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Deterministic Algorithms

P({Xi})=%H%(Xi)Hl//ij(Xi’Xj) MRF

v (X, X;) Suppose, we want to estimate the marginal distributions | | P.(x)
! . or x =argmaxP({x})
Wi (%1 %) Y i (XJ %) Us}
K If the graph is a polytree (i.e. no closed loops), then we

can use dynamic programming

— This cannot be applied if the graph has closed loops.

Here we describe a popular algorithm — belief propagation — that gives correct
results on polytrees, and empirically good approximations most of time on graphs

And we will show the relation to MCMC
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Belief Propagation (BP)
proceeds by passing messages between the graph nodes

m; (X; :t) :message that node I passes to node | to affect state X;

The messages gets updated as follows:
my (% t+1) = 3wy 06, X)w ()] [ ma (% 1) Sum-product rule

K+ |
Alternative: the max-product
m; (X; (t+1) = max {l//ij (%, X))y, (Xi)H My (% :t)}

k#j
If the algorithm converges (it may not), then we compute approximations to
the marginals: b, (X,) o Wi(xi)H m, (x)
Kk

bij (%, Xj) C Y, (Xi)Wij (%, Xj)Wj (Xj)H m,; (Xi)H m;; (Xj)

k# ] I
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Belief Propagation

BP (sum-product) was first proposed by Judea Pearl (C.S. UCLA) for
performing inference on polytrees

The max-product algorithm was proposed earlier by Gallagher

The application was developed in the 1990’s for decoding problems
- goal was to achieve Shannon’s bound on information transmission

Experimentally, it was shown that BP usually converges to reasonable
approximations

- Full understanding of when & why it converges is an open problem
On polytree, it is similar to dynamic programming — so in a sense, it is
the way to extend DP to graphs with closed loops
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Example of BP (sum-product)

o
1

o o o
2 3

X = (%, Xp, X, %,)

1
P(x) = 29”12 (X0s X0 )W 05 (%o X5 )W 4 (Xgs X,)

Messages:

My,(X,),
My (Xy),
My3(X3),
M3y(X,),
M34(X4),

My3(X3),

from node 1 to node 2
from node 2 to node 1
from node 2 to node 3
from node 3 to node 2
from node 3 to node 4

from node 4 to node 3

Update rule (from message passing equation)
m,, (X, :t+1) :let//lz(xl,xz) - boundary
m,, (X, :t+1) = sz vy, (X, X, )My, (X, 1)

M, (X, it +1) = sz W (Xy, X3 )My, (X, 0 1)

m,, (X, :t+1) = ng W s (X, X, )M,5 (X, 0 1)

m,, (X, :t+1) = ng Way (X, X, )My5 (X, 0 1)

My, (X, it +1) = ZX4 Vo (X5, X,) - boundary
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Many ways to run BP

(1) Update all messages in parallel
Note: BP can be parallelized but Dynamic Programming cannot)

(2) Start at boundaries

My, M,s My, Then read off estimates of unary marginals
je. e o o o 1 . .
' 1 < 7 < 3 < A bl(xi)zz—mm(xl), 21:Zm21(x1).normallzatlon
My, M3, My3 f %
b,(Xx,)=—m,_(Xx,)m,,(X,), Z,:normalization
Calculate mMyy(Xy), then mys(X3), then may(X,) 2 Z, e i
=» Forward pass (like Dynamic Programming) b, (x,) =im23(xs)m43(xg), 7. :normalization
Z
M,3(X3), then Mgy(Xp), then My (x) :
=>» Backward pass (like backward pass of DP) b,(x,) =—m,(x,), Z,:normalization

4

1
b12 (X1’ Xz) = Z_le (Xl, Xz)m32(X2), and so on

12
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Many ways to run BP

Alternatively, initialize the m’s to take
an initial value — e.g. my(x;)=1 for all I,
and update the messages in any order
will still converge for graph with no closed loops
Then estimates (beliefs) will be the true marginals
e.g. b(x)= D P(X, %, X,X,)

X9, X3,Xy4

blz(xl’ XZ) = Z P(X1’ le X3’ X4)

X3,%4

But, BP will often converge to a good approximation to the

marginals for graphs which do not have closed loops
This was discovered in the late 1980’s
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Advantages of BP over DP
(1) BP will converges (approximates) for many graphs with closed loops
(2) BP is parallelizable (nice if you have a parallel computer or GPU)

An alternative way to consider BP

Make local approximations to the local distribution (BP w/o messages)

. b (X;,X;)
B(X, Xy i) = Zbi (Xi)j:eI;‘([i) b (x.)

If the by(X;, X;) & b;(X;) are the true marginal distribution, then

bij (Xi’xj)
b, (%)

=b(x; | %)
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An alternative way to consider BP

Cut X; &
the rest of
the graph & Xj2
b, (X, X,) 0 (X}, %)
B(XH ' i ,X i )_ b| (XI’ ) : I k J J
RECRSTU z, " ke]l\;‘i[)/j 0; (%) |€]N;J[)/i b; (X;)

Update Rule: Marginalization

b, (%, X; 1t+1) = Z B(X;: X; Xy giys Xn(y - 1)

XI2 XN (L)

b, (% 1t +1) =D B(X, Xy :t)

XN (i)

Provably equivalent to BP
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How does this relate to MCMC?

Chapman-Kolmogorov €A deterministic form of Gibbs sampling
M (X) =D K(XIx)(x)  (K:Transition kernel)

This converges to fixed point distribution I1(X) s.t Z K(X|x")u(x") =T1(x)

MCMC estimates I1(X) by repeatedly sampling from K(Xx, X’)
Recall that Gibbs Sampler K (x|x")=P(x, |Xy,,)S

xly X'y
Substituting the Gibbs sampler into the Chapman-Kolmogorov equation
lth+l(X;/) = Z P(Xr |XIN(7/))1ut (XN(y/))

XN (7)

Replace #.,,(X,) by D B, Xyin) X =Y,

or Z B(Xi’xj’XN(i,j))1 X, = (Xi’Xj)

17
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Bethe Free Energy

It can be shown that the fixed point of BP correspond to extreme of
the Bethe Free Energy

b; (%, X;) b (%)
[b] = ZJ:Z i (6, %;) In AATCATACER Z(n. )Z (%) ")

This leads an alternative class of algorithm which seek to directly minimize F[b]

These algorithms are more complex than BP, more time consuming, and do
not always give better results

Note M. Wainwright defines a class of convex free energies similar to Bethe

Note Junction trees allows DP to be applied to same graphs with closed
loops (see Lauritzen and Spiegelhalter).
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A range of alternative algorithms

The original is meanfield (MFT)
Kulback-Leibler: Define  B(X) =Hbi(Xi) KL(B)=)_B(x)In
Seek to find the B(X) that minimizes KL(B)

| OB () o, b, (x)
Fquivalent to ;%bi()(i)bj(xj)ln‘//i(Xi)Wij(Xi,Xj)l//j(Xj) Zi:(ni l);bi(Xi)ln‘//i(Xi)

Compare to Bethe Free Energy: DB; (%, X%;) =B, (x)b;(X;)

Bk
P(x)

Minimizing KL(B) is not straightforward, but it is straightforward to find a
local minima

e These approaches are significantly faster than MCMC, but MCMC works when
these do not.
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