Learning Exponential Distributions

- Learning probability distributions by Maximum Likelihood (ML)
- Exponential distributions, sufficient statistics, and ML learning
- Kullback-Leibler divergence, learning “approximate” distributions
- Advanced topics: Maximum Entropy Principle, Model Pursuit; Model Selection
- This lecture deals with learning probability distributions like \(p(x) \), \(p(x, y) \). This can be applied to the classification task – i.e. learn the conditional probabilities \(p(x|y = 1) \), \(p(x|y = -1) \), \(p(y) \). Then apply Bayes Decision Theory to obtain a decision rule.
Firstly we describe basic ML for a parametric probability model. Secondly we introduce *exponential models* and *sufficient statistics* which give a general form for representing probability models. ML has a very simple and intuitive interpretation for this case (and yields a simple decision rule for binary classification based on the log-likelihood rule).

Thirdly, we re-interpret ML in terms of making the "best" approximation to the data. This has a nice interpretation within *information geometry*. This explains why ML makes sense if you have the wrong model. It also leads to a strategy where you "pursue" the probability model within a space of probability models.

Finally, as an advanced topic, we describe the maximum entropy principle which enables us to derive the probability models from their statistics and gives another perspective. (It is surprising that such a simple idea as ML leads to these rich interpretations.)
The basic idea of ML was introduced a century ago by Fisher.

Assume a parameterized model for the distribution of form $p(x \mid \theta)$, θ : model parameter. For example, a Gaussian distribution:

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \theta = (\mu, \sigma).$$

We also assume that the data $\mathcal{X}_N = \{x_1, \ldots, x_N\}$ is independent identically distributed (iid) from an (unknown) distribution $p(x)$. Using the product for independence, $p(\mathcal{X}_N) = p(x_1, \ldots, x_N) = \prod_{i=1}^{N} p(x_i)$. Now assume that $p(x)$ is of form $p(x|\theta)$ for some θ which we have to estimate.

The Maximum Likelihood Estimator is:

$$\hat{\theta} = \arg \max_{\theta} p(x_1, \ldots, x_N \mid \theta)$$

$$= \arg \min_{\theta} \{-\log p(x_1, \ldots, x_N \mid \theta)\}.$$

Equivalently, $p(x_1, \ldots, x_N \mid \hat{\theta}) \geq p(x_1, \ldots, x_N \mid \theta)$, for all θ.

Learning probability distributions by ML (1)
Example: Gaussian distribution.

\[- \log p(x_1, \ldots, x_N \mid \mu, \sigma) = - \sum_{i=1}^{N} \log p(x_i \mid \mu, \sigma)\]
\[= \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} + \sum_{i=1}^{N} \log \sqrt{2\pi\sigma}\]

To estimate the parameters \(\theta = (\hat{\mu}, \hat{\sigma})\) we differentiate w.r.t. \(\mu, \sigma\), i.e., maximize \(\log p(X_N \mid \mu, \sigma)\), which gives:

\[\frac{\partial}{\partial \mu} \log p(x_1, \ldots, x_N \mid \mu, \sigma) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu)\]

\[\frac{\partial}{\partial \sigma} \log p(x_1, \ldots, x_N \mid \mu, \sigma) = \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 - \frac{N}{\sigma}\]

The solution occurs at: \(\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i\), \(\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2\). Note that the Gaussian is a special case because it gives a simple analytic formula for \(\hat{\mu}, \hat{\sigma}^2\).
Learning by ML

This illustrates the ML estimator. What happens with the Maximum a Posteriori (MAP) estimator? If we use a prior \(p(\theta) \), we have:

\[
\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} \frac{p(\mathcal{X}_N|\theta)p(\theta)}{p(\mathcal{X}_N)} \quad \text{(note: } p(\mathcal{X}_N) \text{ is independent of } \theta) \\
= \arg \max_{\theta} \{ \log p(\mathcal{X}_N|\theta) + \log p(\theta) \} \\
= \arg \max_{\theta} \left\{ \sum_{i=1}^{N} \log p(x_i|\theta) + \log p(\theta) \right\},
\]

(11)

where we have \(N \) data terms and 1 prior term, \(\log p(\theta) \).

If \(N \) is large, then the prior will have little effect, except in special cases. For example, if we are tossing a coin, we may start with a prior (fair coin, or some other), but after a large number of tosses the prior doesn’t have much effect, and what really matters is the number of heads and tails obtained.

We can also use loss functions and all the machinery of Bayes Decision Theory. In practice, loss functions are often not used when learning probability distributions – but they are used for learning classifiers (later in the course).
Exponential Distributions: Sufficient Statistics

- Exponential distributions are a general way for representing probability distributions \(p(.) \) in terms of sufficient statistics \(\phi(.) \) and parameters \(\lambda \).
- The general form of an exponential distribution is:
 \[
p(\vec{x}|\vec{\lambda}) = \frac{1}{Z[\vec{\lambda}]} \exp\{\vec{\lambda} \cdot \phi(\vec{x})\},
\]
 where \(Z[\vec{\lambda}] \) is the normalization factor, \(\vec{\lambda} = (\lambda_1, \lambda_2, ..., \lambda_M) \) are the parameters and \(\phi(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), ..., \phi_M(\vec{x})) \) are the statistics. The distribution depends on the data \(\vec{x} \) only by the function \(\phi(\vec{x}) \), hence \(\phi(.) \) is called the sufficient statistics.

- Almost every named distribution can be expressed as an exponential distribution. (If you allow hidden variables – see later in the course).

- Example: For a Gaussian distribution in 1 dimension: \(\phi(x) = (x, x^2) \)
 \[
 \vec{\lambda} = (\lambda_1, \lambda_2), \quad p(\vec{x}|\vec{\lambda}) = \frac{1}{Z[\vec{\lambda}]} e^{\lambda_1 x + \lambda_2 x^2}.
 \]
 Compare this to \(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \).
 Translation:
 \[
 \begin{align*}
 \lambda_2 &= -\frac{1}{2\sigma^2} \\
 \lambda_1 &= \frac{\mu}{\sigma^2} \\
 Z[\vec{\lambda}] &= \sqrt{2\pi}\sigma \exp \frac{\mu^2}{2\sigma^2}
 \end{align*}
 \]

- Similar translations into exponential distribution can be made for Poisson, Beta, Dirichlet, and almost all distributions (some require hidden/latent/missing variables – see later in the course).
We can learn exponential distributions by MLE. This gives a very intuitive interpretation. MLE selects the parameter such that the expected statistics of the model (a function of $\vec{\lambda}$) are equal to the expected statistics of the data.

We want to maximize with respect to $\vec{\lambda}$:

$$p(\vec{x}_N) = p(\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_N\}) = \prod_{i=1}^{N} \frac{e^{\vec{\lambda} \cdot \vec{\phi}(\vec{x}_i)}}{Z[\vec{\lambda}]}.$$ This has a very nice form, which occurs because the exponential distribution depends on the data \vec{x}_i only in terms of the function $\vec{\phi}(\vec{x}_i)$, that is, the sufficient statistics.

An important factor is that the normalization term $Z[\vec{\lambda}]$ is a function of $\vec{\lambda}$,

$$Z[\vec{\lambda}] = \sum_{\vec{x}} e^{\vec{\lambda} \cdot \vec{\phi}(\vec{x})}$$

Claim: \[\frac{\partial \log Z[\vec{\lambda}]}{\partial \vec{\lambda}} = \sum_{\vec{x}} \vec{\phi}(\vec{x}) p(\vec{x}|\vec{\lambda}). \]

where the notation $\sum_{\vec{x}}$ means the sum over states of a probability distribution (e.g., $\sum_{\vec{x}} \vec{x} p(\vec{x})$ is the expected value). It could also be written as an integral for the continuous case, but we will use the summation notation.
Learning Exponential Distributions by ML (2)

▶ Proof:
\[
\frac{\partial \log Z[\vec{\lambda}]}{\partial \vec{\lambda}} = \frac{1}{Z[\vec{\lambda}]} \frac{\partial Z[\vec{\lambda}]}{\partial \vec{\lambda}} = \frac{1}{Z[\vec{\lambda}]} \sum_{\vec{x}} \vec{\phi}(\vec{x}) e^{\vec{\lambda} \cdot \vec{\phi}(\vec{x})} = \sum_{\vec{x}} \vec{\phi}(\vec{x}) p(\vec{x}|\vec{\lambda}).
\]

▶ Claim: For exponential distributions, ML corresponds to finding the value of \(\vec{\lambda}\) s.t. the model statistics are equal to the data statistics. This consists in solving \(\sum_{\vec{x}} \vec{\phi}(\vec{x}) p(\vec{x}|\vec{\lambda}) = \frac{1}{N} \sum_{i=1}^{N} \vec{\phi}(\vec{x}_i)\)

▶ E.g., for a Gaussian the expectation of the model statistics \(\vec{x}\) are
\[
\int d\vec{x} \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp\{-(1/2\sigma^2)(\vec{x} - \vec{\mu})^2\} = \vec{\mu}. \quad \text{The data statistics are } \frac{1}{N} \sum_{i=1}^{N} \vec{x}_i.
\]

▶ Proof: ML minimizes
\[
-\log \prod_{i=1}^{N} p(\vec{x}_i|\vec{\lambda}) = -\sum_{i=1}^{N} \log p(\vec{x}_i|\vec{\lambda}).
\]

For exponential distributions this is
\[
F[\vec{\lambda}] = N \log Z[\vec{\lambda}] - \sum_{i=1}^{N} \vec{\lambda} \cdot \vec{\phi}(\vec{x}_i).
\]

Differentiating with respect to \(\vec{\lambda}\),
\[
\frac{\partial F}{\partial \vec{\lambda}} = N \sum_{\vec{x}} \vec{\phi}(\vec{x}) p(\vec{x}|\vec{\lambda}) - \sum_{i=1}^{N} \vec{\phi}(\vec{x}_i)
\]
Note: for some exponential distributions it is possible to compute the expected statistics of the model analytically to obtain a function \(f(\lambda) = \sum_x \phi(x)p(x|\lambda) \). In this case, MLE reduces to solving the equation

\[
\lambda = f^{-1}(\frac{1}{N} \sum_{i=1}^{N} \phi(x_i)).
\]

But for other exponential distributions we cannot compute \(\sum_x \phi(x)p(x|\lambda) \) as a function of \(\lambda \). Instead we use an algorithm to minimize \(F[\tilde{\lambda}] \) with respect to \(\tilde{\lambda} \). Fortunately \(F[\tilde{\lambda}] \) is a convex function of \(\tilde{\lambda} \) and hence has only a single minimum.
It can be shown that $F[\vec{\lambda}]$ is a convex function which is bounded below, see figure (??). Convexity can be shown because the Hessian $\frac{\partial^2 F}{\partial \vec{\lambda} \partial \vec{\lambda}}$ is positive semi-definite (requires using the Cauchy-Schwartz inequality). This means that $F[\vec{\lambda}]$ has a unique minimum and hence there is a unique solution to MLE (for exponentials).

The convexity of $F[\vec{\lambda}]$ means that we can specify algorithms which estimate $\hat{\lambda}$ – for the cases where we cannot compute the model statistics analytically (see earlier). These algorithms require only that we can compute the expected statistics $\sum_\vec{x} \phi(\vec{x}) p(\vec{x}|\vec{\lambda})$ for any value of $\vec{\lambda}$, which is a weaker requirement. (Also these methods can be extended to approximate techniques if this summation can only be approximated – beyond the scope of this course). These algorithms are guaranteed to converge (due to the convexity of $F[\vec{\lambda}]$).
Algorithm 1: Steepest Descent:

\[\tilde{\lambda}^{t+1} = \tilde{\lambda}^t - \Delta \left\{ \sum_{\tilde{x}} \tilde{\phi}(\tilde{x}) p(\tilde{x}|\tilde{\lambda}^t) - \frac{1}{N} \sum_{i=1}^{N} \tilde{\phi}(\tilde{x}_i) \right\} \]

Here \(\Delta \) is a "time step" constant.

The continuous form of steepest descent is the differential equation

\[\frac{d\tilde{\lambda}}{dt} = -\frac{1}{N} \frac{\partial F[\tilde{\lambda}]}{\partial \tilde{\lambda}} \]

We approximate \(\frac{d\tilde{\lambda}}{dt} \) by \(\frac{\tilde{\lambda}^{t+1} - \tilde{\lambda}^t}{\Delta} \) we compute:

\[\frac{1}{N} \frac{\partial F[\tilde{\lambda}]}{\partial \tilde{\lambda}} = \sum_{\tilde{x}} \tilde{\phi}(\tilde{x}) p(\tilde{x}|\tilde{\lambda}) - \frac{1}{N} \sum_{i=1}^{N} \tilde{\phi}(\tilde{x}_i) \]

Convergence of "differential steepest descent" follow by \(\frac{dF}{dt} = \frac{\partial F[\tilde{\lambda}]}{\partial \tilde{\lambda}} \frac{d\tilde{\lambda}}{dt} \) (the chain rule) which yields

\[\frac{dF}{dt} = -\frac{\partial F[\tilde{\lambda}]}{\partial \tilde{\lambda}} \cdot \frac{\partial F[\tilde{\lambda}]}{\partial \tilde{\lambda}} \leq 0 \]

So the algorithm converges to the unique (by convexity) value of \(\lambda \) where \(\frac{\partial F[\tilde{\lambda}]}{\partial \tilde{\lambda}} = 0 \). The choice of \(\Delta \) is important. If \(\Delta \) is too large, then the discrete equation may poorly approximate the continuous version, and so convergence may not occur. But if \(\Delta \) is too small, then the algorithm can be very slow.
Algorithm 2: Generalized Iterative Scaling. This algorithm is similar to steepest descent, but does not need a time step parameter Δ. This can be derived from variational bounding and CCCP.

$$\tilde{\lambda}^{t+1} = \tilde{\lambda}^t - \log \sum_{\vec{x}} \phi(\vec{x}) p(\vec{x} | \tilde{\lambda}^t) + \log \frac{1}{N} \sum_{i=1}^{N} \phi(\vec{x}_i)$$

Both algorithms are guaranteed to converge to the correct solution independent of the starting point λ^0 (provided Δ is sufficiently small).

Both algorithms require computing the quantity: $\sum_{\vec{x}} \phi(\vec{x}) p(\vec{x} | \tilde{\lambda}^t)$ for each iteration step, which is difficult to perform numerically for some distributions. In that case, stochastic sampling methods like Markov Chain Monte Carlo (MCMC) may be used. We will return to this issue in later lectures.
Examples of learning Exponential Distributions: Gaussian Distribution

- The Gaussian distribution has a density function

\[p(x|\vec{\lambda}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}}. \]

Let its statistics be \(\vec{\phi}(x) = (x, x^2) \). Note: in the general case with \(N \) dimensions we would have \(N \)-dimensional vectors \(\vec{x} \) and statistics \(\vec{\phi}(\vec{x}) = (\vec{x}, \vec{x}\vec{x}^T) \).

- The model statistics have to be equal to the data statistics:

\[\sum_x p(x|\vec{\lambda})(x, x^2) = \frac{1}{N} \sum_{i=1}^{N} (x_i, x_i^2). \]

Note: Really should be \(\int p(\vec{x}|\vec{\lambda})d\vec{x} \) for Gaussian.

- Left-hand side of the equation: \(\int p(x|\vec{\lambda})x = \mu \) and \(\int p(x|\vec{\lambda})x^2 = \mu^2 + \sigma^2 \).

Hence, \(\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i \) and \(\hat{\mu}^2 + \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \), so

\[\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2, \]

which are the estimators for mean and variance.
Examples of learning Exponential Distributions: Letter Distribution

- Let x be a letter of the alphabet, $x \in \mathcal{A} = \{a, b, c, d, \ldots, y, z\}$. The probability of each letter can be represented by an exponential distribution $p(x) = (1/Z(\lambda)) \exp\{-\lambda \cdot \phi(x)\}$ where $\phi(x) = (\delta_{x,a}, \delta_{x,b}, \ldots, \delta_{x,z})$, with $\delta_{x,a} = 1$ if $x = a$, $\delta_{x,a} = 0$ otherwise. For instance, if the letter is c then $\phi(c) = (0, 0, 1, 0, 0, \ldots, 0)$.

- For a given dataset of letters $X_N = \{x_1, \ldots, x_N\}$, the data statistics are:
 \[
 \frac{1}{N} \sum_{i=1}^{N} \phi(x_i) = \left(\frac{#a's}{N}, \frac{#b's}{N}, \ldots, \frac{#z's}{N} \right),
 \]
 where $#a's = \sum_{i=1}^{N} \delta_{x_i,a}$ is the number of a's in the dataset. The parameters of the distribution are $\lambda = (\lambda_a, \lambda_b, \ldots, \lambda_z)$.

- Hence the exponential distribution representing the dataset is of form:
 \[
 p(x|\lambda) = \frac{1}{Z[\lambda]} e^{\lambda_a \delta_{x,a} + \cdots + \lambda_z \delta_{x,z}},
 \]
 where $Z[\lambda] = e^{\lambda_a} + \cdots + e^{\lambda_z}$.

- The expected value of the statistics can be computed to be:
 \[
 \sum_x p(x|\lambda)\delta_{x,a} = \frac{1}{Z[\lambda]} e^{\lambda_a}.\]
 Hence the ML estimator, is obtained by solving equations:
 \[
 e^{\lambda_a}/(e^{\lambda_a} + \cdots + e^{\lambda_z}) = \frac{#a's}{N}, \ldots, e^{\lambda_z}/(e^{\lambda_a} + \cdots + e^{\lambda_z}) = \frac{#z's}{N}.
 \]
 Notice that there is an ambiguity in the λ's (i.e. we can send $(\lambda_a, \ldots, \lambda_z) \mapsto (\lambda_a + K, \ldots, \lambda_z + K)$ where K is a constant without altering the solution. Hence we can resolve the ambiguity by setting $\hat{\lambda}_a = \log #a's - \log N$, $\hat{\lambda}_b = \log #b's - \log N$, \ldots, $\hat{\lambda}_z = \log #z's - \log N$, with $Z[\hat{\lambda}] = \frac{#a's}{N} + \frac{#b's}{N} + \cdots + \frac{#z's}{N} = 1.$
Here is an alternative viewpoint on ML learning of distributions which gives a deeper understanding. In particular, it shows that MLE makes sense if we have the wrong model – it gives the best approximation.

First we define the Kullback-Leibler (KL) divergence $D(f(.)||p(.|\vec{\lambda}))$ between distributions $f(.)$ and $p(.|\lambda)$ defined by:

$$D(f(.)||p(.|\vec{\lambda})) = \sum_{\vec{x}} f(\vec{x}) \log \frac{f(\vec{x})}{p(\vec{x}|\vec{\lambda})}.$$

KL has the property that $D(f||p) \geq 0 \quad \forall f, p \quad D(f||p) = 0, \text{ if, and only if, } f(x) = p(\vec{x}|\vec{\lambda})$. In general the larger $D(f||p)$ the bigger the difference between $f(.)$ and $p(.)$. For small $D(f||p)$ it can be shown that $D(f||p) \approx (1/2) \sum_x (f(x) - p(x))^2$. (This involves setting $p(x) = f(x) + \epsilon(x)$ and doing a Taylor series expansion of $D(F||p)$).

So, $D(f||p)$ is a measure of the similarity between $f(\vec{x})$ and $p(\vec{x}|\vec{\lambda})$ (not exactly, because it is not symmetric).

We can write, $D(f||p) = \sum_{\vec{x}} f(\vec{x}) \log f(\vec{x}) - \sum_{\vec{x}} f(\vec{x}) \log p(\vec{x}|\vec{\lambda})$, where:

- $\sum_{\vec{x}} f(\vec{x}) \log f(\vec{x})$ is independent of $\vec{\lambda}$
- $\sum_{\vec{x}} f(\vec{x}) \log p(\vec{x}|\vec{\lambda})$ depends on $\vec{\lambda}$

Hence, minimizing $D(f||p)$ with respect to $\vec{\lambda}$ corresponds to minimizing $-\sum_{\vec{x}} f(\vec{x}) \log p(\vec{x}|\vec{\lambda})$.

Information geometry (Shun'ichi Amari, 1980) applies methods of differential geometry to probability distributions. $p(\vec{x}|\vec{\theta}) = \frac{e^{\vec{\lambda} \cdot \vec{\psi}(\vec{x})}}{Z[\vec{\lambda}]}$ defines a sub-manifold of distributions, the $\vec{\lambda}$’s being coordinates in the manifold. Minimizing $D(f||p)$ w.r.t. $\vec{\lambda}$ is finding a distribution p closest to f in the sub-manifold.
Relation to ML

Recall that MLE minimizes $-\frac{1}{N} \sum_{i=1}^{N} \log p(x_i|\lambda)$. Next, we define the empirical distribution of the data $\{\vec{x}_i : i = 1..N\}$. (This is a special case of Parzen windows, later next lecture). $f(x) = \frac{1}{N} \sum_{i=1}^{N} I(x = x_i)$. Here $I(x = x_i)$ is the indicator function ($= 1$ if $x = x_i$, = 0 otherwise).

In this, minimizing the KL divergence corresponds to minimizing:

$$-\sum_{\vec{x}} f(\vec{x}) \log p(\vec{x}|\vec{\lambda}) = -\sum_{\vec{x}} \frac{1}{N} \sum_{i=1}^{N} I(\vec{x} = \vec{x}_i) \log p(\vec{x}|\vec{\lambda}) = -\frac{1}{N} \sum_{i=1}^{N} \log p(\vec{x}_i|\vec{\lambda}),$$

which is the same criterion as ML. This proves the claim:

Claim: ML estimation of $\vec{\lambda}$ is equivalent to minimizing $D(f||p(\vec{x}|\vec{\lambda}))$ w.r.t. $\vec{\lambda}$, where $f(\vec{x})$ is the empirical distribution of the data. Hence, we can justify ML (for exponential distributions) as obtaining the distribution of form $\frac{1}{Z[\vec{\lambda}]} e^{\vec{\lambda} \cdot \phi(\vec{x})}$, which is the best approximation of the data. ML is meaningful even if the model is not the correct one, but only an approximation.

This also motivates the idea of model pursuit as a way to obtain better approximations to the true distribution: (1) Start by doing ML on an exponential distribution with statistic $\vec{\phi}(\vec{x})$. Get the best approximation. (2) Get a better approximation by using more complex statistics, e.g, $\vec{\phi}_1(\vec{x}), \vec{\phi}_2(\vec{x})$ with parameters $\vec{\lambda}_1, \vec{\lambda}_2$. (3) Proceed by using incrementally complex statistics. (See Della Pietra et al, S-C Zhu et al.)
Letters example, alternative model

▶ Earlier, we discussed a dataset of single letters. In this subsection, let us consider data which consists of pairs of letters: \(\mathcal{X}_N = \{(x_1^1, x_2^1), (x_1^2, x_2^2), \ldots, (x_1^N, x_2^N)\} \). Let us define a first model which assumes independence between letters: \(p(x_1, x_2) = p(x_1)p(x_2) \). The model is exponential, as before: \(p(x) = \frac{1}{Z[\vec{x}]} e^{\vec{x} \vec{\phi}(x)} \).

▶ This gives best fit – in the Kullback-Leibler sense – to data, using statistics \(\vec{\phi}_1(\vec{x}_1, \vec{x}_2) = \vec{\phi}(\vec{x}_1) + \vec{\phi}(\vec{x}_2) \). But we can use a better statistic \(\vec{\phi}_2(x_1, x_2) \) which considers the pairwise frequencies of letters:

\[
\vec{\phi}(x_1, x_2) = \begin{pmatrix}
\delta_{x_1, a} \delta_{x_2, a} & \delta_{x_1, a} \delta_{x_2, b} & \cdots & \delta_{x_1, a} \delta_{x_2, z} \\
\delta_{x_1, b} \delta_{x_2, a} & \delta_{x_1, b} \delta_{x_2, b} & \cdots & \delta_{x_1, b} \delta_{x_2, z} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{x_1, z} \delta_{x_2, a} & \delta_{x_1, z} \delta_{x_2, b} & \cdots & \delta_{x_1, z} \delta_{x_2, z}
\end{pmatrix}
\]

This second model, with \(\vec{\phi}_1(\vec{x}_1, \vec{x}_2) \), gives a better fit to the data the first model because it is better at capturing the pairwise regularities which exist in English. E.g, in English "qu" is frequent but "qz" is impossible.

▶ Note: if we have more letters, e.g, \(\mathcal{X} = \{\text{brown, smith, loves, hates, ghost, . . . ,}\} \), then higher order statistics are best. But higher order statistics require more parameters – \(M \)-letters requires \(26^M \) parameters – so we don’t usually have enough data. Shannon fit models like these to estimate the entropy of English.
Maximum Entropy (1)

▶ An alternative perspective of learning, motivated by the question – how to get to distributions from statistics? Where do exponential distributions come from? E.T. Jaynes claimed (1957) that exponential distributions come from a maximum entropy principle. Suppose we measure some statistics \(\vec{\phi}(\vec{x}) \), what distribution does it correspond to? This is an ill-posed problem (the solution is not unique), so we have to make some assumptions.

▶ We have data \(\{\vec{x}_1, \cdots, \vec{x}_N\} \) and we have statistics \(\vec{\phi}(\vec{x}) \) of the data. How to justify a distribution like \(p(\vec{x}) = \frac{1}{Z[\vec{\lambda}]} e^{\vec{\lambda} \cdot \vec{\phi}(\vec{x})} \)? And how to justify using ML to get \(\vec{\lambda} \)?

▶ The entropy of a distribution \(p(\vec{x}) \):

\[
H[p] = - \sum_{\vec{x}} p(\vec{x}) \log p(\vec{x})
\]

It is a measure of the amount of information obtained by observing a sample \(\vec{x} \) from a distribution \(p(\vec{x}) \).

▶ Shannon – Information Theory: Encode a signal \(\vec{x} \) by a code of length \(- \log p(\vec{x}) \) – so that frequent signals (\(p(\vec{x}) \) big) have short codes and infrequent signals (\(p(\vec{x}) \) small) have long codes. Then the expected code length is \(- \sum_{\vec{x}} p(\vec{x}) \log p(\vec{x}) \). Alternatively, the entropy is the amount of information we expect to get from a signal \(\vec{x} \) before we observe it – but we know that the signal has been sampled from a distribution \(p(\vec{x}) \).
Example 1: Suppose \(\vec{x} \) can take \(N \) states: \(\vec{\alpha}_1, \vec{\alpha}_2, \ldots, \vec{\alpha}_N \). Let
\[
p(\vec{x} = \vec{\alpha}_1) = 1 \quad p(\vec{x} = \vec{\alpha}_j) = 0, \quad j = 2, \ldots, N.
\]
Then the entropy of this distribution is zero, because we know that \(x \) has to take value \(\vec{\alpha} \), before we observe it. The entropy is
\[
-\sum_{j=1}^{N} p(\vec{x} = \vec{\alpha}_j) \log p(\vec{x} = \vec{\alpha}_j) = 0,
\]
because \(0 \log 0 = 0 \) and \(1 \log 1 = 0 \) (take the limit of \(x \log x \) as \(x \to 0 \) and \(x \to 1 \)). No information is gained by observing the sample, because we know it can only be \(\vec{\alpha} \).

Example 2: \(p(\vec{x} = \vec{\alpha}_j) = \frac{1}{N}, \quad j = 1, \ldots, N \). Then
\[
H(p) = -N \times \frac{1}{N} \log \left(\frac{1}{N} \right) = \log N.
\]
This is the maximum entropy distribution. Note that the maximum entropy distribution is uniform – all states \(x \) are equally likely.
The Maximum Entropy Principle. Given statistics $\phi(\vec{x})$ with observed value $\vec{\psi} = \frac{1}{N} \sum_{i=1}^{N} \phi(\vec{x}_i)$, choose the distribution $p(\vec{x})$ to maximize the entropy subject to constraints (Jaynes, 1957):

$$- \sum_{\vec{x}} p(\vec{x}) \log p(\vec{x}) + \mu \{ \sum_{\vec{x}} p(\vec{x}) - 1 \} + \vec{\lambda} \cdot \{ \sum_{\vec{x}} p(\vec{x}) \phi(\vec{x}) - \vec{\psi} \}$$

where μ, λ are lagrange multipliers which impose the constraints on $p(\vec{x})$:

- We differentiate with respect to $p(\vec{x})$, $\frac{\delta}{\delta p(\vec{x})}$, and obtain:

$$- \log p(\vec{x}) - 1 + \mu + \vec{\lambda} \cdot \phi(\vec{x}) = 0.$$

- This gives a solution of form $p(\vec{x}|\vec{\lambda}) = \frac{\exp^{\vec{\lambda} \cdot \phi(\vec{x})}}{Z[\vec{\lambda}]}$, where the parameters $\vec{\lambda}, Z[\vec{\lambda}]$ are chosen to satisfy the constraints:

 $\sum_{\vec{x}} p(\vec{x}) = 1, \Rightarrow Z[\vec{\lambda}] = \sum_{\vec{x}} \exp^{\vec{\lambda} \cdot \phi(\vec{x})}$

 $\sum_{\vec{x}} p(\vec{x}) \phi(\vec{x}) = \vec{\psi}, \Rightarrow \vec{\lambda}$ is chosen s.t. $\sum_{\vec{x}} p(\vec{x}|\vec{\lambda}) \phi(\vec{x}) = \vec{\psi}$

- Hence the maximum entropy principle obtains exponential distributions from statistics and estimates their parameters consistent with maximum likelihood. So the maximum entropy principle is equivalent to choosing an exponential family of distributions and estimating the λ parameters by maximum likelihood.
The Probability of the Data and the Entropy of the Distribution

▶ Suppose we have data \(\{ \vec{x}_i : i = 1..N \} \), and fit a probability distribution \(p(\vec{x}|\vec{\lambda}) \) by ML to get the parameters \(\hat{\vec{\lambda}} \). The probability of the data, with the best estimate (\(\hat{\vec{\lambda}} \)) is \(\prod_{i=1}^{N} P(\vec{x}_i|\hat{\vec{\lambda}}) = \exp \left\{ \hat{\vec{\lambda}} \cdot \sum_{i=1}^{N} \vec{\phi}(\vec{x}_i) - N \log Z[\hat{\vec{\lambda}}] \right\} \)

▶ The entropy of \(p(\vec{x}|\hat{\vec{\lambda}}) \) is \(- \sum_{\vec{\phi}} p(\vec{x}|\hat{\vec{\lambda}}) \log p(\vec{x}|\hat{\vec{\lambda}}) = \log Z[\hat{\vec{\lambda}}] - \sum_{\vec{x}} \hat{\vec{\lambda}} \vec{\phi}(\vec{x}) p(\vec{x}|\hat{\vec{\lambda}}) = \log Z[\hat{\vec{\lambda}}] - \frac{1}{N} \sum_{i=1}^{N} \hat{\vec{\lambda}} \vec{\phi}(\vec{x}_i) \).

▶ The probability of the data, given the estimated parameter \(\hat{\vec{\lambda}} \) is \(\prod_{i=1}^{N} p(\vec{x}_i|\hat{\vec{\lambda}}) \) and hence it can be expressed in terms of the entropy of \(p(\vec{x}|\hat{\vec{\lambda}}) \). This gives: \(\prod_{i=1}^{N} p(\vec{x}_i|\hat{\vec{\lambda}}) = \exp \{-N \mathcal{H}[p(\vec{x}|\hat{\vec{\lambda}})]\} \). So if the entropy of \(p(\vec{x}|\hat{\vec{\lambda}}) \) is large then the model does not describe the data well – it cannot predict it and there is a lot of uncertainty. Two related measures of the model are its entropy and the probability of the data given the model.

▶ This motivates Shannon’s search for the entropy of English. It is an example of model pursuit. Shannon starts with unary statistics – frequency of letters – to fit the data of English texts, and estimates the entropy. Then he uses more complex statistics – pairwise frequencies – and entropy decreases, which means a better fit. Shannon used this type of analysis to estimate the entropy of English and compared it to the entropy estimated by humans (by giving them sequences of letters and counting how many times they correctly predicted the next letter).
S-C Zhu had a couple of papers in the 1990’s which used exponential distributions. One paper (handout) modelled texture where the statistics were the histograms of Gabor filters and model pursuit was used to select which Gabors to use (i.e. which statistics to use). This worked fairly well for homogeneous texture (but simpler image-patch models by Efros and Freeman were as effective).

Another paper showed that the weak membrane model (the weak prior) could be obtained from the measured statistics of the first order derivatives of the image. This was conceptually very interesting. But it also showed limitations of the weak membrane model since it did not capture the statistics of the higher order derivatives (which are also very similar between images).

In both papers, learning the parameters of the exponential models required using MCMC algorithms to compute the expected statistics of the models in order to match them to the statistics of the data (because the models were two dimensional). The Della Pietra paper (handout) also did model pursuit but their application was language so they could use dynamic programming algorithms for inference.