
Boltzmann Machine: The Gibbs Distribution

I The probability distribution for N neurons ~S = (s1, ..., sN), where each si
takes value 0 or 1, is defined by a Gibbs distribution with energy
E(~S) = −1

2

∑
ij ωijsi sj and distribution:

P(~S) =
1

Z
exp{−E(~S)/T}. (41)

I State configurations ~S with low energy E(~S) will correspond to high

probabilities P(~S). Z is specified by the normalization condition
∑

~S = 1,

by Z =
∑

~S exp{−E(~S)/T}. The ωij are the weights of the distribution
(like weights in a neural network) and are symmetric ωij = ωji ∀i , j with
ωii = 0, ∀i .

I The ”temperature” T controls the ”sharpness” of the distribution. For
very small T , the distribution is strongly peaked about
~S∗ = arg min~S E(~S). As T increases, the distribution becomes less peaked
as T becomes large (T 7→ ∞) all states become equally likely. Intuitively,
T is similar to the variance.



Boltzmann Machine: Inference

I The inference task is to compute, or estimate, the most probably state(s)
~S∗ = arg max~S P(~S) = arg min~S E(~S). But this is impossible because ~S
takes 2N possible states and so we cannot simply evaluate the probability
of every state and find the maximum, and similarly we cannot compute Z .
(But there are a few special cases where computing ~S∗ is possible).

I We have discussed two types of algorithm that can get approximate
estimates of ~S∗: (I) Gibbs Sampling. (II) Mean Field Theory.

I In this lecture we will be using Gibbs sampling. Recall that this: (i)

initializes the states ~S randomly, (ii) selects a node i at random, (iii)

samples si from the conditional distribution P(si |~S/i) =
exp si{

∑
j wij sj}

1+exp{
∑

j wij sj}
, and

(iv) repeat (ii) and (iii).

I It can be shown that Gibbs sampling converges to samples ~S from P(~S).
This implies that the final states will have high probabilities. So if we have
a set {~Sn : n = 1, ...,N} from P(~S) then they are likely to have high

probabilities {P(~Sn) : n = 1, ...,N} and be close to ~S∗. Importantly, for

this lecture, we can approximate the expected statistics of P(~S) by

< sjsj >=
∑

~S si sjP(~S) ≈
∑N

n=1 s
n
i s

n
j .



Boltzmann Machine: Learning
I Divide the nodes into two classes Vo and Vh, which are the observed

(input) and hidden nodes respectively. ~So and ~Sh denote the states of the

observed and the hidden nodes respectively. The components of ~So and ~Sh

are {Si : i ∈ Vo} and {Si : i ∈ Vh} respectively. ~S = (~So , ~Sh).
I We re-express the distribution over the states as:

P(~So , ~Sh) =
1

Z
exp{−E(~S)/T}. (42)

The marginal distribution over the observed nodes is

P(~So) =
∑
~Sh

1

Z
exp{−E(~S)/T}. (43)

I We estimate a distribution R(~S0) of the observed nodes (from the

observed data {~Sn
o : n = 1, ...,N} where N are the number of training

examples). The goal of learning is to adjust the weights ~ω of the model

(i.e. the {ωij}) so that the marginal distribution P(~So) of the model is as

similar as possible to the observed model R(~S0).
I This requires specifying a similarity criterion which is chosen to be the

Kullback-Leibler divergence:

KL(~w) =
∑
~So

R(~So) log
R(~So)

P(~So)
.



Boltzmann Machine: The Learning Rule

I The Boltzmann Machine adjusts the weights by the iterative update rule:

wij 7→ wij + ∆wij (44)

∆wij = −δ ∂KL(~w)

ωij
(45)

∆wij = − δ

T
{< SiSj >clamped − < SiSj >} (46)

I Here δ is a small positive constant. The derivation of the update rule is
given in later slides (so is how to compute the update rule).

I < SiSj >clamped and < SiSj > are the expectation (e.g., correlation)
between the state variables Si , Sj when the data is generated by the

clamped distribution R(~So)P(~Sh|~So) and by the distribution P(~So , ~Sh)
respectively.

I I.e. < SiSj >=
∑

~S SiSjP(~S). The conditional distribution P(~Sh|~So) is the
distribution over the hidden states conditioned on the observed states. So
it is given by P(~Sh|~So) = P(~Sh, ~So)/P(~So).



Boltzmann Machine: Understanding the Learning Rule

I The learning rule, equation (46), has two components. The first term
< SiSj >clamped is Hebbian and the second term < SiSj > is anti-Hebbian
(because of the sign). This is a balance between the activity of the model
when it is driven by input data (i.e. clamped) and when it is driven by
itself. A wild speculation is that the Hebbian learning is done when you
are awake, hence exposed to external stimuli, while the anti-Hebbian
learning is done when you are asleep with your eyes shut but, by sampling
from P(~So |~Sh) you are creating images, or dreaming.

I The algorithm will convergence when the model accurately fits the data,
i.e.. when < SiSj >clamped=< SiSj > and the right hand side of the
update rule, equation (46), is zero.

I What is the observed distribution R(~So)? We do not know R(~So) exactly

and so we approximate it by the training data {~Sµo ;µ = 1, ...,N}. This is
equivalent to assuming that

R(~S) =
1

N

N∑
µ=1

δ(~So − ~Sµo ) (47)

.



Estimating the < SiSj >

I The Boltzmann Machine requires computing < SiSj >clampaed and
< SiSj >. This is done by Gibbs sampling (earlier lectures). .

I By performing Gibbs sampling multiple times on the distribution P(~So , ~Sh)

we obtain M samples ~S
1
, ..., ~S

M
. Then we can approximate < SiSj > by:

< SiSj >≈
1

M

M∑
a=1

Sa
i S

a
j (48)

I Similarly we can obtain samples from R(~So)P(~Sh|~So) (the clamped case)

by first generating samples ~So
1
, ..., ~So

M
from R(~S0) and then converting

them to samples
~S

1
, ..., ~S

M
(49)

where ~S = (~So
i
, ~Sh

i
), and ~Sh

i
is a random sample from P(~Sh|~So), again

performed by Gibbs sampling.

I How do we sample from R(~So)? Recall that we only know samples

{~Sµo ;µ = 1, ...,N} (the training data). Hence sampling from R(~So)
reduces to selecting one of the training examples at random.

I Gibbs sampling is not a very effective algorithm. So Boltzmann machines
are hard to use in practice (with extra ingredients).



Derivation of the BM update rule (I)

I To justify the learning rule, equation (46), we need to take the derivative
of the cost function ∂KL(~ω)/∂ωij .

∂KL(~w)

∂ωi j
= −

∑
~So

R(~So)

P(~So)

∂P(~So)

∂ωij
(50)

I Expressing P(~So) = 1
Z

∑
~Sh

exp{−E(~S)/T}, we can express ∂P(~So )
∂ωij

in two
terms:

1

Z

∂

∂ωij

∑
~Sh

exp{−E(~S)/T} − 1

Z

∑
~Sh

exp{−E(~S)/T )}∂ logZ

∂ωij
(51)

I This can be re-expressed as:

−1

T

∑
~Sh

SiSjP(~S) + {
∑
~Sh

P(~S)
1

T

∑
~S

SiSjP(~S)} (52)



Derivation of the BM update rule (II)

I Hence we can compute:

∂P(~So)

∂ωij
=
−1

T

∑
~Sh

SiSjP(~S) + P(~So)
1

T

∑
~S

SiSjP(~S) (53)

I Substituting equation (53) into equation (50) yields

∂KL(~w)

∂ωi j
=

1

T

∑
~Sh,~So

SiSj
P(~S)

P(So)
R(~So)− 1

T
{
∑
~So

R(~So)}
∑
~S

SiSjP(~S) (54)

I Which can be simplified to give:

∂KL(~w)

∂ωi j
=

1

T

∑
~S

SiSjP(~Sh|~So)R(~So)− 1

T

∑
~S

SiSjP(~S) (55)

I Note this derivation requires ∂ logZ/∂wij =
∑

~S SiSjP(~S).



Boltzmann Machine is Maximum Likelihood Learning

I The Kullback-Leibler criterion, equation (42), can be expressed as:

KL(~ω) =
∑
~S

R(~So) logR(~So)−
∑
~S

R(~So) logP(~Sh|~So) (56)

I Only the second term depends on ~ω so we can ignore the first (since we
want to minimize KL(~ω) with respect to ~ω).

I Using the expression for R(~So) in terms of the training data,
equation (47), we can express the second term as:

− 1

N

∑
~So

1

N

N∑
a=1

δ(~So − ~Sa
o ) logP(~So) (57)

− 1

N

1

N

N∑
a=1

logP(~Sa
o ) (58)

I This is precisely, the Maximum Likelihood criterion for estimating the
parameters of the distribution P(~So). This shows that Maximum
Likelihood is a good strategy to learn a distribution even if we do not
know the correct form of the distribution. We are simply finding the best
fit model.



Boltzmann Machine learns by Expectation-Maximization

I The Boltzmann Machine (BM) learning is a special case of the
Expectation-Maximization (EM) algorithm. This algorithm can be applied
to any learning problem where some variables are unobservable.

I For the BM, the distribution is P(~So , ~Sh;ω) with observed data

{~Sn
o : n = 1, ...,N}. We do not know the {~Sn

h : n = 1, ...,N}, so the ~Sh are
hidden, missing, or latent variables.

I In theory we can compute the marginal distribution
P(~So ;ω) =

∑
~Sh
P(~So , ~Sh;ω). Then we can learn the weights {ωij} by

Maximum Likelihood: minimizing

−
N∑

n=1

logP(~So ;ω), w.r.t. ω.

I The problem is that we cannot compute P(~So ;ω) explicitly. This is where
we need EM.



BM and EM: part 1

I We define a new (unknown) distributions

Qn(~Sh) =
∏m

i=1 q
n
i (S i

h) n = 1, ..N, where the {S i
h : i = 1, ..,m} are the

components of the hidden variables ~Sh.

I We define a free energy:

F(Q, ω) = −
N∑

n=1

logP(~Sn
o ;ω) +

N∑
n=1

∑
~Sn
h

Qn(~Sn
h ) log

Qn(~Sn
h )

P(~Sn
h |~Sn

o ;ω)
.

I This has two important properties. Firstly, we can minimize F(Q, ω) with

respect to each Qn(.) to obtain Qn(~Sn
h ) = P(~Sn

h |~Sn
o ;ω). Substituting this

value of Qn(.) back into F(Q, ω) yields −
∑N

n=1 logP(~Sn
o ;ω).

I Therefore minimizing F(Q, ω) with respect to Q and ω is equivalent to

performing ML on P(~So ;ω).

I This follows from the facts that
∑

~S Q(~S) log Q(~S)

P(~S)
≥ 0 and = 0 only when

Q(~S) = P(~S).



BM and EM: part 2

I The second property is that we can minimize F(Q, ω) by alternatively
minimizing with respect to Q and to ω. This is the EM algorithm.

I Minimizing w.r.t. Q(.) gives Qn(~Sn
h ) = P(~Sn

h |~Sn
o ;ω).

I Minimizing w.r.t. ω gives:

ωij = arg min
N∑

n=1

Qn(~Sn
h ) logP(~S ;ω) = arg min−{

N∑
n=1

Qn(~Sn
h )E(~S)−logZ(ω)}.

I This exploits P(~Sh|~So ;ω)P(~So ;ω) = P(~Sh, ~So ;ω).

I For the BM, these minimizations reduce to the BM learning rule (after
some algebra). Gibbs sampling is needed to perform each step. Note:
there is no guarantee that the EM algorithm will converge to the global
optimum (i.e. to the real ML estimate).



The Restricted Boltzmann Machine
I RBMs are a special case of Boltmann Machines where there are no

weights connecting the hidden nodes to each other with energy:

E(~S) =
∑

i∈Vo , j∈Vh

ωijSiSj . (59)

I The conditional distributions P(~Sh|~So) and P(~So |~Sh) can both be
factorized:

P(~So |~Sh) =
∏
i∈Vo

P(Si |~Sh), P(~Sh|~So) =
∏
j∈Vh

P(Sj |~So) (60)

I For i ∈ Vo , P(Si |~Sh) = 1
Zi

exp{−(1/T )Si (
∑

j∈Vh
ωijSj)}. Zi is the

normalization constant Zi =
∑

Si∈{0,1} exp{−(1/T )Si (
∑

j∈Vh
ωijSj)} – and

similarly for P(Sj |~So) for j ∈ Vh.
I These factorization means that we can sample from P(~So |~Sh) and

P(~Sh|~So) very rapidly (e.g., by sampling from P(Si |~Sh)). This makes
learning fast and practical. Estimating < SiSj >clamped requires sampling

from P(~Sh|~So), which is very fast. Estimating < SiSj >, requires sampling

from P(~So , ~Sh) by alternatively sampling from P(~So |~Sh) and P(~Sh|~So).
This must be done multiple times until convergence (but it is much faster
than Gibbs sampling).

I RBMs are too restricted to anything useful. But Hinton (2006) suggested
stacking them on top of each other to create a Deep Network.


