
Technical Introduction 1

Running head: TECHNICAL INTRODUCTION

Technical Introduction:

A Primer on Probabilistic Inference

Thomas L. Griffiths

Department of Cognitive and Linguistic Sciences

Brown University

Alan Yuille

Department of Statistics

University of California, Los Angeles

Technical Introduction 2

Abstract

Research in computer science, engineering, mathematics, and statistics has produced a

variety of tools that are useful in developing probabilistic models of human cognition. We

provide an introduction to the principles of probabilistic inference that are used in the

papers appearing in this special issue. We lay out the basic principles that underlie

probabilistic models in detail, and then briefly survey some of the tools that can be used

in applying these models to human cognition.

Technical Introduction 3

Technical Introduction:

A Primer on Probabilistic Inference

Introduction

Probabilistic models aim to explain human cognition by appealing to the principles

of probability theory and statistics, which dictate how an agent should act in situations

that involve uncertainty. While probability theory was originally developed as a means of

analyzing games of chance, it was quickly realized that probabilities could be used as a

guide to rational action [1, 2]. Probabilistic models are used in many disciplines, and are

the method of choice for an enormous range of applications, including artificial systems for

medical inference (e.g., [3]), bioinformatics (e.g., [4]), and computer vision (e.g., [5]).

Applying probabilistic models to human cognition thus provides the opportunity to draw

upon work in computer science, engineering, mathematics, and statistics, often revealing

surprising connections.

Developing probabilistic models of cognition involves two challenges. The first

challenge is specifying a suitable model. This requires considering the computational

problem faced by an agent and the knowledge available to that agent [6, 7]. The second

challenge is evaluating model predictions. Probabilistic models can capture the structure

of extremely complex problems, but as the structure of the model becomes richer,

probabilistic inference becomes harder. Being able to compute the relevant probabilities is

a practical issue that arises when using probabilistic models, and also raises the question

of how people might be able to make similar computations.

In this paper, we will introduce some of the tools that can be used to address these

challenges. The plan of the paper is as follows. First, we introduce Bayesian inference,

Technical Introduction 4

which is at the heart of many probabilistic models. We then consider how to define

structured probability distributions, introducing some of the key ideas behind graphical

models, which can be used to represent the dependencies among a set of variables. Finally,

we discuss two algorithms that are used to evaluate the predictions of probabilistic

models: the Expectation-Maximization (EM) algorithm, and Markov chain Monte Carlo

(MCMC). Several books provide a more detailed discussion of these topics in the context

of statistics [8, 9, 10], machine learning [11, 12, 13], and artificial intelligence [14, 15, 16].

Fundamentals of Bayesian inference

Probabilistic models of cognition are often referred to as Bayesian models, reflecting

the central role that Bayesian inference plays in reasoning under uncertainty. In this

section, we will introduce the basic ideas behind Bayesian inference, and discuss how it

can be used in different contexts.

Basic Bayes

Bayesian inference is based upon a simple formula known as Bayes’ rule [1]. Assume

that we have an agent who is attempting to infer the process that was responsible for

generating some data, d. Let h be a hypothesis about this process, and P (h) indicate the

probability that the agent would have ascribed to h being the true generating process,

prior to seeing d (known as a prior probability). How should that agent go about changing

his beliefs in the light of the evidence provided by d? To answer this question, we need a

procedure for computing the posterior probability, P (h|d).

Bayes’ rule provides just such a procedure, defining the posterior probability to be

P (h|d) =
P (d|h)P (h)

P (d)
, (1)

where the probability of the data given the hypothesis, P (d|h), is known as the likelihood.

The denominator is obtained by summing over hypotheses, a procedure known as

Technical Introduction 5

marginalization, to obtain

P (d) =
∑
h′∈H

P (d|h′)P (h′), (2)

where H is the set of all hypotheses considered by the agent, sometimes referred to as the

hypothesis space. This formulation of Bayes’ rule makes it apparent that the posterior

probability of h is directly proportional to the product of the prior probability and the

likelihood. The sum in the denominator simply ensures that the resulting probabilities are

normalized to sum to one. Box 1 discusses how the resulting posterior distribution can be

used as a guide to rational action.

Comparing two simple hypotheses

The setting in which Bayes’ rule is usually introduced is the comparison of two

simple hypotheses. For example, imagine that you are told that a box contains two coins:

one that produces heads 50% of the time, and one that produces heads 90% of the time.

You choose a coin, and then flip it ten times, producing the sequence HHHHHHHHHH. Which

coin did you pick? What would you think if you had flipped HHTHTHTTHT instead?

To translate this problem into a Bayesian inference, we need to identify the

hypothesis space, H, the prior distribution, P (h), and the likelihood, P (d|h). We have two

coins, and thus two hypotheses. If we use θ to denote the probability that a coin produces

heads, then h0 is the hypothesis that θ = 0.5, and h1 is the hypothesis that θ = 0.9. Since

we have no reason to believe that we would be more likely to pick one coin than the other,

the prior probabilities are P (h0) = P (h1) = 0.5. The probability of a particular sequence

of coinflips containing NH heads and NT tails being generated by a coin which produces

heads with probability θ is

P (d|θ) = θNH (1 − θ)NT . (3)

The likelihoods associated with h0 and h1 can thus be obtained by substituting the

appropriate value of θ into Equation 3.

Technical Introduction 6

We can place the priors and likelihoods defined above directly into Equation 1 to

compute the posterior probability of each of our hypotheses. However, with just two

hypotheses it is often easier to work with the posterior odds, the ratio of the posterior

probabilities. If we use Bayes’ rule to find the posterior probability of h0 and h1, it follows

that the posterior odds in favor of h1 are

P (h1|d)

P (h0|d)
=

P (d|h1)

P (d|h0)

P (h1)

P (h0)
(4)

where we have used the fact that the denominator of Equation 1 is constant. The first and

second terms on the right hand side are called the likelihood ratio and the prior odds

respectively.

Equation 4 helps to clarify how prior knowledge and new data are combined in

Bayesian inference. The two terms on the right hand side each express the influence of one

of these factors: the prior odds are determined entirely by the prior beliefs of the agent,

while the likelihood ratio expresses how these odds should be modified in light of the data

d. Returning to our example, we can use Equation 4 to compute the posterior odds of our

two hypotheses for any observed sequence of heads and tails. Using the priors and

likelihood ratios from the previous paragraph gives odds of approximately 357:1 in favor of

h1 for the sequence HHHHHHHHHH and 165:1 in favor of h0 for the sequence HHTHTHTTHT.

Comparing infinitely many hypotheses

The analysis outlined above for two simple hypotheses generalizes naturally to other

finite (or countably infinite) sets. However, Bayesian inference can also be applied in

contexts where there are (uncountably) infinitely many hypotheses to evaluate – a

situation that arises surprisingly often. For example, imagine that rather than choosing

between two alternatives for the probability that a coin produces heads, θ, we were willing

to consider any value of θ between 0 and 1. What should we infer about the value of θ

from a sequence such as HHHHHHHHHH?

Technical Introduction 7

In Bayesian statistics, inferring θ is treated just like any other Bayesian inference. If

we assume that θ is a random variable, then we can apply Bayes’ rule to obtain

p(θ|d) =
P (d|θ)p(θ)

P (d)
(5)

where

P (d) =

∫ 1

0
P (d|θ)p(θ) dθ. (6)

The key difference from Bayesian inference with a finite or countably infinite set of

hypotheses is that the posterior distribution is now characterized by a probability density,

which we indicate by using p(·) instead of P (·), and the sum over hypotheses becomes an

integral.

The posterior distribution over θ contains more information than a single point

estimate: it indicates not just which values of θ are probable, but also how much

uncertainty there is about those values. Collapsing this distribution down to a single

number discards information, so Bayesians prefer to maintain distributions wherever

possible (this attitude is similar to Marr’s “principle of least commitment” [6]). However,

there are two methods that are commonly used to obtain a point estimate from a

posterior distribution. The first method is maximum a posteriori (MAP) estimation:

choosing the value of θ that maximizes the posterior probability, as given by Equation 5.

The second method is computing the posterior mean of the quantity in question. For

example, we could compute the posterior mean value of θ, which would be

θ̄ =

∫ 1

0
θ p(θ|d) dθ. (7)

For the case of coinflipping, the posterior mean also corresponds to the posterior predictive

distribution: the probability with which one should predict the next toss of the coin will

produce heads.

Different choices of the prior, p(θ), will lead to different guesses at the value of θ. A

first step might be to assume a uniform prior over θ, with p(θ) being equal for all values of

Technical Introduction 8

θ between 0 and 1. Using a little calculus, it is possible to show that the posterior

distribution over θ produced by a sequence d with NH heads and NT tails is

p(θ|d) =
(NH + NT + 1)!

NH ! NT !
θNH (1 − θ)NT . (8)

This is actually a distribution of a well known form, being a beta distribution with

parameters NH + 1 and NT + 1, denoted Beta(NH + 1, NT + 1) [17]. Using this prior, the

MAP estimate for θ is NH

NH+NT
(which is also the maximum-likelihood estimate, being the

value of θ that maximizes P (d|θ)), but the posterior mean is NH+1
NH+NT +2 . Thus, the

posterior mean is sensitive to the fact that we might not want to put as much weight in a

single head as a sequence of ten heads in a row: on seeing a single head, we should predict

that the next toss will produce a head with probability 2
3 , while a sequence of ten heads

should lead us to predict that the next toss will produce a head with probability 11
12 .

We can also use priors that encode stronger beliefs about the value of θ. For

example, we can take a Beta(VH + 1, VT + 1) distribution for p(θ), where VH and VT are

greater than −1. This distribution has a mean at VH+1
VH+VT +2 , and gradually becomes more

concentrated around that mean as VH + VT becomes large. For instance, taking

VH = VT = 1000 would give a distribution that strongly favors values of θ close to 0.5.

Using such a prior, we obtain the posterior distribution

p(θ|d) =
(NH + NT + VH + VT + 1)!

(NH + VH)! (NT + VT)!
θNH+VH (1 − θ)NT +VT , (9)

which is Beta(NH + VH + 1, NT + VT + 1). Under this posterior distribution, the MAP

estimate of θ is NH+VH

NH+NT +VH+VT
, and the posterior mean is NH+VH+1

NH+NT +VH+VT +2 . Thus, if

VH = VT = 1000, seeing a sequence of ten heads in a row would induce a posterior

distribution over θ with a mean of 1011
2012 ≈ 0.5025.

Some reflection upon the results in the previous paragraph yields two observations:

first, that the prior and posterior are from the same family of distributions (both being

beta distributions), and second, that the parameters of the prior, VH and VT , act as

Technical Introduction 9

“virtual examples” of heads and tails, which are simply combined with the real examples

tallied in NH and NT to produce the posterior. These two properties are not accidental:

they are characteristic of a class of priors called conjugate priors [9]. The likelihood

determines whether a conjugate prior exists for a given problem, and the form that the

prior will take. The results we have given in this section exploit the fact that the beta

distribution is the conjugate prior for the Bernoulli or binomial likelihood (Equation 3) –

the uniform distribution on [0, 1] is also a beta distribution, being Beta(1, 1). Conjugate

priors exist for many distributions, including Gaussian, Poisson, and multinomial

distributions, and greatly simplify many Bayesian calculations.

Comparing hypotheses that differ in complexity

Whether there were a finite number or not, the hypotheses that we have considered

so far were relatively homogeneous, each offering a single value for the parameter θ

characterizing our coin. However, many problems require comparing hypotheses that

differ in complexity. For example, the problem of inferring whether a coin is fair or biased

based upon an observed sequence of heads and tails requires comparing a hypothesis that

gives a single value for θ – if the coin is fair, then θ = 0.5 – with a hypothesis that allows θ

to take on any value between 0 and 1.

Choosing between models that differ in their complexity is often called the problem

of model selection [18, 19]. The Bayesian approach to model selection is a seamless

application of the methods discussed so far. Hypotheses that differ in their complexity can

be compared directly using Bayes’ rule, once they are reduced to probability distributions

over the observable data [20].

To illustrate this principle, assume that we have two hypotheses: h0 is the

hypothesis that θ = 0.5, and h1 is the hypothesis that θ takes a value drawn from a

uniform distribution on [0, 1]. If we have no a priori reason to favor one hypothesis over

Technical Introduction 10

the other, we can take P (h0) = P (h1) = 0.5. The likelihood of the data under h0 is

straightforward to compute, using Equation 3, giving P (d|h0) = 0.5NH+NT . But how

should we compute the likelihood of the data under h1, which does not make a

commitment to a single value of θ?

The solution to this problem is to compute the marginal probability of the data

under h1. Applying the principle of marginalization mentioned above, we can define the

joint distribution over d and θ given h1, and then integrate over θ to obtain

P (d|h1) =

∫ 1

0
P (d|θ, h1)p(θ|h1) dθ (10)

where p(θ|h1) is the distribution over θ assumed under h1 – in this case, a uniform

distribution over [0, 1]. This does not require any new concepts – it is exactly the same

kind of computation as we needed to perform to compute the normalizing constant for the

posterior distribution over θ (Equation 6). Performing this computation, we obtain

P (d|h1) = NH ! NT !
(NH+NT +1)! , where again the fact that we have a conjugate prior provides us

with a neat analytic result. Having computed this likelihood, we can apply Bayes’ rule

just as we did for two simple hypotheses. Figure 1 (a) shows how the log posterior odds in

favor of h1 change as NH and NT vary for sequences of length 10.

The ease with which hypotheses differing in complexity can be compared using

Bayes’ rule conceals the fact that this is a difficult problem. Complex hypotheses have

more degrees of freedom that can be adapted to the data, and can thus always be made to

fit better than simple hypotheses. For example, for any sequence of heads and tails, we

can always find a value of θ that would give higher probability to that sequence than the

hypothesis that θ = 0.5. It seems like a complex hypothesis would thus have a big

advantage over a simple hypothesis. The Bayesian solution to the problem of comparing

hypotheses that differ in their complexity takes this into account. More degrees of freedom

provide the opportunity to find a better fit to the data, but this greater flexibility also

Technical Introduction 11

makes a worse fit possible. For example, for d consisting of the sequence HHTHTTHHHT,

P (d|θ, h1) is greater than P (d|h0) for θ ∈ (0.5, 0.694], but is less than P (d|h0) outside that

range. Marginalizing over θ averages these gains and losses: a more complex hypothesis

will be favored only if its greater complexity consistently provides a better account of the

data. This penalization of complex models is known as the “Bayesian Occam’s razor”

[21, 13], and is illustrated in Figure 1 (b).

Representing structured probability distributions

Probabilistic models go beyond “hypotheses” and “data”. More generally, a

probabilistic model defines the joint distribution for a set of random variables. For

example, imagine that a friend of yours claims to possess psychic powers – in particular,

the power of psychokinesis. He proposes to demonstrate these powers by flipping a coin,

and influencing the outcome to produce heads. You suggest that a better test might be to

see if he can levitate a pencil, since the coin producing heads could also be explained by

having substituted a two-headed coin. We can express all possible outcomes of the

proposed tests, as well as their causes, using the binary random variables X1, X2, X3, and

X4 to represent (respectively) the truth of the coin being flipped and producing heads, the

pencil levitating, your friend having psychic powers, and the use of a two-headed coin.

Any set of of beliefs about these outcomes can be encoded in a joint probability

distribution, P (x1, x2, x3, x4). For example, the probability that the coin comes up heads

(x1 = 1) should be higher if your friend actually does have psychic powers (x3 = 1).

Once we have defined a joint distribution on X1, X2, X3, and X4, we can reason

about the implications of events involving these variables. For example, if flipping the coin

produces heads (x1 = 1), then the probability distribution over the remaining variables is

P (x2, x3, x4|x1 = 1) =
P (x1 = 1, x2, x3, x4)

P (x1 = 1)
. (11)

This equation can be interpreted as an application of Bayes’ rule, with X1 being the data,

Technical Introduction 12

and X2, X3, X4 being the hypotheses. However, in this setting, as with most probabilistic

models, any variable can act as data or hypothesis. In the general case, we use

probabilistic inference to compute the probability distribution over a set of unobserved

variables (here, X2, X3, X4) conditioned on a set of observed variables (here, X1).

While the rules of probability can, in principle, be used to define and reason about

probabilistic models involving any number of variables, two factors can make large

probabilistic models difficult to use. First, it is hard to simply write down a sensible joint

distribution over a large set of variables. Second, the resources required to represent and

reason about probability distributions increases exponentially in the number of variables

involved. A probability distribution over four binary random variables requires

24 − 1 = 15 numbers to specify, which might seem quite reasonable. If we double the

number of random variables to eight, we would need to provide 28 − 1 = 255 numbers to

fully specify the joint distribution over those variables. Fortunately, research in statistics

and computer science has produced a formal language for describing probability

distributions that simplifies both representation and reasoning. This is the language of

graphical models, in which the statistical dependencies that exist among a set of variables

are represented graphically.

Directed graphical models

The most common kind of graphical models are directed graphical models, also

known as Bayesian networks or Bayes nets, which consist of a set of nodes, representing

random variables, together with a set of directed edges from one node to another [16].

Typically, nodes are drawn as circles, and the existence of a directed edge from one node

to another is indicated with an arrow between the corresponding nodes. If an edge exists

from node A to node B, then A is referred to as the “parent” of B, and B is the “child” of

A. This genealogical relation is often extended to identify the “ancestors” and

Technical Introduction 13

“descendants” of a node. Bayes nets use acyclic graphs, meaning that no node can be its

own ancestor.

The directed graph used in a Bayes net has one node for each random variable in

the associated probability distribution. The edges express the statistical dependencies

between the variables in a fashion consistent with the Markov condition: conditioned on

its parents, each variable is independent of all other variables except its descendants

[16, 22]. This has an important implication: a Bayes net specifies a canonical factorization

of a probability distribution into the product of the conditional distribution for each

variable conditioned on its parents. Thus, for a set of variables X1, X2, . . . , Xm, we can

write P (x1, x2, . . . , xm) =
∏

i P (xi|Pa(Xi)) where Pa(Xi) is the set of parents of Xi.

Figure 2 shows a Bayes net for the example of the friend who claims to have psychic

powers. This Bayes net identifies a number of assumptions about the relationship between

the variables involved in this situation. For example, X1 and X2 are assumed to be

independent given X3, indicating that once it was known whether or not your friend was

psychic, the outcomes of the coin flip and the levitation experiments would be completely

unrelated. By the Markov condition, we can write

P (x1, x2, x3, x4) = P (x1|x3, x4)P (x2|x3)P (x3)P (x4). This factorization allows us to use

fewer numbers in specifying the distribution over these four variables: we only need one

number for each variable, conditioned on each set of values taken on by its parents. In this

case, this adds up to 8 numbers rather than 15. Furthermore, recognizing the structure in

this probability distribution simplifies some of the computations we might want to

perform. There are a number of specialized algorithms for efficient probabilistic inference

in Bayes nets, which make use of the dependencies among variables [16, 14].

Technical Introduction 14

Undirected graphical models

Undirected graphical models, also known as Markov Random Fields (MRFs),

consist of a set of nodes, representing random variables, and a set of undirected edges,

defining a neighborhood structure on the graph which indicates the probabilistic

dependencies of the variables at the nodes [16]. Each set of fully-connected neighbors is

associated with a potential function, which varies as the associated random variables take

on different values. When multiplied together, these potential functions give the

probability distribution over all the variables. Unlike directed graphical models, there

need be no simple relationship between these potentials and the local conditional

probability distributions. These models are widely used in computer vision [5], and some

kinds of artificial neural networks inspired by ideas from statistical physics can be

interpreted as undirected graphical models [23].

Uses of graphical models

Different aspects of graphical models are emphasized in their use in the artificial

intelligence and statistics communities. In the artificial intelligence community

[15, 16, 14], the emphasis is on Bayes nets as a form of knowledge representation and an

engine for probabilistic reasoning. Recently, research has begun to explore the use of

graphical models for the representation of causal relationships (see Box 2). In statistics,

graphical models tend to be used to clarify the dependencies among a set of variables, and

to identify the generative model assumed by a particular analysis. A generative model is a

step-by-step procedure by which a set of variables are assumed to take their values,

defining a probability distribution over those variables. Any Bayes net specifies such a

procedure: each variable without parents is sampled, then each successive variable is

sampled conditioned on the values of its parents. By considering the process by which

observable data are generated, it becomes possible to postulate that the structure

Technical Introduction 15

contained in those data is the result of underlying unobserved variables. The use of such

latent variables is extremely common in probabilistic models (see Box 3), and is at the

heart of probabilistic models of language (see Box 4).

Algorithms for inference

The presence of latent variables in a model poses two problems: inferring the values

of the latent variables conditioned on observed data, and learning the probability

distribution characterizing both the observable and latent variables. In the probabilistic

framework, both these forms of inference reduce to inferring the values of unknown

variables, conditioned on known variables. This is conceptually straightforward, but the

computations involved are difficult and can require complex algorithms.

A standard approach to solving the problem of estimating probability distributions

involving latent variables is the Expectation-Maximization (EM) algorithm [24]. Imagine

we have a model for data x that has parameters θ, and latent variables z. A mixture

model is one example of such a model (see Box 3). The likelihood for this model is

P (x|θ) =
∑

z
P (x, z|θ) where the latent variables z are unknown. The EM algorithm is a

procedure for obtaining a maximum-likelihood (or MAP) estimate for θ, without resorting

to generic methods such as differentiating log P (x|θ). The key idea is that if we knew the

values of the latent variables z, then we could find θ by using the standard methods for

estimation discussed above. Even though we might not have perfect knowledge of z, we

can still assign probabilities to z based on x and our current guess of θ, P (z|x, θ). The EM

algorithm for maximum-likelihood estimation proceeds by repeatedly alternating between

two steps: evaluating the expectation of the “complete log-likelihood” log P (x, z|θ) with

respect to P (z|x, θ) (the E-step), and maximizing the resulting quantity with respect to θ

(the M-step). This algorithm is guaranteed to converge to a local maximum of P (x|θ) [24],

and both steps can be interpreted as performing hillclimbing on a single “free energy”

Technical Introduction 16

function [25]. An illustration of EM for a mixture of Gaussians appears in Figure 3 (a).

Another class of algorithms, Markov chain Monte Carlo (MCMC) methods, provide

a means of obtaining samples from complex distributions, which can be used both for

inferring the values of latent variables and for identifying the parameters of models. These

algorithms were originally developed to solve problems in statistical physics [26], and are

now widely used both in physics [27] and in statistics [28, 13, 29]. As the name suggests,

Markov chain Monte Carlo is based upon the theory of Markov chains – sequences of

random variables in which each variable is independent of all of its predecessors given the

variable that immediately precedes it [30]. One well known property of Markov chains is

their tendency to converge to a stationary distribution: as the length of a Markov chain

increases, the probability that a variable in that chain takes on a particular value

converges to a fixed quantity. In MCMC, a Markov chain is constructed such that its

stationary distribution is the distribution from which we want to generate samples. For

example, we could construct a Markov chain that would converge to the posterior

distribution over the parameters of a mixture of Gaussians given the data. The states of

the Markov chain would be the parameter values, and could be used like samples from the

posterior distribution once the Markov chain converged. There are a variety of standard

MCMC algorithms, including Gibbs sampling [5], in which the Markov chain moves

between states by drawing each of a set of variables from its distribution when conditioned

on the values of all other variables, and the more general Metropolis-Hastings algorithm

[26, 31]. The results of applying Gibbs sampling to a mixture of Gaussians are shown in

Figure 3 (b).

Conclusion

Probabilistic models provide a unique opportunity to develop a rational account of

human cognition that combines statistical learning with structured representations.

Technical Introduction 17

However, specifying and using these models can be challenging. The widespread use of

probabilistic models in computer science and statistics has led to the development of

valuable tools that address some of these challenges. Graphical models provide a simple

and intuitive way of expressing a probability distribution, making clear the assumptions

about how a set of variables are related, and can greatly speed up probabilistic inference.

The EM algorithm and Markov chain Monte Carlo can be used to estimate the

parameters of models that incorporate latent variables, and to work with complicated

probability distributions of the kind that often arise in Bayesian inference. By using these

tools and continuing to draw on advances in the many disciplines where probabilistic

models are used, it may ultimately become possible to define models that can capture

some of the complexity of human cognition.

References

[1] T. Bayes. Studies in the history of probability and statistics: IX. Thomas Bayes’s

Essay towards solving a problem in the doctrine of chances. Biometrika, 45:296–315,

1763/1958.

[2] P. S. Laplace. A philosophical essay on probabilities. Dover, New York, 1795/1951.

[3] M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and

G. Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR

knowledge base I. The probabilistic model and inference algorithms. Methods of

Information in Medicine, 30:241–255, 1991.

[4] J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure

using multilocus genotype data. Genetics, 155:945–955, 2000.

Technical Introduction 18

[5] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6:721–741, 1984.

[6] D. Marr. Vision. W. H. Freeman, San Francisco, CA, 1982.

[7] J. R. Anderson. The adaptive character of thought. Erlbaum, Hillsdale, NJ, 1990.

[8] J. O. Berger. Statistical decision theory and Bayesian analysis. Springer, New York,

1993.

[9] J. M. Bernardo and A. F. M. Smith. Bayesian theory. Wiley, New York, 1994.

[10] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis.

Chapman & Hall, New York, 1995.

[11] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley, New York,

2000.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: Data

mining, inference, and prediction. Springer, New York, 2001.

[13] D. J. C. Mackay. Information theory, inference, and learning algorithms. Cambridge

University Press, Cambridge, 2003.

[14] S. J. Russell and P. Norvig. Artificial intelligence: A modern approach. Prentice Hall,

Englewood Cliffs, NJ, 2nd edition, 2002.

[15] K. Korb and A. Nicholson. Bayesian artificial intelligence. Chapman and Hall/CRC,

Boca Raton, FL, 2003.

[16] J. Pearl. Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San

Francisco, CA, 1988.

Technical Introduction 19

[17] J. Pitman. Probability. Springer-Verlag, New York, 1993.

[18] I. J. Myung and Mark A. Pitt. Applying Occam’s razor in modeling cognition: A

Bayesian approach. Psychonomic Bulletin and Review, 4:79–95, 1997.

[19] I. J. Myung, M. R. Forster, and M. W. Browne. Model selection [special issue].

Journal of Mathematical Psychology, 44, 2000.

[20] R. E. Kass and A. E. Rafferty. Bayes factors. Journal of the American Statistical

Association, 90:773–795, 1995.

[21] W. H. Jeffreys and J. O. Berger. Ockham’s razor and Bayesian analysis. American

Scientist, 80(1):64–72, 1992.

[22] P. Spirtes, C. Glymour, and R. Schienes. Causation prediction and search.

Springer-Verlag, New York, 1993.

[23] G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines.

In D. E. Rumelhart and J. L. McClelland, editors, Parallel distributed processing:

Explorations in the microstructure of cognition, volume 1. MIT Press, Cambridge,

MA, 1986.

[24] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1977.

[25] R. M. Neal and G. E. Hinton. A view EM algorithm that justifies incremental,

sparse, and other variants. In M. I. Jordan, editor, Learning in graphical models. MIT

Press, Cambridge, MA, 1998.

[26] A. W. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equations of state calculations by fast computing machines. Journal of Chemical

Physics, 21:1087–1092, 1953.

Technical Introduction 20

[27] M. E. J. Newman and G. T. Barkema. Monte Carlo methods in statistical physics.

Clarendon Press, Oxford, 1999.

[28] W.R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte

Carlo in Practice. Chapman and Hall, Suffolk, 1996.

[29] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods.

Technical Report CRG-TR-93-1, University of Toronto, 1993.

[30] J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, UK, 1997.

[31] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57:97–109, 1970.

[32] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,

Nashua, NH, 2000.

[33] J. Pearl. Causality: Models, reasoning and inference. Cambridge University Press,

Cambridge, UK, 2000.

[34] S. Sloman. Causal models: How people think about the world and its alternatives.

Oxford University Press, Oxford, 2005.

[35] C. Glymour. The mind’s arrows: Bayes nets and graphical causal models in

psychology. MIT Press, Cambridge, MA, 2001.

[36] T. L. Griffiths and J. B. Tenenbaum. Theory-based causal induction, in prep.

[37] D. Heckerman. A tutorial on learning with Bayesian networks. In Michael I. Jordan,

editor, Learning in Graphical Models, pages 301–354. MIT Press, Cambridge, MA,

1998.

[38] C. Glymour and G. Cooper. Computation, Causation, and Discovery. MIT Press,

Cambridge, MA, 1999.

Technical Introduction 21

[39] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77:257–286, 1989.

[40] C. Manning and H. Schütze. Foundations of statistical natural language processing.

MIT Press, Cambridge, MA, 1999.

Technical Introduction 22

Box 1: Decision theory and control theory

Bayesian decision theory introduces a loss function L(h, α(d)) for the cost of

making a decision α(d) when the input is d and the true hypothesis is h. It proposes

selecting the decision rule α∗(.) that minimizes the risk, or expected loss, function:

R(α) =
∑
h,d

L(h, α(d))P (h, d). (12)

This is the basis for rational decision making [8].

Usually the loss function is choosen so that the same penalty is paid for all wrong

decisions: L(h, α(d)) = 1 if α(d) 6= h and L(h, α(d)) = 0 if α(d) = h. Then the best

decision rule is the maximum a posteriori (MAP) estimator α∗(d) = arg maxP (h|d).

Alternatively, if the loss function is the square of the error L(h, α(d)) = {h−α(d)}2 then

the best decision rule is the posterior mean
∑

h hP (h|d).

In many situations, we will not know the distribution P (h, d) exactly but will

instead have a set of labelled samples {(hi, di) : i = 1, ..., N}. The risk (Equation 12)

can be approximated by the empirical risk Remp(α) = (1/N)
∑N

i=1 L(hi, α(di)). Some

methods used in machine learning, such as neural networks and support vector machines,

attempt to learn the decision rule directly by minimizing Remp(α) instead of trying to

model P (h, d) [11, 12].

The Bayes risk (Equation 12) can be extended to dynamical systems where

decisions need to be made over time. This leads to optimal control theory [32] where

the goal is to minimize a cost functional to obtain a control law (analogous to the Bayes

risk and the decision rule respectively). In this case, the notation is changed to use a

control variable u to replace the decision variable α. Optimal control theory lays the

groundwork for theories of animal learning and motor control.

Technical Introduction 23

Box 2: Causal graphical models

Causal graphical models augment standard directed graphical models with a

stronger assumption about the relationship indicated by an edge between two nodes:

rather than indicating statistical dependency, such an edge is assumed to indicate a direct

causal relationship [33, 22]. This assumption allows causal graphical models to represent

not just the probabilities of events that one might observe, but also the probabilities

of events that one can produce through intervening on a system. The implications of

an event can differ strongly, depending on whether it was the result of observation or

intervention. For example, observing that nothing happened when your friend attempted

to levitate a pencil would provide evidence against his claim of having psychic powers;

intervening to hold the pencil down, and thus guaranteeing that it did not move during

his attempted act of levitation, would remove any opportunity for this event to provide

such evidence.

In causal graphical models, the consequences of intervening on a particular variable

are be assessed by removing all incoming edges to the variable that was intervened

on, and performing probabilistic inference in the resulting “mutilated” model [33].

This procedure produces results that align with our intuitions in the psychic powers

example: intervening on X2 breaks its connection with X3, rendering the two variables

independent. As a consequence, X2 cannot provide evidence as to the value of X3. Good

summaries exist for both the psychological [34, 35, 36] and technical uses of graphical

models [37, 38].

Technical Introduction 24

Box 3: Latent variables and mixture models

In many unsupervised learning problems, the observable data are believed to reflect

some kind of underlying latent structure. For example, in a clustering problem, we might

only see the location of each point, but believe that each point was generated from one of

a small number of clusters. Associating the observed data with random variables Xi and

the latent variables with random variables Zi, we might want to define a probabilistic

model for Xi that explicitly takes into account the latent structure Zi. Such a model can

ultimately be used to make inferences about the latent structure associated with new

datapoints, as well as providing a more accurate model of the distribution of Xi.

A common example of a latent variable model is a mixture model, in which the

distribution of Xi is assumed to be a mixture of several other distributions. For example,

in the case of clustering, we might believe that our data were generated from two clusters,

each associated with a different Gaussian (i.e. normal) distribution. If we let zi denote

the cluster from which the datapoint xi was generated, and assume that there are K

such clusters, then the probability distribution over xi is

P (xi) =
K∑

k=1

P (xi|zi = k)P (zi = k) (13)

where P (xi|zi = k) is the distribution associated with cluster k, and P (zi = k) is

the probability that a point would be generated from that cluster. If we can estimate

the parameters that characterize these distributions, we can infer the probable cluster

membership (zi) for any datapoint (xi). An example of a Gaussian mixture model (also

known as a mixture of Gaussians) appears in Figure 3.

Technical Introduction 25

Box 4: Latent variable models for language

Latent variables are particularly useful in models of language, where they can be

used to capture some of the unobserved structure that governs the words appearing in

sentences. Hidden Markov models (HMMs) are one class of latent variable models that

have been used for problems such as speech and language processing [39]. In an HMM,

each word Wi is assumed to be generated from a latent class Zi, where Zi is chosen from

a distribution that depends on the class of the previous word, Zi−1. The classes thus

form a Markov chain, which is “hidden” because only the words are observable. The

graphical model for an HMM is shown in Figure 4.

A probabilistic context free grammar (PCFG) is a context-free grammar that

associates a probability with each of its production rules [40]. The joint probability

of a sentence and its parse tree is the product of the probabilities of the production rules

used to generate the sentence. For example, we can define a PCFG as follows (see Figure

4). The non-terminal nodes S, NP, V P, AT, NNS, V BD, PP, IN, DT, NN where S is a

sentence, V P is a verb phrase, V BD is a verb,NP is a noun phrase, NN is a noun, and

so on [40]. The terminal nodes are words from a dictionary (e.g. “the”, “cat”, “sat”,

“on”, “mat”.) We then define production rules which are applied to non-terminal nodes

to generate child nodes (e.g. S 7→ NP, V P or NN 7→ “cat”), and specify probabilities for

these production rules. The production rules enable us to generate a sentence starting

from the root node S. We sample a production rule starting with S and apply it to

generate child nodes. We repeat this process on the child nodes and stop when all the

nodes are terminal (i.e. words). To parse a sentence, we compute the most probable

way the sentence could have been generated by the production rules. We can learn the

production rules, and their probabilities, directly from sentences. This can be done in

a supervised way, where the correct parses are known, or in an unsupervised way, as

described in the article by Manning and Chater in this issue.

Technical Introduction 26

Figure Captions

Figure 1. Comparing hypotheses about the weight of a coin. (a) The vertical axis shows

log posterior odds in favor of h1, the hypothesis that the probability of heads (θ) is drawn

from a uniform distribution on [0, 1], over h0, the hypothesis that the probability of heads

is 0.5. The horizontal axis shows the number of heads, NH , in a sequence of 10 flips. As

NH deviates from 5, the posterior odds in favor of h1 increase. (b) The posterior odds

shown in (a) are computed by averaging over the values of θ with respect to the prior,

p(θ). This averaging takes into account the fact that hypotheses with greater flexibility

can produce both better and worse predictions. The red line shows the probability of the

sequence HHTHTTHHHT for different values of θ, while the dotted line is the probabiltiy of

any sequence of length 10 under h0. On average, the greater flexibility of h1 results in

lower probabilities, so h0 is favored over h1. In contrast, a wide range of values of θ result

in higher probability for for the sequence HHTHHHTHHH, as shown by the blue line, and h1 is

favored over h0.

Figure 2. Directed graphical model (Bayes net) showing the dependencies among variables

in the “psychic friend” example discussed in the text. X1, X2, X3, and X4 are random

variables characterizing possible events that could occur, and the arrows between them

reflect statistical dependencies.

Figure 3. Expectation-Maximization (EM) and Markov chain Monte Carlo (MCMC)

algorithms applied to a Gaussian mixture model with two clusters. Colors indicate the

assignment of points to clusters (red and blue), with intermediate purples representing

probabilistic assignments. The ellipses are a single probability contour for the Gaussian

distributions reflecting the current parameter values for the two clusters. (a) The EM

algorithm assigns datapoints probabilistically to the two clusters, and converges to a single

solution that is guaranteed to be a local maximum of the log-likelihood. (b) In contrast,

Technical Introduction 27

an MCMC algorithm samples cluster assignments, so each datapoint is assigned to a

cluster at each iteration, and samples parameter values conditioned on those assignments.

This process converges to the posterior distribution over cluster assignments and

parameters: more iterations simply result in more samples from this posterior distribution.

Figure 4. The left panel shows the graphical model for a hidden Markov model, the right

is a parse tree from a probabilistic context-free grammar.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

Number of heads (N
H

)

lo
g

po
st

er
io

r
od

ds
 in

 fa
vo

r
of

 h
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8
x 10

−3

 θ

P
ro

ba
bi

lit
y

 P(HHTHTTHHHT | θ, h
1
)

 P(HHTHHHTHHH | θ, h
1
)

 P(d | h
0
)

(a)

(b)

4

coin produces heads

two−headed coin

pencil levitates

friend has psychic powers

X

X1

X3

X2

Iteration 1 Iteration 2 Iteration 4 Iteration 8 Iteration 10 Iteration 20 Iteration 50 Iteration 100

Iteration 1 Iteration 4 Iteration 10 Iteration 50

Iteration 200 Iteration 600 Iteration 1000 Iteration 1400

Iteration 2 Iteration 8 Iteration 20 Iteration 100

Iteration 400 Iteration 800 Iteration 1200 Iteration 1600

(a)

(b)

...Z 1

W1 W2

Z 2 Z 3

W3

Zm

Wm

mat

VP

VBD PP

IN NP

S

on

sat

NP

NNAT

catthe

DT

the

NN

