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I An example of MRF’s is Grab Cut (slide presentation). This is an MRF

defined over the image lattice. At each lattice site there is a binary-valued
variable which can take value 0 or 1. 1 indicates the foreground object and
0 the background. The purpose is to segment the foreground object, given
a rough initialization (which can be done by hand).

I This initialization is used to learn unary potentials for the MRF. These are
done by learning the statistics of image features within the (initialized)
foreground and background regions. These features could be the colour of
image pixels. Represented by mixtures of Gaussian distributions.

I The binary terms require that neighboring image pixels are likely to have
the same label (i.e. both foreground or background). So a penalty is paid
by the energy function if neighboring pixels are assigned different labels.
But this penalty is reduced if there is a large image gradient between the
two pixels.

I The inference algorithm is Graph-Cut (see next slides). In some cases, for
a binary problem like this, it can be shown to converge to the global
minimum of the energy function.

I Notes that this is a local interaction (see previous lecture) and so it will
bias towards having short boundaries. The algorithm can be run in several
stages. Initialize, estimate feature statistics for initial foreground and
background. Re-estimate foreground and background (by minimizing the
energy). Recompute feature statistics and repeat.
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GraphCut: Energy Minimization and Minimal Cuts

I Energy minimization (binary variables) can be re-formulated an finding the
minimal cut which can be done by max-flow algorithms (later slide – bug
here – fix why cost is directional – x1 = 1 and xj = 0.

I Write the energy as a function of binary-valued variables xi ∈ {0, 1}:
E({xi}) =

∑
ij aijxixj +

∑
i aixi + c. This can be re-expressed by

introducing two new nodes s and t with fixed values xs = 0 and xt = 1:

E({xi}) = −
∑
ij

aijxi (1− xj) +
∑
ij

aijxi +
∑
i

aixi + c,

=
∑
ij

a′ijxi (1− xj) +
∑
i

a′ixi + c, with a′ij = −aij , a′i =
∑
j

aij + ai

=
∑
ij

a′ijxi (1− xj) +
∑
i :a′i>0

a′ixi (1− xs) +
∑
i :a′i

|a′i |(1− xi )xt + c ′, (10)

I with c ′ = c +
∑

i :a′i<0 a
′
i .

I The energy is now expressed in terms which are only non-zero if the
neighbouring nodes take different values. This defines a min-cut problem –
split {xi} into two sets X0 = {i : xi = 0} and X1 = {i : xi = 1}. The only
penalties are paid across the cut.
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GraphCut: Max Flow Algorithms

I We introduce notation. Graph G = (V ,E) where V are the vertices and E
is the edges. The edges (u, v) ∈ E have non-negative capacity
c(u, v) ≥ 0. Source s and sink t.

I A flow f : V × R 7→ R is required to obey the following constraints.

I (1). capacity: ∀u, v ∈ V , we require f (u, v) ≤ c(u, v)

I (2). skew-symmetry: ∀u, v ∈ V , we require f (u, v) = −f (v , u)

I (3). flow conservation: ∀u ∈ V /{s, t}, we require
∑

v∈V f (u, v) = 0.

I The total value of the flow f is |f | =
∑

v f (s, v).

I A cut (S ,T ) us a partition of nodes V into sets S and T = V − S with
s ∈ S and t ∈ T . The net flow across the cut (S ,T ) is f (S ,T ). The
capacity of the cut is c(S ,T ).

I If f is a flow in the network (V ,E) then f is a maximum flow if, and only
if, |f | = c(S ,T ) for some cut.

I So the value of any flow is bounded above by the capacity of any cut. So
the maximum possible flow is given by the minimum cut. Which minimizes
the energy.

I Intuitively – the capacity is the restriction in size of pipes that the water
can flow down. The size of the pipes determines the maximum amount of
flow. The capacities are specified by the re-formulation of the energy.


