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Abstract. In this paper, we formulate the stereo matching problem
as a Markov network consisting of three coupled Markov random fields
(MRF’s). These three MRF’s model a smooth field for depth/disparity,
a line process for depth discontinuity and a binary process for occlusion,
respectively. After eliminating the line process and the binary process by
introducing two robust functions, we obtain the maximum a posteriori
(MAP) estimation in the Markov network by applying a Bayesian belief
propagation (BP) algorithm. Furthermore, we extend our basic stereo
model to incorporate other visual cues (e.g., image segmentation) that
are not modeled in the three MRF’s, and again obtain the MAP solu-
tion. Experimental results demonstrate that our method outperforms the
state-of-art stereo algorithms for most test cases.

1 Introduction

Stereo vision infers scene geometry from two images with different viewpoints.
Classical dense two-frame stereo matching computes a dense disparity or depth
map from a pair of images under a known camera configuration. In general, the
scene is assumed Lambertian or intensity-consistent from different viewpoints,
without specularities, reflection, or transparency.

Stereo matching is difficult because of the following reasons.

– Noise: There are always unavoidable light variations, image blurring, and
sensor noise in image formation.

– Textureless region: Information from highly textured regions needs to be
propagated into textureless regions for stereo matching.

– Depth discontinuity: Information propagation should stop at object bound-
aries .

– Occlusion: Those occluded pixels in the reference view cannot be matched
with the other view.

Therefore, stereo matching is an ill-posed problem with inherent ambigu-
ities. Obviously, some constraints are needed to get a good “guess” of scene
structure. Many methods have been proposed to encode various constraints,
� This work was performed while the first author was visiting Microsoft Research Asia

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2351, pp. 510–524, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Stereo Matching Using Belief Propagation 511

e.g, intensity-consistency, local smoothness constraints, generalized order con-
straints, and uniqueness constraints. It has been shown that these constraints
can be modeled well as priors in the Bayesian approach to stereo matching.

In this paper, after reviewing related works in Section 2 on stereo matching,
and especially on the Bayesian approaches, we propose in Section 3 a Bayesian
stereo matching approach to explicitly model discontinuities, occlusion and the
disparity field in the Bayesian framework. In Section 4, Bayesian Belief Propaga-
tion is used to infer the stereo matching. The basic stereo model is then extended
in Section 5 to integrate multiple cues, e.g, region similarity. The experimental
results shown in Section 6 demonstrate that our model is effective and efficient.
Finally, we discuss in Section 7 why our stereo matching with belief propagation
outperforms the state-of-art stereo algorithms.

2 Related Works

In this section, we review related stereo algorithms and especially those using
the Bayesian approach. We refer the reader to a detailed and updated taxonomy
of dense, two-frame stereo correspondence algorithms by Scharstein and Szeliski
[21]. It also provides a testbed for quantitative evaluation of stereo algorithms.

A stereo algorithm is called a global method if there is a global objective
function to be optimized. Otherwise it is called a local method. The central
problem of local or window-based stereo matching methods is to determine the
optimal support window for each pixel. An ideal support region should be bigger
in textureless regions and should be suspended at depth discontinuities. The fixed
window is obviously invalid at depth discontinuities. Some improved window-
based methods, such as adaptive windows [16], shiftable windows [5] and compact
windows [23] try to avoid the windows that span depth discontinuities.

Bayesian methods (e.g., [11,1,5,8,15]) are global methods that model discon-
tinuities and occlusion. Geiger et al. [11] derived an occlusion process and a
disparity field from a matching process. Assuming an “order constraint” and
“uniqueness constraint”, the matching process becomes a “path-finding” prob-
lem what the global optimum is obtained by dynamic programming. Belhumeur
[1] defined a set of priors from a simple scene to a complex scene. A simplified
relationship between disparity and occlusion is used to solve scan line matching
by dynamic programming. Unlike Geiger and Belhumeur who enforced a piece-
wise smooth constraint, Cox et al. [8] and Bobick & Intille [5] did not require the
smoothing prior. Assuming corresponding features are normally distributed and
a fixed cost for occlusion, Cox also proposed a dynamic programming solution
using only the occlusion constraint and ordering constraints. Bobick & Intille
incorporated Ground Control Points constraint to reduce the sensitivity to oc-
clusion cost and complexity of Cox’s dynamic programming. These methods use
dynamic programming and assume that the occlusion cost is the same in each
scanline. Ignorance of dependence between scanlines results in the characteristic
“streaking” in the disparity maps.
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Fig. 1. A scene illustrates the geometry relationship among depth, discontinuities and
occlusions. O and O′ are optical centers of two cameraes. Discontinuities occur at
B′,C′,E′,F ′ and G′. Occlusion occur in [A,C] and [D,F ]

In general, Bayesian stereo matching can be formulated as a maximum a
posteriori MRF (MAP-MRF) problem. There are several methods to solve the
MAP-MRF problem: simulated annealing [12], Mean-Field annealing [10], the
Graduated Non-Convexity algorithm(GNC) [4], and Variational approximation
[14]. Finding a solution by simulated annealing can often take an unacceptably
long time although global optimization is achieved in theory. Mean-Field anneal-
ing is a deterministic approximation to simulated annealing by attempting to
average over the statistics of the annealing process. It reduces execution time at
the expense of solution quality. GNC can only be applied to some special energy
functions. Variational approximation converges to a local minimum. Graph Cut
(GC) [6] is a fast efficient algorithm to solve a MAP-MRF whose energy function
is Potts or Generalized Potts.

3 Basic Stereo Model

In our work, to handle occlusion and depth discontinuity explicitly, we model
stereo vision by three coupled MRF’s:D is the smooth disparity field of the refer-
ence view, L is a spatial line process located on the dual lattice and representing
explicitly the presence or absence of depth discontinuities in the reference view,
and O is a spatial binary process to indicate occlusion regions in the reference
view. Figure 1 illustrates these processes in the 1D case. By using Bayes’ rule,
the joint posterior probability over D, L and O given a pair of stereo images
(I = (IL, IR) where IL is the left and reference image) is:

P (D,L,O|I) = P (I|D,L,O)P (D,L,O)
P (I)

. (1)

Without occlusion, {D,L} are coupled MRF’s that model a piece-wise
smooth surface by two random fields: one represents the variable required to
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estimate, the other represents its discontinuities. This model was proposed by
[12]. However, the occlusion problem in stereo vision is not included in this kind
of model explicitly. In image formation, the piece-wise smooth scene is projected
on a pair of stereo images. Some regions are only visible in one image. There is
no matching pixel in the other view for each pixel in the occlusion region. We
assume that likelihood P (I|D,O,L) is independent of L because the observation
is pixel-based, and ignore the statistical dependence between O and {D,L}:.

P (I|D,O,L) = P (I|D,O), (2)

P (D,O,L) = P (D,L)P (O). (3)

The basic stereo model now becomes

P (D,O,L|I) = P (I|D,O)P (D,L)P (O)
P (I)

. (4)

3.1 Likelihood

Assuming observation noises follow an independent identical distribution(i.i.d),
we can define the likelihood P (I|D,O) as:

P (I|D,O) ∝
∏
s/∈O

exp(−F (s, ds, I)) (5)

where F (s, ds, I) is the matching cost function of pixel s with disparity ds given
observation I. Our likelihood considers the pixels only in non-occluded areas
s /∈ O because likelihood of the pixels in occluded areas can not be well defined.
We use the pixel dissimilarity that is provably insensitive to sampling [2]:

F (s, ds, I) = min{d(s, s′, I)/σf , d(s′, s, I)/σf}
where d(s, s′, I) = min{∣∣IL(s)− I−

R (s′)
∣∣ , |IL(s)− IR(s′)| , ∣∣IL(s)− I+

R (s′)
∣∣}, s′ is

the matching pixel in right view of s with disparity ds, I−
R (s′) is the linearly

interpolated intensity halfway between s′ and its neighboring pixel to the left,
I+
R (s′) is to the right, d(s′, s, I) is the symmetric version of d(s, s′, I) and σf is
the variance to be estimated.

3.2 Prior

Deriving appropriate priors to encode constraints directly is not only hard but
may also result in too many annoying hyper parameters to find the solution
easily. The Markov property asserts that the probability of a site in the field
depends only on its neighboring sites. By specifying the first order neighborhood
G(s) and N(s) = {t|t > s, t ∈ G(s)} of site s, the prior 3 can be expanded as:

P (D,L,O) ∝
∏
s

∏
t∈N(s)

exp(−ϕc(ds, dt, ls,t))
∏
s

exp(−ηc(os)) (6)
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where ϕc(ds, dt, ls,t) is the joint clique potential function of ds, dt and ls,t, and
ηc(os) is the clique potential function of os. ϕc(ds, dt, ls,t) and ηc(os) are user-
customized functions to force the constraints for stereo matching. ϕc(ds, dt, ls,t)
and ηc(os) also determine the distributions of {D,L,O}. To enforce spatial in-
teractions between ds and ls, we define ϕc(ds, ls) as follows:

ϕc(ds, dt, ls,t) = ϕ(ds, dt)(1− ls,t) + γ(ls,t) (7)

where ϕ(ds, dt) penalizes the different assignments of neighbor sites when no
discontinuity exists between them, and γ(ls,t) penalizes the occurrence of a dis-
continuity between site s and t.

Combining (5),(6) and (7), our basic stereo model becomes:

P (D,O,L|I) ∝ ∏
s/∈O

exp(−F (s, ds, I))
∏
s
exp(−ηc(os))∏

s

∏
t∈N(s)

exp(−(ϕ(ds, dt)(1− ls,t) + γ(ls,t))).
(8)

4 Approximate Inference by Belief Propagation

In the last section, we model stereo matching by three coupled MRFs. After con-
verting MRFs to the corresponding Markov network, the approximate inference
algorithm Loopy Belief Propagation can be used to approximate the posterior
probability for stereo matching.

4.1 From Line Process to Outlier Process

It is hard not only to specify appropriate forms of ϕ(ds, dt), γ(ls,t) and ηc(os), but
also to do inference in a continuous MRF and two binary MRFs. Fortunately, the
unification of line process and robust statistics [3] provides us a way to eliminate
the binary random variable from our MAP problem. If we simplify ηc(os) by
ignoring the spatial interaction of occlusion sites1

ηc(os) = η(os) (10)

we can rewrite our MAP problem as:

max
D,L,O

P (D,L,O|I) = max
D

{
max

O

∏
s
exp(−(F (s, ds, I)(1− os) + η(os)))

max
L

∏
s

∏
t∈N(s)

exp(−(ϕ(ds, dt)(1− ls,t) + γ(ls,t)))

} (11)

1 The complete form of ηc(os) should be:

ηc(os) = η(os) +
∑

t∈N(s)

η′(os, ot) (9)

where η(os) is a single-site clique potential function that penalizes the occurrence
of occlusion, and η′(os, ot) is a pair-site cliques potential function that penalizes the
different assignments of os and ot.
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Fig. 2. Robust function ρ(x) = − ln((1− e) exp(− |x|
σ
) + e) derived from TV model.

Now, we upgrade the binary process lst and os to analog process last and oa
s

(“outlier process”[3]) by allowing 0 ≤ last ≤ 1 and 0 ≤ oa
s ≤ 1. For the first term,

max
O

∏
s
exp(−(F (s, ds, I)(1− oa

s) + η(oa
s)))

= exp(−min
O

∑
s (F (s, ds, I)(1− oa

s) + η(oa
s)))

(12)

where min
O

∑
s (F (s, ds, I)(1− oa

s) + η(oa
s)) is the objective function of a robust

estimator. The robust function of this robust estimator is

ρd(ds) = min
oa

s

(F (s, ds, I)(1− oa
s) + η(oa

s)) (13)

and for the second term, we also have a robust function ρp(ds, dt):

ρp(ds, dt) = min
las,t

(ϕ(ds, dt)(1− las,t) + γ(las,t)). (14)

We get the posterior probability over D defined by two robust functions:

P (D|I) ∝
∏
s

exp(−ρd(F (s, ds, I))
∏
s

∏
t∈N(s)

exp(−ρp(ds, dt)). (15)

Thus, we not only eliminate two analog line processes via an outlier process
but also model outliers in measurements. We convert the task of modelling the
priors of the occlusion process and depth discontinuity process explicitly into
defining two robust functions that model occlusion and discontinuity implicitly.

In this paper, our robust functions are derived from the Total Variance(TV)
model [18] with the potential function ρ(x) = |x| because of its discontinuity
preserving property. We truncate this potential function as our robust function:

ρd(ds) = − ln((1− ed) exp(−|F (s, ds, I)|
σd

) + ed)

ρp(ds, dt) = − ln((1− ep) exp(−|ds − dt|
σp

) + ep)

Figure 2 shows different shapes of our robust functions. By varying parameters
e and σ, we control the shape of the robust function, and therefore the posterior
probability.
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Fig. 3. Local message passing in Markov Network. In ”max-product” algorithm, the
new message sent from node x1 to x2 is: mnew

1,2 ← κmax
x1

ψ12(x1, x2)m1m3,1m4,1m5,1.

The belief at node x1 is computed as: b1 ← κm1m2,1m3,1m4,1m5,1

.

4.2 Belief Propagation

The model that is most similar to our posterior probability (15) is Scharstein &
Szeliski’s [20]. Unlike Scharstein & Szeliski, where a nonlinear diffusion algorithm
is used, we address this MAP problem by Belief Propagation. Belief Propagation
is an exact inference method proposed by Pearl[19] in the belief network without
loops. Loopy Belief Propagation is just Belief Propagation that ignores the ex-
istence of loops in the networks. It has been applied successfully to some vision
[9] and communication [24] problems despite the presence of network loops.

The posterior probability (15) over D is exactly a Markov Network in the
literature of probabilistic graph models as shown in Figure 3. In the Markov
Network, random variable ds in our stereo model is represented by a hidden
node xs. A “private” observation node ys is connected to each xs. Each ys is a
vector where each element is the matching cost given different assignments of
node xs. By denoting X = {xs} and Y = {ys}, (15) can be represented with xs

and ys:
P (X|Y ) ∝

∏
s,t:s>t,t∈N(s)

ψst(xs, xt)
∏
s

ψs(xs, ys) (16)

where
ψst(xs, xt) = exp(−ρp(xs, xt))) (17)

ψs(xs, ys) ∝ exp(−ρd(F (s, xs, I))) (18)

ψst(xs, xt) is called compatibility matrix between node xs and xt, and ψs(xs, yt)
is called the local evidence for node xs. If the disparity level is L, ψst(xs, xt) is
a L× L matrix and ψs(xs, ys) is a L-length vector.

Belief Propagation is an iterative inference algorithm that propagates mes-
sages in the network. Let mst(xs, xt) be the message that node xs sends to xt,
ms(xs, ys) be the message that observed node ys sends to node xs, bs(xs) be the
belief at node xs. Note that mst(xs, xt), ms(xs, ys) and bs(xs) are all 1D vec-
tors. We simplify mst(xs, xt) as mst(xt) , and ms(xs, ys) as ms(xs). There are
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two kinds of BP algorithms with different message update rules: “max-product”
and “sum-product”, which maximize the joint posterior of the network, and
the marginal posterior of each node, respectively. The standard “max-product”
algorithm is shown below.

1. Initialize all messages as uniform distributions
2. Update messages iteratively for i=1:T

mi+1
st (xt)← κmax

xs

ψst(xs, xt)mi
s(xs)

∏
xk∈N(xs)\xs

mi
ks(xs)

3. Compute beliefs

bs(xs)← κms(xs)
∏

xk∈N(xs)

mks(xs)

xMAP
s = argmax

xk

bs(xk)

For example, in Figure 3, the new message sent from node x1 to x2 is up-
dated as: mnew

1,2 ← κmax
x1

ψ12(x1, x2)m1m3,1m4,1m5,1. The belief at node x1

is computed as: b1 ← κm1m2,1m3,1m4,1m5,1 (the product of two messages is
component-wise product). And κ is the normalization constant.

5 Integrating Multiple Cues

More constraints and priors (e.g., edges, corners, junctions, segmentation,
visibility) can be incorporated to improve stereo matching. For instance, a
segmentation-based stereo algorithm [22] has been recently proposed based on
the assumption that the depth discontinuities occur on the boundary of the seg-
mented regions. In [22], the segmentation results are used as hard constraints. In
our work, we make use of image segmentation but incorporate segmentation re-
sults into our basic stereo model as soft constraints (prior) under a probabilistic
framework.

With additional cues, we extend the basic stereo model (15):

P (D,O,L|I) ∝∏
s
exp(−ρd(F (s, ds, I))∏

s

∏
t∈N(s)

exp(−ϕc(ds, dt, ls,t)) exp(−ρpcue(ds, dt)) (19)

where ρpcue(ds, dt) encodes some constraints between sites. To integrate region
similarities from image segmentation, we define ρpcue(ds, dt) as:

ρpcue(ds, dt) = ρseg(ds, dt) =
{

0 seg(s) = seg(t)
λseg seg(s) 
= seg(t) (20)

where seg(s) is the label of the segmentation result at site s. The larger the
λseg, the more difficulty in passing the message between neighbor sites. In other
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Fig. 4. Left image is the first row of ψst(xs, xt) when node xs and xt are in same
region. Right image is the first row of ψst(xs, xt) when node xs and xt are in different
regions

words, the influence from neighbors becomes smaller as λseg increases. In our
experiments, the segmentation labels are produced by the Mean-Shift algorithm
[7]. The execution time is usually just a few seconds in all images used in our
experiments.

According to (15), the compatibility matrix ψst(xs, xt) can be rewritten as:

ψst(xs, xt) = exp(−ρp(xs, xt))) exp(−ρpcue(xs, xt))) (21)

Figure 4 shows the first rows of ψst(xs, xt) when xs and xt are in same region
and in different regions.

6 Experimental Results

In this paper, we evaluate the performance of our stereo algorithm using the
quality measures proposed in [21] with those measures based on known ground
truth data listed in Table 1. In particular, BŌ represents the overall performance
of a stereo algorithm.

Table 1. Quality measures based on known ground truth data

Percentage of bad matching pixels
in non-occlusion regions Ō

BŌ =
1
N

∑
s∈Ō (|d(s)− dT (s)| > δd)

Percentage of bad matching pixels
in textureless regions T̄

BT̄ =
1
N

∑
s∈T̄ (|d(s)− dT (s)| > δd)

Percentage of bad matching pixels
in depth discontinuity regions D

BD =
1
N

∑
s/∈D (|d(s)− dT (s)| > δd)

The test data set consists of four pairs of images: “Map”, “Tsukuba”, “Saw-
tooth” and “Venus” [21]. “Tsukuba” is a complicated indoor environment with
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slanted surfaces and contains a number of integer valued disparities. Other pairs
consist of mainly slanted planes.

Table 2 shows the results of applying our BP algorithm to all four pairs of
images. It also lists the results of other stereo algorithms. This table is courtesy
of Scharstein and Szeliski (see http://www.middlebury.edu/stereo/results.html
for details). Our results with and without image segmentation incorporated into
stereo matching are shown in the first and the second row, respectively.

For a complicated environment like “Tsukuba”, incorporating image segmen-
tation improves stereo matching significantly, with 40% error reduction in BŌ.
In fact, our algorithm ranks as the best for “Tsukuba” and outperforms Graph
Cut (with occlusion) [17] which was widely considered the state-of-art stereo
matching algorithm. Our algorithm competes well with other stereo algorithms
for the three other data sets, “Sawtooth”, “Venus” and “Map”. It is interesting
to note that for these three data sets with simple slanted surfaces, incorporating
image segmentation does not necessarily improve stereo matching, as seen from
the first and second rows.

Figures 5 and 6 show the results obtained by our algorithm. The segmentation
map is obtained by the Mean-Shift algorithm with default parameters suggested
by [7]. Note that a fixed set of parameters {ed = 0.05, σd = 0.6, ep = 0.01, σp = 8}
are used in our BP algorithm for all image pairs. Obviously, this set of parameters
is not the optimal for “Map” data because the disparity range of this data is
almost twice that of “Tsukuba” data’s disparity range.

The complexity of our BP algorithm is O(L2NT ) where N is the number
of pixels, L is the number of disparities, and T is the number of iterations. For
the “Tsukuba” data, it took 288 seconds on a Pentium III 500 MHz PC. It is
comparable or slightly better than the graph cut algorithm reported in [21].

The local oscillation phenomena of the BP algorithm also occurred in our
experiments. A time average operation is executed after a fixed number of iter-
ations: mt

st(xt) = mt−1
st (xt) +mt

st(xt). This heuristic worked well in our experi-
ments.

7 Discussion

Why BP works? The magic of the BP algorithm lies in its powerful message
passing. A message presents the probability that the receiver should be at a
disparity according to all information from the sender up to the current itera-
tion. Message passing has two important properties. First, it is asymmetric. The
entropy of the messages from high-confidence nodes to low-confidence nodes is
smaller than the entropy of the messages from low-confidence nodes to high-
confidence nodes. Second, it is adaptive. The influence of a message between a
pair of nodes with larger divergence would be weakened more.

Therefore, BP’s message passing provides a time-varying adaptive smooth-
ing mechanism for stereo matching to deal with textureless regions and depth
discontinuities naturally. In textureless regions, for example, the influence of a



520 J. Sun, H.-Y. Shum, and N.-N. Zheng

(a) Left (reference) Image (b) Ground Truth

(c) Textureless regions (d) Depth discontinuity regions

(e) Occlusion regions (f) Image segmentation

(g) “max-product” result (h) “max-product” result with segmentation

Fig. 5. The results on Tsukuba dataset. (a)-(e) are given.
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(a) Sawtooth (Truth) (b) Sawtooth (Our result)

(c) Venus (Truth) (d) Venus (Our result)

(e) Map (Truth) (f) Map (Max-product)

(g) Map (Bayes Diffusion) (h) Map (Sum-product)

Fig. 6. The results of Sawtooth and Venus based on the “max-product” algorithm
are shown in (b) and (d). For the Map data, the “max-product” result is shown in
(f). Bayesian diffusion results with BŌ = 0.20, BDD = 2.49 are shown in (g), while
“sum-product” results with BŌ = 0.16, BDD = 2.11 are shown in (h).
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Table 2. The performance of different stereo algorithms with fixed parameters on four
test image pairs. An underlined number is the best in its category.

- Tsukuba Sawtooth Venus Map
Algorithms

BŌ BT̄ BD BŌ BT̄ BD BŌ BT̄ BD BŌ BD
Belief prop. (seg) 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
Belief prop. 1.61 0.66 9.17 0.85 0.37 7.92 1.17 1.00 12.87 0.67 3.42
Graph cuts [21] 1.96 1.06 9.41 1.36 0.23 6.57 1.36 1.75 6.63 0.33 4.40
GC+occl. [17] 1.27 0.43 6.90 0.36 0.00 3.65 2.79 5.39 2.54 1.79 10.08
Graph cuts [6] 1.86 1.00 9.35 0.42 0.14 3.76 1.69 2.30 5.40 2.39 9.35
Realtime SAD [13] 4.25 4.47 15.05 1.32 0.35 9.21 1.53 1.80 12.33 0.81 11.35
Bay. diff. [21] 6.49 11.62 12.29 1.43 0.69 9.29 3.89 7.15 18.17 0.20 2.49
SSD+MF [21] 5.26 3.86 24.65 2.14 0.72 13.08 3.81 6.93 12.94 0.66 9.35
Dyn. prog. [21] 3.43 3.22 12.34 4.54 3.59 13.11 8.47 12.76 17.61 3.77 13.93
Scanl. opt. [21] 4.94 6.50 11.94 4.19 2.95 12.14 9.71 14.98 18.20 4.61 10.22

message can be passed far away. On the other hand, the influence in discontinu-
ous regions will fall off quickly. Figure 7 shows this adaptive smoothing procedure
in an example. In Figure 7, the image pair is modified from that used in [16]
and [20]. A linear ramp in the direction of the baseline is used as the underly-
ing intensity pattern. The disparity of background and foreground is 2 and 5,
respectively. Unlike [16] or [20], a smaller pure textureless square is overlapped
in the center of the foreground in the ramp1 pair.

We use entropy H(b) = −∑
i bilogbi to measure the confidence of the belief,

and the symmetric version of the Kullback-Leiber(KL) divergence KLs(b1‖b2) =∑
i (b

1
i )− b2

i )log(
b1i
b2

i

) to measure the difference between belief b1 and b2. Smaller
entropy represents higher confidence of a belief. Larger divergence represents
larger dissimilarity between beliefs. As shown in the figure, the entropy map of a
belief represents the confidence of disparity estimation for each node. Clearly, the
confidence of each node increases with each iteration. Note that the confidence
in occlusion regions and corners is lower than that in other regions. This shows
that the probabilistic method outputs not only a solution, but also its certainty.
The divergence map of a belief shows where message-passing is stopped. The
divergence map after convergence illustrates the ideal support regions.

Assumptions and future work. The Bayesian approaches have the advan-
tage over energy minimization techniques that all assumptions need to be made
explicitly. In fact, three important assumptions (2,3,10) are made in our model
in order to apply BP. Although good experimental results are obtained with
our model, it is worth investigating when these assumptions break. Many other
future directions can also be pursued. Naturally, we plan to extend our work to
multi-baseline stereo. We are also investigating how to improve stereo match-
ing with other Bayesian inference techniques based on Markov networks such as
generalized BP.
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left image right image disparity

entropy(0) divergence(0) disparity(0)

entropy(2) divergence(2) disparity(2)

entropy(8) divergence(8) disparity(8)

entropy(12) divergence(12) disparity(12)

entropy(16) divergence(16) disparity(16)

Fig. 7. Time-varying adaptive smoothing mechanism of the BP algorithm in stereo
matching is illustrated from row 2 to row 6. The input image pair and the ground
truth are shown in the first row. The number in the braces shows the iteration step.
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