
x p(x |~λ)δx,a =

1

Z [~λ]
eλa . Hence the ML estimator, is obtained by solving

equations: eλa/(eλa + ...+ eλz) =
#a’s

N
, ..., eλz /(eλa + ...+ eλz) =

#z’s

N
.

Notice that there is an ambiguity in the λ’s (i.e. we can send
(λa, ..., λz) 7→ (λa + K , ..., λz + K) where K is a constant without altering
the solution. Hence we can resolve the ambiguity by setting
λ̂a = log #a’s− logN, λ̂b = log #b’s− logN, · · · , λ̂z = log #z’s− logN,

with Z [λ̂] =
#a’s

N
+

#b’s

N
+ · · ·+ #z’s

N
= 1.

Lecture: Learning Exponential Distributions

Kullback-Leibler and Approximate Distributions

I Here is an alternative viewpoint on ML learning of distributions which
gives a deeper understanding. In particular, it shows that MLE makes
sense if we have the wrong model – it gives the best approximation.

I First we define the Kullback-Leibler (KL) divergence D(f (.)||p(.|~λ))
between distributions f (.) and p(.|λ) defined by:

D(f (.)||p(.|~λ)) =
∑
~x f (~x) log f (~x)

p(~x|~λ)
.

I KL has the property that D(f ||p) = 0 ∀f , p D(f ||p) = 0, if, and

only if, f (x) = p(~x |~λ). In general the larger D(f ||p) the bigger the
difference between f (.) and p(.). For small D(f ||p) it can be shown that
D(f ||p) ≈ (1/2)

∑
x(f (x)− p(x))2. (This involves setting

p(x) = f (x) + ε(x) and doing a Taylor series expansion of D(F ||p)).

I So, D(f ||p) is a measure of the similarity between f (~x) and p(~x |~λ) (not
exactly, because it is not symmetric).

I We can write, D(f ||p) =
∑
~x f (~x) log f (~x)−

∑
~x f (~x) log p(~x |~λ), where:∑

~x f (~x) log f (~x) is independent of ~λ∑
~x f (~x) log p(~x |~λ) depends on ~λ

I Hence, minimizing D(f ||p) with respect to ~λ corresponds to minimizing

−
∑
~x f (~x) log p(~x |~λ).

Lecture: Learning Exponential Distributions

Geometric Interpretation: Information Geometry

I Information geometry (Shun’ichi Amari, 1980) applies methods of

differential geometry to probability distributions. p(~x |~θ) =
e
~λ·~ψ(~x)

Z [~λ]
defines

a sub-manifold of distributions, the ~λ’s being coordinates in the manifold.
Minimizing D(f ||p) w.r.t. ~λ is finding a distribution p closest to f in the
sub-manifold.

Lecture: Learning Exponential Distributions

Relation to ML
I Recall that MLE minimizes − 1

N

∑N
i=1 log p(xi |λ). Next, we define the

empirical distribution of the data {~xi : i = 1..N}. (This is a special case of
Parzen windows, later next lecture). f (x) = 1

N

∑N
i=1 I (x = xi). Here

I (x = xi) is the indicator function (= 1 if x = xi , = 0 otherwise).
I In this, minimizing the KL divergence corresponds to minimizing:

−
∑
~x

f (~x) log p(~x |~λ) = −
∑
~x

1

N

N∑
i=1

I (~x = ~xi) log p(~x |~λ) = − 1

N

N∑
i=1

log p(~xi |~λ),

which is the same criterion as ML. This proves the claim:
I Claim: ML estimation of ~λ is equivalent to minimizing D(f ||p(~x |~λ)) w.r.t.
~λ, where f (~x) is the empirical distribution of the data. Hence, we can
justify ML (for exponential distributions) as obtaining the distribution of

form
1

Z [~λ]
e
~λ·φ(~x), which is the best approximation of the data. ML is

meaningful even if the model is not the correct one, but only an
approximation.

I This also motivates the idea of model pursuit as a way to obtain better
approximations to the true distribution: (1) Start by doing ML on an

exponential distribution with statistic ~φ(~x). Get the best approximation.
(2) Get a better approximation by using more complex statistics, e.g,
~φ1(~x), ~φ2(~x) with parameters ~λ1, ~λ2. (3) Proceed by using incrementally
complex statistics. (See Della Pietra et al, S-C Zhu et al.)

Lecture: Learning Exponential Distributions

Letters example, alternative model
I Earlier, we discussed a dataset of single letters. In this subsection, let us

consider data which consists of pairs of letters:
XN = {(x1

1 , x
1
2), (x2

1 , x
2
2), · · · , (xN

1 , x
N
2)}. Let us define a first model which

assumes independence between letters: p(x1, x2) = p(x1)p(x2). The model

is exponential, as before: p(x) =
1

Z [~x]
e
~λ~φ(x).

I This gives best fit – in the Kullback-Leibler sense – to data, using
statistics ~φ1(~x1, ~x2) = ~φ(~x1) + ~φ(~x2). But we can use a better statistic
~φ2(x1, x2) which considers the pairwise frequencies of letters:

~φ(x1, x2) =


δx1,aδx2,a δx1,aδx2,b · · · δx1,aδx2,z

δx1,bδx2,a δx1,bδx2,b · · · δx1,bδx2,z

· · ·
δx1,zδx2,a δx1,zδx2,b · · · δx1,zδx2,z


This second model, with ~φ1(~x1, ~x2), gives a better fit to the data the first
model because it is better at capturing the pairwise regularities which exist
in English. E.g, in English ”qu” is frequent but ”qz” is impossible.

I Note: if we have more letters, e.g, X = {brown, smith, loves, hates,
ghost,. . . ,}, then higher order statistics are best. But higher order
statistics require more parameters – M-letters requires 26M parameters –
so we don’t usually have enough data. Shannon fit models like these to
estimate the entropy of English.

Lecture: Learning Exponential Distributions

Maximum Entropy (1)
I An alternative perspective of learning, motivated by the question – how to

get to distributions from statistics? Where do exponential distributions
come from? E.T. Jaynes claimed (1957) that exponential distributions
come from a maximum entropy principle. Suppose we measure some
statistics ~φ(~x), what distribution does it correspond to? This is an
ill-posed problem (the solution is not unique), so we have to make some
assumptions.

I We have data {~x1, · · · , ~xN} and we have statistics ~φ(~x) of the data. How

to justify a distribution like p(x) =
1

Z [~λ]
e
~λ·φ(~x)? And how to justify using

ML to get ~λ?
I The entropy of a distribution p(~x):

H[p] = −
∑
x

p(~x) log p(~x)

It is a measure of the amount of information obtained by observing a
sample ~x from a distribution p(~x).

I Shannon – Information Theory: Encode a signal ~x by a code of length
− log p(~x) – so that frequent signals (p(~x) big) have short codes and
infrequent signals (p(~x) small) have long codes. Then the expected code
length is −

∑
~x p(~x) log p(~x). Alternatively, the entropy is the amount of

information we expect to get from a signal ~x before we observe it – but we
know that the signal has been sampled from a distribution p(~x).

I Entropy was discovered, or invented, by physicists. It can be shown that
the entropy of a physical system always increases (with plausible
assumptions). This is called the Second Law of Thermodynamics. It
explains why a cup can break into many pieces (if you drop it), but a cup
can never be created by its pieces suddenly joining together.
Thermodynamics was discovered in the early 19th century, and shows that
it is impossible to design an engine that can create energy.

Lecture: Learning Exponential Distributions

Maximum Entropy (2)

I Example 1 : Suppose ~x can take N states: ~α1, ~α2, ..., ~αN . Let
p(~x = ~α1) = 1 p(~x = ~αj) = 0, j = 2, ...,N.

I Then the entropy of this distribution is zero, because we know that x has
to take value ~α, before we observe it. The entropy is
−0 log 0 + (N − 1){1log1} = 0, because 0 log 0 = 0 and 1 log 1 = 0 (take
the limit of x log x as x 7→ 0 and x 7→ 1). No information is gained by
observing the sample, because we know it can only be ~α.

I Example 2: p(~x = ~αj) = 1
N

, j = 1, ...,N. Then
H(p) = −N × 1

N
log(1

N
) = logN. This is the maximum entropy

distribution. Note that the maximum entropy distribution is uniform – all
states x are equally likely.

Lecture: Learning Exponential Distributions

Maximum Entropy (3)

I The Maximum Entropy Principle. Given statistics φ(~x) with observed

value ~ψ = 1
N

∑N
i=1 φ(~xi), choose the distribution p(~x) to maximize the

entropy subject to constraints (Jaynes, 1957):

−
∑
~x

p(~x) log p(~x) + µ{
∑
~x

p(~x)− 1}+ ~λ · {
∑
~x

p(~x)φ(~x)− ~ψ}

where µ, λ are lagrange multipliers which impose the constraints on p(~x):

I We differentiate with respect to p(~x), δ
δp(~x)

, and obtain:

− log p(~x)− 1 + µ+ ~λ · ~φ(~x) = 0.

I This gives a solution of form p(~x |~λ) = exp
~λ·~φ(~x)

Z [~λ]
, where the parameters

~λ,Z [~λ] are chosen to satisfy the constraints:∑
~x p(~x) = 1,⇒ Z [~λ] =

∑
~x exp

~λ·~φ(~x)∑
~x p(~x)φ(~x) = ~ψ,⇒ ~λ is chosen s.t.

∑
~x p(~x |~λ)φ(~x) = ~ψ

I Hence the maximum entropy principle obtains exponential distributions
from statistics and estimates their parameters consistent with maximum
likelihood. So the maximum entropy principle is equivalent to choosing an
exponential family of distributions and estimating the λ parameters by
maximum likelihood.

Lecture: Learning Exponential Distributions

The Probability of the Data and the Entropy of the Distribution
I Suppose we have data {~xi : i = 1..N}, and fit a probability distribution

p(~x |~λ) by ML to get the parameters ~̂λ. The probability of the data, with

the best estimate (~̂λ) is
∏N

i=1 P(~xi |~̂λ) = exp
{
~̂λ ·
∑N

i=1
~φ(~xi)− N logZ [~̂λ]

}
I The entropy of p(~x |~̂λ) is −

∑
vecx p(~x |~̂λ) log p(~x |~̂λ) =

log ~Z [~̂λ]−
∑
~x
~̂λ~φ(~x)p(~x |~̂λ) = log ~Z [~̂λ]− 1

N

∑N
i=1
~̂λ~φ(~xi).

I The probability of the data, given the estimated parameter~̂λ is∏N
i=1 p(~xi |̂~λ) and hence it can be expressed in terms of the entropy of

p(~x |~̂λ). This gives:
∏N

i=1 p(~xi |̂~λ) = exp{−NH[p(~x |~̂λ)]}. So if the entropy

of p(~x |~̂λ) is large then the model does not describe the data well – it
cannot predict it and there is a lot of uncertainty. Two related measures of
the model are its entropy and the probability of the data given the model.

I This motivates Shannon’s search for the entropy of English. It is an
example of model pursuit. Shannon starts with unary statistics –
frequency of letters – to fit the data of English texts, and estimates the
entropy. Then he uses more complex statistics – pairwise frequencies –
and entropy decreases, which means a better fit. Shannon used this type
of analysis to estimate the entropy of English and compared it to the
entropy estimated by humans (by giving them sequences of letters and
counting how many times they correctly predicted the next letter).

Lecture: Learning Exponential Distributions

Back to Vision

I S-C Zhu had a couple of papers in the 1990’s which used exponential
distributions. One paper (handout) modelled texture where the ststistics
were the histograms of Gabor filters and model pursuit was used to select
which Gabors to use (i.e. which statistics to use). This worked fairly well
for homogeneous texture (but simpler image-patch models by Efros and
Freeman were as effective).

I Another paper showed that the weak membrane model (the weak prior)
could be obtained from the measured statistics of the first order
derivatives of the image. This was conceptually very interesting. But it
also showed limitations of the weak membrane model since it did not
capture the statistics of the higher order derivatives (which are also very
similar between images).

I In both papers, learning the parameters of the exponential models required
using MCMC algorithms to compute the expected statistics of the models
in order to match them to the statistics of the data (because the models
were two dimensional). The Della Pietra paper (handout) also did model
pursuit but their application was language so they could use dynamic
programming algorithms for inference.

