Boltzmann Machine: The Gibbs Distribution

» The probability distribution for N neurons §: (s1, ..., Sn), where each s;
takes value 0 or 1, is defined by a Gibbs distribution with energy
E(S) = 5 X_,wisisy and distribution:

-,

P(5) = 5 exp{~E(5)/T}. (41)

> State configurations S with low energy E(§) will correspond to high
probabilities P(§) Z is specified by the normalization condition > = =1,
by Z = dexp{—E(g)/T}. The wj; are the weights of the distribution
(like weights in a neural network) and are symmetric wj = wj Vi, with
Wwii = 0, Vi.

» The "temperature” T controls the "sharpness’ of the distribution. For
very small T, the distribution is strongly peaked about
S* =arg ming E(S). As T increases, the distribution becomes less peaked
as T becomes large (T +— o0) all states become equally likely. Intuitively,
T is similar to the variance.

Boltzmann Machine: Inference

» The inference task is to compute, or estimate, the most probably state(s)
S* =arg maxz P(S) = arg ming E(S). But this is impossible because S
takes 2" possible states and so we cannot simply evaluate the probability
of every state and find the maximum, and similarly we cannot compute Z.
(But there are a few special cases where computing S*is possible).

» We have discgssed two types of algorithm that can get approximate
estimates of S™: (1) Gibbs Sampling. (II) Mean Field Theory.

» In this lecture we WiILbe using Gibbs sampling. Recall that this: (i)
initializes the states S randomly, (ii) selects a node i at random, (iii)
samples s; from the conditional distribution P(s;|S/i) = % and

(iv) repeat (ii) and (iii).

» It can be shown that Gibbs sampling converges to samples S from P(§)
This implies that the final states will have high probabilities. So if we have
aset {S§":n=1,.., N} from P(S) then they are likely to have high
probabilities {P(5") : n =1,..., N} and be close to $*. Importantly, for

-

this lecture, we can approximate the expected statistics of P(S) by

<55 >= Y gsis5P(S) ~ YN ST

Boltzmann Machine: Learning
> Divide the nodes into two classes V, and V;, which are the observed
(input) and hidden nodes respectively. S, and S, denote the states of the
observed and the hidden nodes respectively. The components of S, and S,
are {Sj:i€V,} and {S;: i €V} respectively. S = (S, Sy).
» We re-express the distribution over the states as:

. 1 =
P(S., Sn) = = exp{—E(S)/T}. (42)
The marginal distribution over the observed nodes is
" 1 =
P(S0) = Zfexp{*E(S)/T}- (43)
Sh

> We estimate a distribution R(Sp) of the observed nodes (from the
observed data {§g :n=1,...,N} where N are the number of training
examples). The goal of learning is to adjust the weights & of the model
(i.e. the {w;}) so that the marginal distribution P(S,) of the model is as
similar as possible to the observed model R(Sp).

» This requires specifying a similarity criterion which is chosen to be the
Kullback-Leibler divergence:

N peE o RS
,%;R(So)l g PG

Boltzmann Machine: The Learning Rule

» The Boltzmann Machine adjusts the weights by the iterative update rule:

wij — wij + Aw;j (44)
Awy = —5IKE(D) (45)
wij
1
Awy = 77{< SiSj >clamped — < SiSj >} (46)

» Here § is a small positive constant. The derivation of the update rule is
given in later slides (so is how to compute the update rule).

» < 5;Sj >ciamped and < 5;S; > are the expectation (e.g., correlation)
between the state variables S;, S; when the data is generated by the
clamped distribution R(S,)P(Sk|So) and by the distribution P(S,, Ss)
respectively.

> le <55 >=3¢ 5;5;P(S). The conditional distribution P(S5|S,) is the
distribution over the hidden states conditioned on the observed states. So
it is given by P(S4|So) = P(Sh, So)/P(So).

Boltzmann Machine: Understanding the Learning Rule

» The learning rule, equation (46), has two components. The first term
< 5i5j >clamped is Hebbian and the second term < S;S; > is anti-Hebbian
(because of the sign). This is a balance between the activity of the model
when it is driven by input data (i.e. clamped) and when it is driven by
itself. A wild speculation is that the Hebbian learning is done when you
are awake, hence exposed to external stimuli, while the anti-Hebbian
learning is done when you are asleep with your eyes shut but, by sampling
from P(§o\§h) you are creating images, or dreaming.

» The algorithm will convergence when the model accurately fits the data,
i.e.. when < 5;5; > amped=< 5;S5; > and the right hand side of the
update rule, equation (46), is zero.

— -

» What is the observed distribution R(S,)? We do not know R(S,) exactly
and so we approximate it by the training data {S}';n =1,...,N}. This is
equivalent to assuming that

R(S) = % S 65, — 8 (47)

Estimating the < 5;5; >

>

>

The Boltzmann Machine requires computing < 5;S; > ciampaed and
< 5;i5; >. This is done by Gibbs sampling (earlier lectures). .
By performing Gibbs sampling multiple times on the distribution P(go, §h)
we obtain M samples 51, ...,SM. Then we can approximate < 5;S; > by:
1M
<SS >x 4> SIS (48)
a=1
Similarly we can obtain samples from R(S,)P(5h|S,) (the clamped case)

1 - M o
by first generating samples S, , ..., S, from R(So) and then converting
them to samples

S,..S (49)

where S = (ii,ii), and ii is a random sample from P(54|S,), again
performed by Gibbs sampling.

How do we sample from R(§o)? Recall that we only know samples
{Sk;u=1,..., N} (the training data). Hence sampling from R(S,)
reduces to selecting one of the training examples at random.

Gibbs sampling is not a very effective algorithm. So Boltzmann machines
are hard to use in practice (with extra ingredients).

Derivation of the BM update rule (1)

> To justify the learning rule, equation (46), we need to take the derivative
of the cost function OKL(J)/Owi;.

OKL(W) _ T R(S,) 9P(S.) (50)

Owij = P(5) Owij

> Expressing P(S,) = 28 exp{—E(S)/ T}, we can express %5}) in two
ij
terms:

BlogZ

Zexp{ E(S/T}erxp{ E(5)/T)} (51)

» This can be re-expressed as:

?;SfSP(§)+{; P(§);z§:sisjP(§)} (52)

Derivation of the BM update rule (I1)

»> Hence we can compute:

oP(S,) _
Owij

ZSSP5)+P 7255/3(5 (53)

Sh

> Substituting equation (53) into equation (50) yields

agid TZSSJPP(SS) (5) 7f{ZR SO}ZSSP $) (54)

» Which can be simplified to give:

OKL(wW) 1 S | =
G =T Zg:s,-sjp(shwo)R(so) -7 Zs;s,-sjP(S) (55)

> Note this derivation requires dlog Z/dw; = "¢ S;S;P(S).

Boltzmann Machine is Maximum Likelihood Learning

>

>

>

The Kullback-Leibler criterion, equation (42), can be expressed as:
KL(@) =Y R(S,)log R(Se) = > R(S,) log P(Sh|So) (56)
s s

Only the second term depends on & so we can ignore the first (since we
want to minimize KL(&) with respect to &).

Using the expression for R(§o) in terms of the training data,
equation (47), we can express the second term as:

N
1 1 2 =
Y > N > " 6(So — 53) log P(S,) (57)
§O a=1
11 & -
NN > log P(S?) (58)
a=1

This is precisely, the Maximum Likelihood criterion for estimating the
parameters of the distribution P(S,). This shows that Maximum
Likelihood is a good strategy to learn a distribution even if we do not
know the correct form of the distribution. We are simply finding the best
fit model.

Boltzmann Machine learns by Expectation-Maximization

» The Boltzmann Machine (BM) learning is a special case of the
Expectation-Maximization (EM) algorithm. This algorithm can be applied
to any learning problem where some variables are unobservable.

» For the BM, the distribution is P(gc,7 §h;w) with observed data
{8 :n=1,...,N}. We do not know the {S; : n=1,..., N}, so the S are
hidden, missing, or latent variables.

> In theory we can compute the marginal distribution
P(So;w) = > 5 P(So, Sn;w). Then we can learn the weights {wj;} by
Maximum Likelthood: minimizing

N
— Z log P(S0; w), w.r.t. w.
n=1

> The problem is that we cannot compute P(S,;w) explicitly. This is where
we need EM.

BM and EM: part 1

» We define a new (unknown) distributions
Q"(Sh) =TI",47(Si) n=1,..N, where the {S} : i = 1,..,m} are the
components of the hidden variables Sh.

» We define a free energy:

ZlogPSg,w)—FZZQ 5") log Ci(f;',’) .
=% P(57185:)

» This has two important properties. Firstly, we can minimize F(Q,w) with
respect to each Q"(.) to obtain Q"(57) = P(57|S7; w). Substituting this
value of Q"(.) back into F(Q,w) yields — 3"V | log P(57; w).

» Therefore minimizing F(Q, w) with respect to Q and w is equivalent to
performing ML on P(§o;w)

» This follows from the facts that >« Q(S)lo

Q(8) = P(3).

BM and EM: part 2

» The second property is that we can minimize 7(Q,w) by alternatively
minimizing with respect to @ and to w. This is the EM algorithm.

> Minimizing w.r.t. Q(.) gives Q"(57) = P(S]|57; w).

» Minimizing w.r.t. w gives:

N N
wjj = argmin Z Q"(S7) log P(S; w) = arg min —{Z Q"(STE(S)—log Z(w)}.
n=1 n=1
> This exploits P(Sh|Ss; w)P(So;w) = P(Sh, So;w).
» For the BM, these minimizations reduce to the BM learning rule (after
some algebra). Gibbs sampling is needed to perform each step. Note:

there is no guarantee that the EM algorithm will converge to the global
optimum (i.e. to the real ML estimate).

The Restricted Boltzmann Machine

» RBMs are a special case of Boltmann Machines where there are no
weights connecting the hidden nodes to each other with energy:

ES)= > wSS: (59)
i€Vs, JEV)
> The conditional distributions P(S4|S,) and P(5,|S4) can both be
factorized:
P(SolSh) = [P(SiISh), P(ShSe) =] P(SiISe) (60)
i€Vo JEV,

> For i € Vo, P(Si|Sh) = 3 exp{—(1/T)Si(ey, wiS))}- Ziis the
normalization constant Z; = 3 ¢ (o 1y exp{—(1/T)Si(} ey, wiiSi)} — and
similarly for P(S;|S,) for j € V.

> These factorization means that we can sample from P(5,|S5) and
P(54|S,) very rapidly (e.g., by sampling from P(5;|S,)). This makes
learning fast and practical. Estimating < 5;5; >ciamped requires sampling
from P(§h\§o), which is very fast. Estimating < S;S; >, requires sampling
from P(S,, Sh) by alternatively sampling from P(5,|5,) and P(54|S,).
This must be done multiple times until convergence (but it is much faster
than Gibbs sampling).

» RBMs are too restricted to anything useful. But Hinton (2006) suggested
stacking them on top of each other to create a Deep Network.

