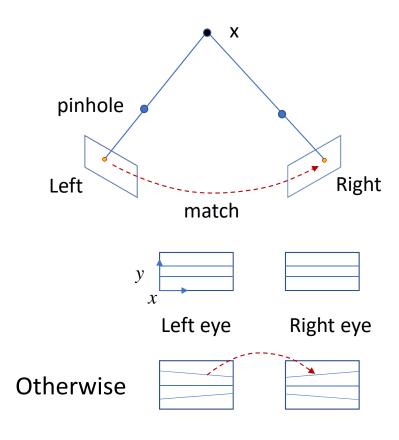


(1) DP can be extended to perform inference

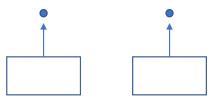
on any graph which does not have closed loops

Key idea: decompose


The inference into steps which can be computed independently

- (2) DP can be extended to some graphs with closed loops junction trees
- (3) DP can be modified to compute other quantities

$$ightharpoonup$$
 e.g. to compute the marginals $P_i(x_i) = \sum_{\{x_j: j \neq i\}} P(\mathbf{x})$ or $P(x_i, x_j) = \sum_{\{x_k: k \neq i, k \neq j\}} P(\mathbf{x})$



Binocular Stereo

Epipolar Line Constraint

The geometry means that a point in the left eye can only match to points on one line in the right eye

Special cue: cameras(eyes) are parallel

Binocular Stereo

So, stereo matching is a 1-D problem if the epipolar geometry is known (calibrated cameras)

Disparity: Point i in left image matches point $i+d_i$ in right image $\{d_i\}$ - disparity

pinhole

Task: estimate disparity $\{d_i\}$ determines depth if matching is known, depth is estimated by trigonometry

Lecture DP-03

Energy Function / Probability Formulation

$$\begin{split} E\big[\{d_i\}\big] = & \sum_i \Phi(d_i, I_L, I_R) + \sum_i \psi(d_i, d_{i+1}) \\ & \text{data cues} & \text{weak smoothness constraint} \\ \text{e.g. } \left|F(I_L)_i - F(I_R)_{i+d_i}\right| & \text{e.g. } K(d_i - d_{i+1}) \end{split}$$

 $F(I_L)_i$: image feature, computed on left image at position i, (e.g. derivative filters, smoothing filters)

 $F(I_{R})_{i+d_{i}}$: image feature, computed on right image at position $i+d_{i}$

Note: for some images the data cues are enough

E.G.
$$I_L = \boxed{+ \quad \bullet \quad \bigstar} \quad I_R = \boxed{+ \quad \bullet \quad \bigstar}$$

Then match (+ to +), $(\bullet to \bullet)$, $(\star to \star)$: But this almost never happens.

Energy Function / Probability Formulation

Need weak smoothness of disparity to resolve matching ambiguities

Task: solve for $D = \{d_i\}$ by minimizing

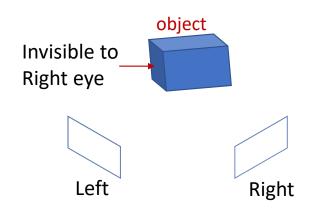
$$E[\{d_i\}] = \sum_{i} \Phi(d_i, I_L, I_R) + \sum_{i} \psi(d_i, d_{i+1})$$

Use Dynamic Programming: restrict the disparity d_i to take a finite set of k-values.

Energy Function / Probability Formulation

Note: This is a very simple model of stereo

There are situations where some features are visible in one eye(camera) only

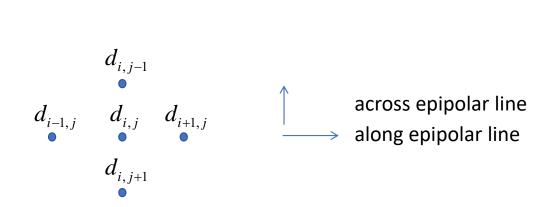

→ These half-occluded points cannot be matched

Half-occlusion gives information.

It occurs when the surface orientation changes – i.e. where smoothness of disparity is violated

Can exploit this to get better stereo.

(e.g. Geiger, Ladendorf, Yuille 1995, Belhaven & Mulford 1996)



Better stereo algorithms enforce weak smoothness across the epipolar lines – not just along -

Lecture DP-06

2D Problem

$$E\Big[\{d_{i,j}\}\Big] = \sum_{i,j} \Phi(d_{i,j},I_L,I_R) + A \sum_{i,j} \psi(d_{i,j},d_{i+1,j}) + B \sum_{i,j} \psi(d_{i,j},d_{i,j+1})$$
 along eipolar line across eipolar line weak smoothness

Use Belief Propagation \rightarrow or Max-Flow to estimate $\{\hat{d}_{i,j}\} = \arg\min E[\{d_{i,j}\}]$