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Deterministic Algorithms
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Suppose, we want to estimate the marginal distributions

or

If the graph is a polytree (i.e. no closed loops), then we 
can use dynamic programming 

This cannot be applied if the graph has closed loops.
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Here we describe a popular algorithm – belief propagation – that gives correct 
results on polytrees, and empirically good approximations most of time on graphs

And we will show the relation to MCMC
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Belief Propagation (BP)
proceeds by passing messages between the graph nodes
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Sum-product rule

:message that node i passes to node j to affect state xj

Alternative: the max-product

The messages gets updated as follows: 

If the algorithm converges (it may not), then we compute approximations to 
the marginals: ( ) ( ) ( )i i i i ki i
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Belief Propagation

BP (sum-product) was first proposed by Judea Pearl (C.S. UCLA) for 
performing inference on polytrees
The max-product algorithm was proposed earlier by Gallagher
The application was developed in the 1990’s for decoding problems

- goal was to achieve Shannon’s bound on information transmission
Experimentally, it was shown that BP usually converges to reasonable 
approximations

- Full understanding of when & why it converges is an open problem

On polytree, it is similar to dynamic programming – so in a sense, it is 
the way to extend DP to graphs with closed loops
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Example of BP (sum-product)
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Messages: 

m12(x2),  from node 1 to node 2

m21(x1),  from node 2 to node 1

m23(x3),  from node 2 to node 3

m32(x2),  from node 3 to node 2

m34(x4),  from node 3 to node 4

m43(x3),  from node 4 to node 3

Update rule (from message passing equation)

1
12 2 12 1 2( : 1) ( , )

x
m x t x xψ+ =∑  boundary
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m x t x xψ+ =∑  boundary
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Many ways to run BP

(1) Update all messages in parallel
Note: BP can be parallelized but Dynamic Programming cannot)

(2) Start at boundaries

1 2 3 4
i.e.,

m12 m23 m34

m43m32m21

Calculate

Then read off estimates of unary marginals

m12(x2), then m23(x3), then m34(x4)
 Forward pass (like Dynamic Programming)

m43(x3), then m32(x2), then m21(x1)
 Backward pass (like backward pass of DP)
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Many ways to run BP

Alternatively, initialize the m’s to take
an initial value – e.g. mij(xj)=1 for all i, j
and update the messages in any order

will still converge for graph with no closed loops
Then estimates (beliefs) will be the true marginals
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But, BP will often converge to a good approximation to the 
marginals for graphs which do not have closed loops

This was discovered in the late 1980’s

e.g.
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Advantages of BP over DP
(1) BP will converges (approximates) for many graphs with closed loops
(2) BP is parallelizable (nice if you have a parallel computer or GPU)

An alternative way to consider BP
Make local approximations to the local distribution (BP w/o messages)
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An alternative way to consider BP
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Update Rule: Marginalization
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How does this relate to MCMC?

Chapman-Kolmogorov
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A deterministic form of Gibbs sampling
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This converges to fixed point distribution Π(x) s.t

MCMC estimates Π(x) by repeatedly sampling from K(x, x’)
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Recall that Gibbs Sampler '
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Substituting the Gibbs sampler into the Chapman-Kolmogorov equation
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Bethe Free Energy

It can be shown that the fixed point of BP correspond to extreme of 
the Bethe Free Energy
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This leads an alternative class of algorithm which seek to directly minimize F[b]
These algorithms are more complex than BP, more time consuming, and do 
not always give better results

Note M. Wainwright defines a class of convex free energies similar to Bethe
Note Junction trees allows DP to be applied to same graphs with closed 

loops (see Lauritzen and Spiegelhalter).
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A range of alternative algorithms

The original is meanfield (MFT)
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Kulback-Leibler:    Define ( ) ( )i i
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Seek to find the B(x) that minimizes KL(B)

Equivalent to 
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Compare to Bethe Free Energy: ( , ) ( ) ( )ij i j i i j jb x x b x b x→

Minimizing KL(B) is not straightforward, but it is straightforward to find a 
local minima

• These approaches are significantly faster than MCMC, but MCMC works when 
these do not.
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