Boltzmann Machine: The Gibbs Distribution

- The probability distribution for N neurons $\vec{S}=\left(s_{1}, \ldots, s_{N}\right)$, where each s_{i} takes value 0 or 1 , is defined by a Gibbs distribution with energy $E(\vec{S})=\frac{-1}{2} \sum_{i j} \omega_{i j} s_{i} s_{j}$ and distribution:

$$
\begin{equation*}
P(\vec{S})=\frac{1}{Z} \exp \{-E(\vec{S}) / T\} \tag{41}
\end{equation*}
$$

- State configurations \vec{S} with low energy $E(\vec{S})$ will correspond to high probabilities $P(\vec{S}) . Z$ is specified by the normalization condition $\sum_{\vec{s}}=1$, by $Z=\sum_{\vec{s}} \exp \{-E(\vec{S}) / T\}$. The $\omega_{i j}$ are the weights of the distribution (like weights in a neural network) and are symmetric $\omega_{i j}=\omega_{j i} \forall i, j$ with $\omega_{i i}=0, \forall i$.
- The "temperature" T controls the "sharpness" of the distribution. For very small T, the distribution is strongly peaked about $\vec{S}^{*}=\arg \min _{\vec{S}} E(\vec{S})$. As T increases, the distribution becomes less peaked as T becomes large $(T \mapsto \infty)$ all states become equally likely. Intuitively, T is similar to the variance.

Boltzmann Machine: Inference

- The inference task is to compute, or estimate, the most probably state(s) $\vec{S}^{*}=\arg \max _{\vec{S}} P(\vec{S})=\arg \min _{\vec{S}} E(\vec{S})$. But this is impossible because \vec{S} takes 2^{N} possible states and so we cannot simply evaluate the probability of every state and find the maximum, and similarly we cannot compute Z. (But there are a few special cases where computing \vec{S}^{*} is possible).
- We have discussed two types of algorithm that can get approximate estimates of \vec{S}^{*} : (I) Gibbs Sampling. (II) Mean Field Theory.
- In this lecture we will be using Gibbs sampling. Recall that this: (i) initializes the states \vec{S} randomly, (ii) selects a node i at random, (iii) samples s_{i} from the conditional distribution $P\left(s_{i} \mid \vec{S} / i\right)=\frac{\exp s_{i}\left\{\sum_{j} w_{i j} s_{j}\right\}}{1+\exp \left\{\sum_{j} w_{i j} s_{j}\right\}}$, and (iv) repeat (ii) and (iii).
- It can be shown that Gibbs sampling converges to samples \vec{S} from $P(\vec{S})$. This implies that the final states will have high probabilities. So if we have a set $\left\{\vec{S}^{n}: n=1, \ldots, N\right\}$ from $P(\vec{S})$ then they are likely to have high probabilities $\left\{P\left(\vec{S}^{n}\right): n=1, \ldots, N\right\}$ and be close to \vec{S}^{*}. Importantly, for this lecture, we can approximate the expected statistics of $P(\vec{S})$ by $<s_{j} s_{j}>=\sum_{\vec{s}} s_{i} s_{j} P(\vec{S}) \approx \sum_{n=1}^{N} s_{i}^{n} s_{j}^{n}$.

Boltzmann Machine: Learning

- Divide the nodes into two classes \mathcal{V}_{o} and \mathcal{V}_{h}, which are the observed (input) and hidden nodes respectively. \vec{S}_{o} and \vec{S}_{h} denote the states of the observed and the hidden nodes respectively. The components of \vec{S}_{o} and \vec{S}_{h} are $\left\{S_{i}: i \in \mathcal{V}_{0}\right\}$ and $\left\{S_{i}: i \in \mathcal{V}_{h}\right\}$ respectively. $\vec{S}=\left(\vec{S}_{o}, \vec{S}_{h}\right)$.
- We re-express the distribution over the states as:

$$
\begin{equation*}
P\left(\vec{S}_{o}, \vec{S}_{h}\right)=\frac{1}{Z} \exp \{-E(\vec{S}) / T\} \tag{42}
\end{equation*}
$$

The marginal distribution over the observed nodes is

$$
\begin{equation*}
P\left(\vec{S}_{o}\right)=\sum_{\vec{S}_{h}} \frac{1}{Z} \exp \{-E(\vec{S}) / T\} \tag{43}
\end{equation*}
$$

- We estimate a distribution $R\left(\vec{S}_{0}\right)$ of the observed nodes (from the observed data $\left\{\vec{S}_{o}^{n}: n=1, \ldots, N\right\}$ where N are the number of training examples). The goal of learning is to adjust the weights $\vec{\omega}$ of the model (i.e. the $\left\{\omega_{i j}\right\}$) so that the marginal distribution $P\left(\vec{S}_{o}\right)$ of the model is as similar as possible to the observed model $R\left(\vec{S}_{0}\right)$.
- This requires specifying a similarity criterion which is chosen to be the Kullback-Leibler divergence:

$$
K L(\vec{w})=\sum_{\vec{S}_{o}} R\left(\vec{S}_{o}\right) \log \frac{R\left(\vec{S}_{o}\right)}{P\left(\vec{S}_{o}\right)}
$$

Boltzmann Machine: The Learning Rule

- The Boltzmann Machine adjusts the weights by the iterative update rule:

$$
\begin{gather*}
w_{i j} \mapsto w_{i j}+\Delta w_{i j} \tag{44}\\
\Delta w_{i j}=-\delta \frac{\partial K L(\vec{w})}{\omega_{i j}} \tag{45}\\
\Delta w_{i j}=-\frac{\delta}{T}\left\{<S_{i} S_{j}>_{\text {clamped }}-<S_{i} S_{j}>\right\} \tag{46}
\end{gather*}
$$

- Here δ is a small positive constant. The derivation of the update rule is given in later slides (so is how to compute the update rule).
- $<S_{i} S_{j}>_{\text {clamped }}$ and $<S_{i} S_{j}>$ are the expectation (e.g., correlation) between the state variables S_{i}, S_{j} when the data is generated by the clamped distribution $R\left(\vec{S}_{o}\right) P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$ and by the distribution $P\left(\vec{S}_{o}, \vec{S}_{h}\right)$ respectively.
- I.e. $<S_{i} S_{j}>=\sum_{\vec{S}} S_{i} S_{j} P(\vec{S})$. The conditional distribution $P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$ is the distribution over the hidden states conditioned on the observed states. So it is given by $P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)=P\left(\vec{S}_{h}, \vec{S}_{o}\right) / P\left(\vec{S}_{o}\right)$.

Boltzmann Machine: Understanding the Learning Rule

- The learning rule, equation (46), has two components. The first term $\left.<S_{i} S_{j}\right\rangle_{\text {clamped }}$ is Hebbian and the second term $\left.<S_{i} S_{j}\right\rangle$ is anti-Hebbian (because of the sign). This is a balance between the activity of the model when it is driven by input data (i.e. clamped) and when it is driven by itself. A wild speculation is that the Hebbian learning is done when you are awake, hence exposed to external stimuli, while the anti-Hebbian learning is done when you are asleep with your eyes shut but, by sampling from $P\left(\vec{S}_{o} \mid \vec{S}_{h}\right)$ you are creating images, or dreaming.
- The algorithm will convergence when the model accurately fits the data, i.e.. when $<S_{i} S_{j}>_{\text {clamped }}=<S_{i} S_{j}>$ and the right hand side of the update rule, equation (46), is zero.
- What is the observed distribution $R\left(\vec{S}_{o}\right)$? We do not know $R\left(\vec{S}_{o}\right)$ exactly and so we approximate it by the training data $\left\{\vec{S}_{o}^{\mu} ; \mu=1, \ldots, N\right\}$. This is equivalent to assuming that

$$
\begin{equation*}
R(\vec{S})=\frac{1}{N} \sum_{\mu=1}^{N} \delta\left(\vec{S}_{o}-\vec{S}_{o}^{\mu}\right) \tag{47}
\end{equation*}
$$

Estimating the $<S_{i} S_{j}>$

- The Boltzmann Machine requires computing $<S_{i} S_{j}>_{\text {clampaed }}$ and $<S_{i} S_{j}>$. This is done by Gibbs sampling (earlier lectures). .
- By performing Gibbs sampling multiple times on the distribution $P\left(\vec{S}_{o}, \vec{S}_{h}\right)$ we obtain M samples $\underline{\vec{S}}^{1}, \ldots, \underline{\vec{S}}^{M}$. Then we can approximate $<S_{i} S_{j}>$ by:

$$
\begin{equation*}
<S_{i} S_{j}>\approx \frac{1}{M} \sum_{a=1}^{M} \underline{S}_{i}^{a} \underline{S}_{j}^{a} \tag{48}
\end{equation*}
$$

- Similarly we can obtain samples from $R\left(\vec{S}_{o}\right) P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$ (the clamped case) by first generating samples ${\overrightarrow{\vec{S}_{o}}}^{1}, \ldots,{\overrightarrow{\vec{S}_{o}}}^{M}$ from $R\left(\vec{S}_{0}\right)$ and then converting them to samples

$$
\begin{equation*}
\underline{\vec{s}}^{1}, \ldots, \underline{\vec{S}}^{M} \tag{49}
\end{equation*}
$$

where $\underline{\vec{S}}=\left(\underline{\vec{S}_{o}}{ }^{i},{\overrightarrow{\vec{S}_{h}}}^{i}\right)$, and ${\underline{\vec{S}_{h}}}^{i}$ is a random sample from $P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$, again performed by Gibbs sampling.

- How do we sample from $R\left(\vec{S}_{o}\right)$? Recall that we only know samples $\left\{\vec{S}_{o}^{\mu} ; \mu=1, \ldots, N\right\}$ (the training data). Hence sampling from $R\left(\vec{S}_{o}\right)$ reduces to selecting one of the training examples at random.
- Gibbs sampling is not a very effective algorithm. So Boltzmann machines are hard to use in practice (with extra ingredients).

Derivation of the BM update rule (I)

- To justify the learning rule, equation (46), we need to take the derivative of the cost function $\partial K L(\vec{\omega}) / \partial \omega_{i j}$.

$$
\begin{equation*}
\frac{\partial K L(\vec{w})}{\partial \omega_{i j}}=-\sum_{\vec{S}_{o}} \frac{R\left(\vec{S}_{o}\right)}{P\left(\vec{S}_{o}\right)} \frac{\partial P\left(\vec{S}_{o}\right)}{\partial \omega_{i j}} \tag{50}
\end{equation*}
$$

- Expressing $P\left(\vec{S}_{o}\right)=\frac{1}{Z} \sum_{\vec{S}_{h}} \exp \{-E(\vec{S}) / T\}$, we can express $\frac{\partial P\left(\vec{S}_{o}\right)}{\partial \omega_{i j}}$ in two terms:

$$
\begin{equation*}
\left.\frac{1}{Z} \frac{\partial}{\partial \omega_{i j}} \sum_{\vec{S}_{h}} \exp \{-E(\vec{S}) / T\}-\frac{1}{Z} \sum_{\vec{S}_{h}} \exp \{-E(\vec{S}) / T)\right\} \frac{\partial \log Z}{\partial \omega_{i j}} \tag{51}
\end{equation*}
$$

- This can be re-expressed as:

$$
\begin{equation*}
\frac{-1}{T} \sum_{\vec{S}_{h}} S_{i} S_{j} P(\vec{S})+\left\{\sum_{\vec{S}_{h}} P(\vec{S}) \frac{1}{T} \sum_{\vec{S}} S_{i} S_{j} P(\vec{S})\right\} \tag{52}
\end{equation*}
$$

Derivation of the BM update rule (II)

- Hence we can compute:

$$
\begin{equation*}
\frac{\partial P\left(\vec{S}_{o}\right)}{\partial \omega_{i j}}=\frac{-1}{T} \sum_{\vec{S}_{h}} S_{i} S_{j} P(\vec{S})+P\left(\vec{S}_{o}\right) \frac{1}{T} \sum_{\vec{S}} S_{i} S_{j} P(\vec{S}) \tag{53}
\end{equation*}
$$

- Substituting equation (53) into equation (50) yields

$$
\begin{equation*}
\frac{\partial K L(\vec{w})}{\partial \omega_{i} j}=\frac{1}{T} \sum_{\vec{S}_{h}, \vec{S}_{o}} S_{i} S_{j} \frac{P(\vec{S})}{P\left(S_{o}\right)} R\left(\vec{S}_{o}\right)-\frac{1}{T}\left\{\sum_{\vec{S}_{o}} R\left(\vec{S}_{o}\right)\right\} \sum_{\vec{S}} S_{i} S_{j} P(\vec{S}) \tag{54}
\end{equation*}
$$

- Which can be simplified to give:

$$
\begin{equation*}
\frac{\partial K L(\vec{w})}{\partial \omega_{i} j}=\frac{1}{T} \sum_{\vec{s}} S_{i} S_{j} P\left(\vec{S}_{h} \mid \vec{S}_{o}\right) R\left(\vec{S}_{o}\right)-\frac{1}{T} \sum_{\vec{s}} S_{i} S_{j} P(\vec{S}) \tag{55}
\end{equation*}
$$

- Note this derivation requires $\partial \log Z / \partial w_{i j}=\sum_{\vec{S}} S_{i} S_{j} P(\vec{S})$.

Boltzmann Machine is Maximum Likelihood Learning

- The Kullback-Leibler criterion, equation (42), can be expressed as:

$$
\begin{equation*}
K L(\vec{\omega})=\sum_{\vec{s}} R\left(\vec{S}_{o}\right) \log R\left(\vec{S}_{o}\right)-\sum_{\vec{s}} R\left(\vec{S}_{o}\right) \log P\left(\vec{S}_{h} \mid \vec{S}_{o}\right) \tag{56}
\end{equation*}
$$

- Only the second term depends on $\vec{\omega}$ so we can ignore the first (since we want to minimize $K L(\vec{\omega})$ with respect to $\vec{\omega})$.
- Using the expression for $R\left(\vec{S}_{o}\right)$ in terms of the training data, equation (47), we can express the second term as:

$$
\begin{gather*}
-\frac{1}{N} \sum_{\vec{S}_{o}} \frac{1}{N} \sum_{a=1}^{N} \delta\left(\vec{S}_{o}-\vec{S}_{o}^{a}\right) \log P\left(\vec{S}_{o}\right) \tag{57}\\
-\frac{1}{N} \frac{1}{N} \sum_{a=1}^{N} \log P\left(\vec{S}_{o}^{a}\right) \tag{58}
\end{gather*}
$$

- This is precisely, the Maximum Likelihood criterion for estimating the parameters of the distribution $P\left(\vec{S}_{o}\right)$. This shows that Maximum Likelihood is a good strategy to learn a distribution even if we do not know the correct form of the distribution. We are simply finding the best fit model.

Boltzmann Machine learns by Expectation-Maximization

- The Boltzmann Machine (BM) learning is a special case of the Expectation-Maximization (EM) algorithm. This algorithm can be applied to any learning problem where some variables are unobservable.
- For the BM, the distribution is $P\left(\vec{S}_{o}, \vec{S}_{h} ; \omega\right)$ with observed data $\left\{\vec{S}_{o}^{n}: n=1, \ldots, N\right\}$. We do not know the $\left\{\vec{S}_{h}^{n}: n=1, \ldots, N\right\}$, so the \vec{S}_{h} are hidden, missing, or latent variables.
- In theory we can compute the marginal distribution $P\left(\vec{S}_{o} ; \omega\right)=\sum_{\vec{S}_{h}} P\left(\vec{S}_{o}, \vec{S}_{h} ; \omega\right)$. Then we can learn the weights $\left\{\omega_{i j}\right\}$ by Maximum Likelihood: minimizing

$$
-\sum_{n=1}^{N} \log P\left(\vec{S}_{o} ; \omega\right), \quad \text { w.r.t. } \omega
$$

- The problem is that we cannot compute $P\left(\vec{S}_{o} ; \omega\right)$ explicitly. This is where we need EM.

BM and EM: part 1

- We define a new (unknown) distributions $Q^{n}\left(\vec{S}_{h}\right)=\prod_{i=1}^{m} q_{i}^{n}\left(S_{h}^{i}\right) n=1, . . N$, where the $\left\{S_{h}^{i}: i=1, . ., m\right\}$ are the components of the hidden variables \vec{S}_{h}.
- We define a free energy:

$$
\mathcal{F}(Q, \omega)=-\sum_{n=1}^{N} \log P\left(\vec{S}_{o}^{n} ; \omega\right)+\sum_{n=1}^{N} \sum_{\vec{S}_{h}^{n}} Q^{n}\left(\vec{S}_{h}^{n}\right) \log \frac{Q^{n}\left(\vec{S}_{h}^{n}\right)}{P\left(\vec{S}_{h}^{n} \mid \vec{S}_{o}^{n} ; \omega\right)}
$$

- This has two important properties. Firstly, we can minimize $\mathcal{F}(Q, \omega)$ with respect to each $Q^{n}($.$) to obtain Q^{n}\left(\vec{S}_{h}^{n}\right)=P\left(\vec{S}_{h}^{n} \mid \vec{S}_{o}^{n} ; \omega\right)$. Substituting this value of $Q^{n}($.$) back into \mathcal{F}(Q, \omega)$ yields $-\sum_{n=1}^{N} \log P\left(\vec{S}_{o}^{n} ; \omega\right)$.
- Therefore minimizing $\mathcal{F}(Q, \omega)$ with respect to Q and ω is equivalent to performing ML on $P\left(\vec{S}_{o} ; \omega\right)$.
- This follows from the facts that $\sum_{\vec{S}} Q(\vec{S}) \log \frac{Q(\vec{S})}{P(\vec{S})} \geq 0$ and $=0$ only when $Q(\vec{S})=P(\vec{S})$.

BM and EM: part 2

- The second property is that we can minimize $\mathcal{F}(Q, \omega)$ by alternatively minimizing with respect to Q and to ω. This is the EM algorithm.
- Minimizing w.r.t. $Q\left(\right.$.) gives $Q^{n}\left(\vec{S}_{h}^{n}\right)=P\left(\vec{S}_{h}^{n} \mid \vec{S}_{o}^{n} ; \omega\right)$.
- Minimizing w.r.t. ω gives:

$$
\omega_{i j}=\arg \min \sum_{n=1}^{N} Q^{n}\left(\vec{S}_{h}^{n}\right) \log P(\vec{S} ; \omega)=\arg \min -\left\{\sum_{n=1}^{N} Q^{n}\left(\vec{S}_{h}^{n}\right) E(\vec{S})-\log Z(\omega)\right\} .
$$

- This exploits $P\left(\vec{S}_{h} \mid \vec{S}_{o} ; \omega\right) P\left(\vec{S}_{o} ; \omega\right)=P\left(\vec{S}_{h}, \vec{S}_{o} ; \omega\right)$.
- For the BM, these minimizations reduce to the BM learning rule (after some algebra). Gibbs sampling is needed to perform each step. Note: there is no guarantee that the EM algorithm will converge to the global optimum (i.e. to the real ML estimate).

The Restricted Boltzmann Machine

- RBMs are a special case of Boltmann Machines where there are no weights connecting the hidden nodes to each other with energy:

$$
\begin{equation*}
E(\vec{S})=\sum_{i \in \mathcal{V}_{o}, j \in \mathcal{V}_{h}} \omega_{i j} S_{i} S_{j} . \tag{59}
\end{equation*}
$$

- The conditional distributions $P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$ and $P\left(\vec{S}_{o} \mid \vec{S}_{h}\right)$ can both be factorized:

$$
\begin{equation*}
P\left(\vec{S}_{o} \mid \vec{S}_{h}\right)=\prod_{i \in \mathcal{V}_{o}} P\left(S_{i} \mid \vec{S}_{h}\right), \quad P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)=\prod_{j \in \mathcal{V}_{h}} P\left(S_{j} \mid \vec{S}_{o}\right) \tag{60}
\end{equation*}
$$

- For $i \in \mathcal{V}_{o}, P\left(S_{i} \mid \vec{S}_{h}\right)=\frac{1}{Z_{i}} \exp \left\{-(1 / T) S_{i}\left(\sum_{j \in \mathcal{V}_{h}} \omega_{i j} S_{j}\right)\right\} . Z_{i}$ is the normalization constant $Z_{i}=\sum_{S_{i} \in\{0,1\}} \exp \left\{-(1 / T) S_{i}\left(\sum_{j \in \mathcal{V}_{h}} \omega_{i j} S_{j}\right)\right\}$ - and similarly for $P\left(S_{j} \mid \vec{S}_{o}\right)$ for $j \in \mathcal{V}_{h}$.
- These factorization means that we can sample from $P\left(\vec{S}_{o} \mid \vec{S}_{h}\right)$ and $P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$ very rapidly (e.g., by sampling from $\left.P\left(S_{i} \mid \vec{S}_{h}\right)\right)$. This makes learning fast and practical. Estimating $<S_{i} S_{j}>_{\text {clamped }}$ requires sampling from $P\left(\vec{S}_{h} \mid \vec{S}_{0}\right)$, which is very fast. Estimating $<S_{i} S_{j}>$, requires sampling from $P\left(\vec{S}_{o}, \vec{S}_{h}\right)$ by alternatively sampling from $P\left(\vec{S}_{o} \mid \vec{S}_{h}\right)$ and $P\left(\vec{S}_{h} \mid \vec{S}_{o}\right)$.
This must be done multiple times until convergence (but it is much faster than Gibbs sampling).
- RBMs are too restricted to anything useful. But Hinton (2006) suggested stacking them on top of each other to create a Deep Network.

