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CPMC: Automatic Object Segmentation Using
Constrained Parametric Min-Cuts

Joao Carreira and Cristian Sminchisescu

Abstract —We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images
using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground
segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a
sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the
corresponding segments by training a continuous model to predict how likely they are to exhibit real world regularities (expressed as
putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum
marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in
the VOC 2009 and 2010 datasets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a
segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image
segmentation and labeling challenges.

Index Terms —Image Segmentation, figure-ground segmentation, learning
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1 INTRODUCTION annotated data. However, the local scope of dependenaies an

Reliably identifying the spatial extent of objects in image the .in_trinsically comt_)inatorial nature of .image segméntat
important for high-level vision tasks like object recodgmit diminishes the effectiveness of learning in such ‘pixelcgsa
A region that covers an object fully provides a charactieristdS many interesting features such as the convexity and the
spatial scale for feature extraction, isolates the objemtnf Smoothness of a region boundary are difficult to capture
potentially confusing background signals and allows for ifocally. On the other hand, once sufficient image support
formation to be propagated from parts of the object to tH& available, learning to distinguish ‘good’ segments that
whole. For example, a region covering a human fully makégPresent plausible projections of real-world surfacesmf
it possible to propagate the person identity from the edsieraccidental image partitions becomes in principle feasibies
identify face area to the rest of the body. motivates our novel decomposition of the problem into two
Given an image, the space of all possible regions, or segzges- In the first stage, we explore the space of regions
ments that can be obtained, is exponentially large. HowevEfat can inferred from local measurements, using cues stich a
in our perceived visual world not all image regions are elgual900d alignment with image edges. The process of enumerating
likely to arise from the projection of a three-dimensiondiegions with plausible alignment with the image contours
object. Objects are usually compact and this results irr thé§ Performed using exact combinatorial methods based on
projection in the image being connected: it is also commdrametric max-flow. Then, in the restricted space of geeéra
for strong contrast edges to mark objects boundaries. segions, we use a learned combination of advanced mid-level
properties reduce the number of plausible object regiof%atures in order to induce a more accurate global ranking of
greatly, but may not be sufficient to unambiguously identiffioSe regions in terms of their probability to exhibit ‘otte
the optimal spatial support for each of the objects in an nadike’ regularities.
In this paper, we follow a two step strategy by combining A key qu_e_stion, and one of our contributio_ns, is how should
a figure-ground, multiple hypothesis bottom-up approach ¥®age partitions be generated. Should region hypotheses be
segmentation with subsequent verification and ranking dasglowed to overlap with each other? Should one aim at multi-
on mid-level region properties. Key to an effective solntie e€gion image segmentations early? We argue that segnumtati
the capability to leverage the statistics of real-worldests IS already a sufficiently challenging problem without suoh-c
in the selection process. One possibility would be to lehen tStraints. It may therefore be more appropriate to enforobay|
parameters of the segmentation algorithm directly, byningj  inter-region spatial consistency at a later stage of psings
a machine |earning model using |arge amounts of humgM higher-level routines that have access to a SUﬁiCiemapa
support for this calculation. We argue that attempts to reefo
e Jodo Carreira is with the Faculty of Mathematics and Naturaiedces, COmMplex multi-region consistency constraints early maali
University of Bonn. E-mail: carreira@ins.uni-bonn.de. low the speculative behavior necessary for sampling region
e Cristian Sminchisescu is with the Faculty of Mathematicsl &atural effectively, given t_he inherently amb_lg_u_ous nature Of_m'l
Sciences, University of Bonn and the Institute of MathersaiMAR). level cues one typically operates on initially. Hence,etféitly
E-mail: cristian.sminchisescu@ins.uni-bonn.de. (Cspending author) ~ from most of the existing approaches to segmentation, we
derive methods to generaseveral independent figure-ground
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ObjU:bi:ty between the rectangular regions produced by the detectbr an
= higher

the desired free-form regions that align with object bouiesa

Unsupervised object discovery [15] also requires goodselas

Parametric
Min-Cuts

FOEEAE] — ET independent object proposals. While the presentation &scus
Ranking o on the problem of object segmentation, the proposed method i
general and can rank lists of segments that exhibit thesttati

: of non-object, ‘stuff’ regions such as grass or sky, as losg a
lower appropriate ground truth training data is provided.

An implementation of the proposed algorithm is made
&J_blicly available via our website [16].

Degree of foreground bias

Fig. 1: Our object segmentation framework. Segments are
tracted around regularly placed foreground seeds, witlowar
background seeds corresponding to image boundary edges
all levels of foreground bias, which has the effect of pradgc
segments at different locations and spatial scales. Thtires
set of segments is ranked according to their plausibility
being good object hypotheses, based on mid-level properti
Ranking involves first removing duplicates, then diverisify
the segment overlap scores using maximum marginal releva
measures.

Paper Organization: Section§2 reviews the related literature,
§3’introduces the methodology used to generate an initidl poo
of segments for an image afd presents the segment ranking
gtrocedure. Sectiofb presents experimental results and shows
comparisons with the state of the art. An extension of the
Basic algorithm to include bounding box constraints and the
Ig]:orresponding results are describecth3. We conclude and
discuss ideas for future work it6.

2 RELATED WORK

partitions, rather than a battery of splits of each image intgyne of the first image segmentation approaches, published
multiple, non-overlapping regiohs more than 40 years ago by Muerle and Allen [17], aimed
Our proposed framework is depicted in fig. 1. We first solvg, compute ‘object’ regions. Small patches having similar
a large number of independent binary min-cut problems on gpay.jevel statistics were iteratively merged, starting aeed
image grid, at multiple scales. These are designed as enekgych. Region growing stopped when none of the neighboring
functions efficiently solvable with parametric min-cut&Ra cgndidate patches was sufficiently similar to the curregibre
flow techniques. The resulting pool of segments is minimally,,o process was repeated until all pixels were assigned.
filtgred to remove trivial solutions and ranked usingaregpe This method took advantage of the fundamental grouping
trained to predict to what extent the segments exhibit thgyristic that neighboring pixels with different color arere
regularities typical of real-world objects, based on tHew jikely to belong to different objects. However it produced
and mid-level region properties. Because standard rankidgry |ocal solutions and was not able to deal with textured
tends to place redundant instances of a same segment iR C"PéSions, and even less, take advantage of more sophisticate
by positions, we diversify the resulting set using Maximalpiect statistics. Later, more accurate techniques erderge
Marginal Relevance measures and retain only the top ran d surveys can be found in [18], [19], [20]. However, most
segments. methods still pursued a single optimal segmentation of an
The quality of the list of object hypotheses returned bynage into a set of non-overlapping regions that covered it
our algorithm is evaluated empirically by measuring how|ly (a multi-region image partitioning). But a sufficiént
accurate they are with respect to pixel-level ground truibod partitioning is not easy to obtain given the ambiguity o
human annotations, in object recognition datasets. We alg@; and mid-level cues. Moreover, there were no quantiativ
record performance as a function of the number of segmenignchmarks to gauge progress and most papers only described

Results are reported on several publicly available benckena the merits of the output segmentations qualitatively, ligua
MSRC [5], the Weizmann Segmentation Database [6] and ba$hsed on results obtained on a few images.
VOC2009 and VOC2010 [7], [8] where the proposed method A5 a consequence, in the nineties, part of the recognition
is shown to significantly outperform the state of the art,l&hi community lost confidence that a reliable segmentation pro-
at the same time using significantly fewer segments. cedure would be found and began investigating solutionts tha

Several visual analysis methods may benefit from outpW§oided bottom-up segmentation entirely [21]. This treed |
like the ones provided by our algorithm. Object detectog the current prevalence of bounding box detectors opeyati
usually scan a large number of bounding boxes in slidingh sliding windows [9], [22]. These detectors rely on a dense
window schemes [9], [10] without considering the plausievaluation of classifiers in overlapping rectangular image
bility of pixel grouping within each. Semantic segmentatioregions, with consistency usually enforced a posteriomidy-
algorithms [11], [12], [13], [14] incorporate the output$ omaxima suppression operations. Sliding window methods are
these object detectors, and may need to mediate the toansitiffective in localizing certain objects like faces or mati&es,

but do not obviously generalize to more complex structures

1. The algorithm proposed in this paper has been recentlyaeglto  gnd cannot be easily adapted for general 3d scene understand

generate multi-region, full image segmentations, by sampliigd-bcoring ing: e.g. information predicted on rectangular image regions

sets of non-overlapping figure-ground segmentations, mddase maximal -~ o | ]
cliques, with competitive results [3], [4]. is not sufficient for tasks such as vision-based manipuiatio
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of a cup by a robot, where it is critical to precisely identifyinvolve region and boundary properties [36]. Generally the
the cup handle in order to grasp it. user assigns some pixels to the foreground and background
Such considerations made a revival of segmentation iregions manually and these constrain an energy function,
evitable. The trend has gained momentum during the paghich is optimized using a global minimization algorithm.
ten years, propelled by the creation of annotated benchamallithe two steps are repeated until the set of manually assigned
[7], [23] and new segmentation performance metrics [7hixels constrain the solution sufficiently to make the résgl
[24]. A second important factor was the adoption of machir@nary segmentation satisfactory. Variants requiring lesn-
learning techniques to optimize performance on benchmarksl interaction have been developed, such as GrabCut [37],
A third factor was relaxing the constraint of working with avhere a simple rectangular seed around the object of iteres
single partitioning. A popular approach emerged by conmguti is manually initialized and an observation model is iteelsi
several independent segmentations, possibly using eifferfitted by expectation maximization (EM). Alternatively, @an
algorithms. This idea was pursued by Hoienhal [25] for et al [38] require a user to simply click a point inside the
geometric labeling problems. Russet al. [15] computed object of interest, and use EM to estimate a sophisticatiéd se
normalized cuts for different number of segments and imagemilarity energy.
sizes in the context of unsupervised object discovery. By Max-flow techniques can only globally optimize energies
generating tens to hundreds of thousands of segments gefined on local features such as contrast along the boundary
image, Malisiewicz and Efros [26] produced very good gyalitand good pixel fit to a color or texture model. Interestingxel
regions for the MSRC dataset, by merging pairs and triplets ation approaches exist for some energies whose minimizatio
segments obtained using the Mean Shift [27], Normalized Cus NP-hard, such as curvature regularity of the boundary [39
[28] and Felzenszwalb-Huttenlocher’s (FH) [29] algoritim and approximations have been developed for energies with
Steinet al. [30] solved Normalized Cut problems for differentconnectivity priors [40]. However, many other more global
number of segments, on a special affinity matrix derived froproperties, such as convexity or symmetry, are signifigantl
soft binary mattes, whereas Rabinoviehal. [31] shortlisted more challenging to optimize directly. This motivates our
segmentations that reoccured, hence were potentially mssgment generation and ranking procedure. We differ from
stable. existing methods not only in leveraging an efficient paraimet
The computation of multiple segmentations can also eax-flow methodology to solve for multiple breakpoints o th
organized hierarchically. Shi and Malik [28] recursiveljhv& cost, thus exploring a much larger space of plausible segmen
relaxations of a Normalized Cut cost based on graphs cdrypotheses in polynomial time, but also in using regression
structed over pixel nodes. Sharat al [32] proposed al- methods on generic mid-level features, in conjunction with
gebraic multigrid techniques to efficiently solve normatiz ranking diversification techniques, to score the generséed
cuts problems at multiple levels of granularity, where dusp ments. This fully automates the process of distilling a eepr
with increasingly more complex features were used at coarsentative, yet compact segment pool. No manual interaétion
levels. Arbebez et al. [33] derive a segment hierarchy bynecessary in our method.
iteratively merging superpixels produced by an orientettwa  One of the big challenges in segmentation is to leverage the
shed transform. They use the output of the learned globalBtatistics of real world images in order to obtain more ceher
boundary detector [34] and can represent the full hierarckpatial results. Methods that learn low-level statistieveh
elegantly by a single ultrametric contour map. The hienarctbeen applied to distinguish real from apparent contour$, [41
is a natural representation for segmentation, as it lersadf it [42], [43] and similar from dissimilar superpixels [25]. Re
to compositional representations. However, inaccuragies and Malik [44] use a random search algorithm to iteratively
one level (due to incorrect merging of two regions from thkypothesize segmentations by combining different sugelgi
previous level, for example), tend to propagate to all cerarsand use a classifier to distinguish good segmentations from
levels. Therefore, given the same segmentation technigbad ones. Pen and Veksler [45] learn to select the best
generating a single hierarchy is likely to be less robush thgegment among a small set generated by varying the value
using independent segmentations. of one parameter, in the context of interactive segmenmtatio
Differently, our region sampling methodology generatedlodels based on mid-level properties have also been learned
multiple independent binary hierarchies constrained & dio distinguish good from bad regions [44]. High-level shape
ferent positions in the image. Each level of the hierarchstatistics can be incorporated into binary segmentatiodaiso
corresponds to a partitioning into figure and ground, whetssually as non-parametric distributions of templates,[{461],
only the figure region is retained, and regions at finer lessds [48]. Expressive part-based appearance models have aso be
nested inside coarser levels regions (this is a propertycied developed [49], [50], [51], [52]. As objects in real images
by our parametric max-flow methodology [35]). In this wayexhibit large variability in pose, have high intra-classiaion
we aim to better sample the space of plausible regions pgppend are often occluded, it is likely that such methods may
up at different image locations. We compute these partit@gs require bottom-up initialization, which an algorithm likeirs
using energies mostly related to the ones developed for-intean provide. Effectively leveraging high-level shape gim
active segmentation applications, where, however, coimgutthe initial steps of a visual processing pipeline may notglsv
a single figure-ground solution is typical. In these appitoes, be feasible.
max-flow algorithms are quite popular because they canmbtai Our method aims to learn what distinguishes meaningful
exact optima for certain energy minimization problems thaégions, covering full objects, from accidental pixel gveu
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ings. Since our original presentation at VOC2009 [53] artie contrasting label. Our overall objective is to minimae
publication [54], related ideas have been pursued. Endesergy function over pixel label§zy,...,zn},2z; € {0,1},
and Hoiem [55] follow a processing pipeline related to oursyith NV the total number of pixels. In particular, we optimize
but employ a learned affinity measure between superpixellse following energy function:

rather than pixels, and a structured learning approach on a

maximum marginal relevance measure similar to the one we EMNX) = Z Di(z) + Z Vo (T, ) (1)
originally proposed to diversify ranking. To generate figur u€V (u,v)e€

ground segments, Levinshteat al. [56] developed a proce-
dure based on parametric max-flow principles similar to ours
but use a graph where new similarity measures are constructe

with A\ € R, and unary potentials given by:

on superpixels. In parallel work, Alexet al. [57] learn a 0 ifz, =1, ué¢ V)
naive Bayes model to distinguish bounding boxes enclosing D (z2) = 00 if x,=1,ue, @
objects from those containing amorphous background, witho MPu = oo if 2, =0, uecVy
knowledge of the shape and appearance of particular object flza) + A if 2, =0,u¢ Vs

classes. They also show how to sample bounding boxes froml’he foreground bias is implemented as a cost incurred by

the model efficiently but do not provide segmentations.e®ali the assianment of non-seed pixels to backaround. and ¢ensis
object detection [58] approaches are also relevant to OL‘F 9 P 9 '

work, but they focus on selection criteria inspired by aitem _?_ (? ;';;g:;dnet%ﬁ%ﬂﬁg;s\la(lué)(zuré igg dair:1 urr‘ggtri::ne O'flh'fzztxf.irst
mechanisms. We are instead interested in computing regioH\é f (T P :

it covr ey abect n an image well, dependenty 1SR 10 S 1 [esling 1 & i ()
whether they ‘pop out’ from the rest of the scene or not. 9 i - SPey

RGB color distributiong(z,,) on seed/; andpy(z,,) on seed

V, are estimated to derivg(x,,) = Inps(z,) —Inpy(z,). The

3 CONSTRAINED PARAMETRIC ~ MIN-CUTS probability distribution of pixel; belonging to foreground is
(CPMC) defined ag; (i) = exp|—~ - min; (||[1(i) — 1(j)|])], with 7 a

In order to generate a pool of segments with high probabiligcaling factor, angd indexing representative pixels in the seed
of not missing regions with good object overlap, multipleegion, selected as centers resulting frokiraeans algorithm
constrained parametric min-cut (CPMC) problems are solvék is set to5 in all of our experiments). The background
with different seeds and unary terms. This leads to a large gorobability is defined similarly. This choice of functionrizoti-
diverse pool of segments at multiple spatial scales. The segted by efficiency, being much faster to estimate compared t
ments corresponding to implausible solutions are subselyue the frequently used Gaussian mixture model [37]. Coloebas
discarded using simple ratio cut criteria. The remaining aunary terms are more effective when the color of the object
clustered so that all but representative segments with Igsvdistinctive with respect to the background, as well asiwhe
energy are retained, among those extremely similar. Thé firdjects have thin parts. Uniform unary terms are more useful
working set of segments is significantly reduced, but at tlie the opposite case. The complementary effects of these two
same time the most accurate segments are preserved.  types of unary energy terms are illustrated in fig. 2.

The pairwise terni/,,,, penalizes the assignment of different

3.1 Set“ng up the Energy Functions labels to similar neighboring pixels:
For each image, alternative sets of pixels, called seeds, ar v _fo if 2, =z, 3
hypothesized to belong to the foreground and the back- wo(Tu, T0) = g(u,v) if 2, # xy )

ground. The foreground seeds are placed on a grid, whereas .~ ) ) )
background seeds are associated with sets of pixels alondith similarity between adjacent pixels given byu, v) =
the image border. For each combination of foreground anyp —max(gpbf,?’gpb(v))}- gPb returns the output of the
background seeds we compute figure-ground segmentatiomgti-cue contour detector globalPb [34] at a pixel. Thezsgu
with multiple levels of foreground bias. The levels of bias a distance is also an option we experimented with, insteatief t
induced by varying the cost of assigning non-seed pixelbdo tmax operation, with similar results. Theoundary sharpness
foreground. Inference consists of finding minimum cuts far t parameteis controls the smoothness of the pairwise term.
different values of foreground bias — in fact searching over The function defined by eg. 1 is submodular. Given a pair of
multiple foreground biases is intrinsic to our parametriaxm foreground and background seeds #fitd,, ), the cost can be
flow procedure. The optimization problem is formulated nexininimized exactly for all values ok in the same complexity
Let (V) — R® be an image defined on a set of pixels as a single max-flow problem, using a parametric solver [59].
As commonly done in graph-based segmentation algorithnfis,canonical form, parametric max-flow problems differ from
the similarity between neighboring pixels is encoded asedgheir max-flow counterparts in that capacities from the seur
of a weighted graplG = (V,£). Here, each pixel is a nodenode are allowed to be linear functions of a parameter, here
in the setV. The foreground and background partitions arAs A (effectively our foreground bias) varies there are at most
represented by labels and 0, respectively. Seed pixel¥; (N — 1) different cuts in the transformed graph, whéveis
are constrained to the foreground avigl to the background the number of nodes, although for the graphs encountered in
by setting infinity energy to any labeling where they receiveision problems there are generally far fewer (see our study




J. CARREIRA AND C. SMINCHISESCU: CONSTRAINED PARAMETRIC MIN-CUTS FOR AUTOMATIC OBJECT SEGMENTATION 5

rectangular grid position, obtained using segments obthiry
the algorithm of [29]. As shown in table 1, the performance
differences are not very significant (see sectidrfor details
about the datasets and the evaluation criteria).

The background seedsre necessary in order to prevent
trivial cuts that leave the background set empty. We used fou
different types: seeds including pixels that cover theifukhge
boundary, just the vertical edges, just the horizontal sdgel
all but the bottom image edge. This selection strategy &llasv
to extract objects that are only partially visible, due tipging
at different image boundaries.
based unary In practice we solve around 180 instances of problem (1) for

Fig. 2: Different effects of uniform and color-

terms. For illustration, a single foreground seed was mlacgach image, for 30, values each (during processing, we skip
m.ar? uall¥ at the ;ame Iﬁcatmnhfor tlwo energy problergfs] ' OIBiﬁplicate breakpoints), defined on a logarithmic scale. Séte
with _uniform and another with color unary terms. Showiy figure-ground segmentations is further enlarged bytapdit

are samples from the set of succe'ssive energy breakpoipls oeq with multiple connected foreground components. Th
(increasing A values) from left to right, as computed byg ., pool has up to 10,000 segments per image.

?aragwgtrg: :nax-ﬂow. tUmform uhary dtgrms are useddn_frows As an alternative to multiple 'hard* background seeds, it is
and.. Lolor unary terms aré used in even rows. Unilor sqin e 1o yse a single ’soft' background seed. This can be a
unary terms are most effective in images where the backgro

q dh il lor. Col ¢ ame one pixel wide covering the border of the image, with
and foreground have simfiar color. ©.0Ior unary 1erms areemog ., pixel having a finite penalty associated to its assighme
appropriate for objects with elongated shapes.

to the foreground. This construction is more efficient, as it
decreases the number of energy problems to solv&5iy.
We used this type of background seeds in an extension of the

in §3.3). The values of\ for which the cut values changebasic algorithm, presented in sectigh3,

are usually known asreakpoints When the linear capacity
functions from the source are either non-increasing or non-
decreasing functions of, the problem is said to be monotonic.

Seed placement MSRC score  Weizmann score

. Grid 0.85E£ 0.1 0.93% 0.06
Our energy problems are monotonic because, for all unary NCuts 0.86+ 0.09  0.93+ 0.07
terms, A is multiplied by the same factod,. This important FH 0.874+ 0.08 0.93+ 0.07

property implies that all cuts computed for a particularicho TABLE 1: Effect of spatial seed distribution. The use of

of source and sink seeds are nested. superpixel segmentation algorithmsd. Normalized Cuts or

In th|§ work we use _theh|ghest label pse.udoﬂowolver FH [29]) to spatially distribute the foreground seeds doess n
[6.0]’ which has complexit)(m.V log(N)) f‘?f image graphs significantly improve the average covering score on the
with NV nodes andn edges. The complexity of the CI:)MCMSRC dataset, over regular seed geometries. On Weizmann,

procedutr_e IS thﬁw(kmé\lf log(]\ff))’ ash wfemsolveb_mut!tlple the average best F-measure is the same for all distributions
parametric max-flow problems, for each ottheombinations erhaps because the objects are large and any placement

of foreground and backgro_und seeds, qnd for different d;;oi trategy eventually distributes some seeds inside theibbje
of f(z,). The pseudoflow implementation we used requires a

set of A parameters for which to compute cuts. For the study in
§3.3, we additionally use an implementation based on Gatllo
al. [35] in order to analyze the segmentation results producg® Effect of A\ Schedule

by a push-relabel parametric max-flow solver which retrs%everhe effect of solving problem (1) for alk values, instead

all breakpoints [61]. of a preset logarithmic\ schedule, was evaluated on the

. The graph constrl_Jction that maps to the energy func“%[&f'aining set of the PASCAL VOC 2010 segmentation dataset
in (1), for each choice of foreground and background se e typical distinction into training and testing is noteneant

augments the original problem dependency graphith two for the purpose of this experiment, where the goal is only to

special nodes, source and sink¢ that must be in SeF’arateanalyze the number of breakpoints obtained using different

partitions in any binary cut [36]. The unary energy terms al&arch strategies). We use%6 regular grid of square seeds

_encoded as edges between these special nodes and the n §%olve using two procedures: (4) values of\ sampled
nv. on a logarithmic scale (only the distinct energy optima are
) recorded) and, (2) alh values, as computed as breakpoints

3.2 Effect of Grid Geometry of (1). We have recorded the average computational time per
As foreground seedswe chose groups of pixels that formseed, the ground truth covering score, and the number of
small solid squares. We have experimented with three difféireakpoints obtained under the twesearch strategies. The
ent strategies to place them automatically: rectangulat gresults are shown in table 2, suggesting that a presehedule
geometry, centroids of superpixels obtained with nornealiz is a sensible option. Using on}0 values produces almost the
cuts, and centroids of variable size regions, closest té eaame covering as the one obtained using all values4itimes
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VOC10 Segmentation Dataset (training set) the same segment because of the seeding strategy — every

seed placed inside the region would tend to generate the
7 same segment for the same Moreover, sometimes visually
i arbitrary segments are created, as artifacts of the fouegro
bias strength and the seed constraints employed.

We deal with these problems using a fast rejection step.
1 We first filter very small segments (up to 150 pixels in
our implementation), then sort the segments using a simple
criterion (we have used the ratio cut [62] as this is scale
] invariant and very selective) and retain up to 2,000 of the
highest scoring segments. Then we hierarchically cluster t
segments using overlap as a similarity measure, to formpgrou
50 100 150 200 250 300 350 400 with all segments of at least 0.95 spatial overlap. For each

Number of breakpoints cluster, we retain the segment with the lowest energy.

) _ ) The number of segments that pass the fast rejection step
Fig. 3: Frequency of the parametric max flow breakpoints fQg ysyally small, being indicative of how simple or clutiére

each seed, on the training set of the VOC2010 segmentatig structure of an image is. In general, simple datasets hav
dataset. These results were obtained usi6gauniform grid |ower average number of segments. But even in the difficult

of seeds. The number of breakpoints has mean 110, angg5CAL VOC 2009 dataset, the average was 154.
heavier tail towards a larger number of breakpoints.

400F

350

300

N
al
=

Frequency
N
o
(=)

1501

4 MID-LEVEL SEGMENT RANKING

faster and generatd:i)% of the total number of breaprintS,Gesta“ theorists [63], [64] argued that properties such as
hence fewer SegmentS. We also plot the distribution of trpﬁox|m|ty, Sim”arity' Symmetry and good continuation are
number of breakpoints per seed in fig. 3, under the sarRgy to visual grouping. One approach would be to model
experimental conditions. The frequency of breakpoints hagch properties in the segmentation process, as long-range
a dominantly unimodal (bell) shape, with meam0, but a dependencies in a random field model [65], [66]. However,
slightly heavier tail towards larger numbers of segment®r€  thijs poses significant modeling and computational chaéeng

are never less than 15 breakpoints in this dataset. With a segment set generated using weaker constraints; leve
: : : aging Gestalt properties becomes easier: rather than guide
# A values  # breakpoints  Time (s)  Covering a complex inference procedure based on higher-order, long-
20 123 18 0713

range dependencies, we only need to check conformance with

all 114.6 7.5 0.720 " X : ;
7 objocts T = = =13 Gestalt regularities. It is therefore interesting to explbow
# breakpoins alh 11219 12460 12520 142.83 the qualitative Gestalt theories can be |mpler_nented in such
# breakpoint20 A 12.27  12.64  13.08  13.45 a framework and what effects they produce in practice. An

# images 717 147 68 32 important question is whether Gestalt properties can bd use

TABLE 2: Covering results obtained on the training set of 0 Predict if segments have regularities typical of prafees
VOC2010, based on éx6 grid of uniform seeds. The table Of real objects, without leveraging prior knowledge abd t
compares the results of solving CPMC problems Jor classes pf objec_ts_ present in the_|mage. Thl_s is a potantiall
values of), sampled on a logarithmic scale, with the result§hallenging decision problem, since the visual aspects of
obtained by solving for all possible values bf Shown are ~ CPI€cts are extremely diverse. However, if object regtieai

the average number of breakpoints per seed, and the aver§g8 Pe identified, images could be represented by a handful of
time required to compute the solutions for each seed. ségments, Whlch are easier to interpret arjd process byrhlghe
Computing all breakpoints for each seed provides modest level V|§ual routines than a Iarge_ set of pixels or supetplxe_
ground truth covering improvements, at the cost of In this work, we take an empirical approach: we compile
generating a larger number of segments and an increased @ large set _of features _and annotated _examples of segm_ents
computation time. The second table shows that images of many objects from different categories, and use machine

containing a larger number of ground truth objects tend to learning techniques to uncover their significance. Thrde se
generate more breakpoints per seed. of features (34 in total) are considered to describe each

segment, representing graph, region and Gestalt propertie
Graph properties, in particular variations of cut valuegyeh
o long been used as cost functions in optimization methods
3.4 Fast Segment Rejection for segmentation. Region properties encode mainly the
Generating a large set of segments increases the hit ratestatistics of where and at what scale objects tend to appear i
the algorithm, but many segments are redundant or do nimtages. Finally, Gestalt properties include mid-levellike
obey the statistics of real-world surfaces imaged by a cameconvexity and continuity, which can encode object regtiési
For images with large homogeneous regions, the origin@.g.objects background segments are usually non-convex and
hypothesis generation step can also produce many copie®lbject boundaries are usually smoother than the boundaries
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of accidental segments). Feature importance for random forests regressor

600,

500

Graph partition properties (8 features) include thecut (sum
of affinities along the segment boundary) [67], tfadio cut
(sum of affinity along the boundary divided by their number *°

4001

[62], the normalized cut(ratio of cut and affinity inside 2°- ]
foreground, plus ratio of cut and affinity on background 1oo—| I II I I I III II .
[28], the unbalanced normalized cutut divided by affinity o NEEE_ !0 i W!L L !!Hm!!o SERRNEREN
inside foreground) [32], and theoundary fraction of low ~ 5=386scs822cccc83gaacasps2a005852
cut, 4 binary variables signaling if the fraction of the cutic & ysS888 S82355rrfief §8:284848884¢

s . 88 === gogoglfZS 53 8¢ 888888 ;
larger than a threshold, normalized by segment perimeier, 23BBEE 228885 2F 5P 5geoggd
different thresholds. EEEE g&ss 5 g é%%é’ 52

§5555 - 2 $5%%as

Region properties (18 features)include area, perimeter, gff % f ) §§§§§§
relative coordinates of the region centroid in the imag att4e 23

bounding box location and dimensions, major and minor axis
lengths of the ellipse having the same normalized secohitd. 4: Feature importance for the random forests regressor
central moments as the region, eccentricity, orientatiol¢arned on the VOC2009 segmentation training set. The minor
convex area, Euler number, diameter of a circle with thxis of the ellipse having the same normalized second dentra
same area as the region, ratio of pixels in the region to pixéhoments as the segment (here ‘Minor Axis Length’) is,
in the total bounding box, perimeter and absolute distanceRerhaps surprisingly, the most important. This featureduse
the center of the image. Some of these features can be eailjsolation results in relatively poor rankings howeveeds
computed in Matlab using theegionpropsfunction. fig. 5a). The Graph properties have small importance. The
‘Boundary fraction of low cut’ features, being binary, do
Gestalt properties (8 features)are implemented mainly asnot contribute at all. Gestalt features have above average
normalized histogram distances based on Recomparison importance, particularly the contour energies.

metric: x*(z,y) = Y, % [68]. Let the texton histogram
vector on the foreground region be, and the one on

the background be,. Theninter-region texton similarityis the ground truth izovering [33]. Let S be the set of ground
computed as the?(ty, ). Intra-region texton similarityis ~truth segments for an imag#’ be the set of machine segments
computed a$", 1(¢;(7) > k), with 1 the indicator function, ands’(r) the subset of machine segments at rarde higher.
and k a threshold, set t®.3% the area of the foreground Then, the covering ob by S'(r) can be defined as:

in our implementation. The textons are obtained using the 1

globalPb implementation [33], which usés nearest neighbor C(8,5'(r) = & > IR| pmax O(R, R) (4
codewords. Res &)

Another two features we use afster-region brightness \yhere v is the total number of pixels in annotated objects
similarity, defined as¢®(bs, by), with by andb, intensity his- in the image,|R| is the number of pixels in the ground truth
tog_rams with256 bins, andintra-region brightness similarity segmentR, andO is a similarity measure between two regions.
defined asy ; 1(bs(i) > 0). We cast the problem of ranking the figure-ground hy-

We also extract thintra-region contour energgas the sum potheses as regression amxges O(R, R'), the maximum
of edge energy inside the foreground region, computed uSigighjjarity a segment has with a ground truth object, against
globalPb, normalized by the length of the region perimetghe segment features. The idea is that if regression is ategur
We also extract amter-region contour energyas the sum of e generated segments most similar to each ground truth wil
edge energies along the boundary normalized by the perimegg, placed at high ranks. Then many lower ranked segments

_ Other Gestalt features we consider inclaigvilinear con-  can pe discarded without reducing the covering measure. As
tinuity and convexity The first is the integral of the segmentmjjarity measureD we useoverlap [7]:

boundary curvature. We use an angle approximation to the

curvature [69] on triplets of points sampled regularly (gve 0(5,G) = ISNG| )

15 pixels in our tests). Convexity is measured as the ratio of ’ |SUG]|

areas of the foreground rggion and its convex hqll. which penalizes both under-segmentations and over-
All features are normalized by subtracting their mean arétggmentations and is scale invariant. An alternative to

dividing by their standard deviation. overlap, which we used in one of our experiments, is the

F-measure[6]:
i 2RP
4.1 Learning r_ PR - ©6)
The objective of our ranking process is to identify segments +
that exhibit object-like regularities and discard mostesth where P and R are the precision and recall of pixels in a
One quality measure for a set of segments with respectt@chine segment relative to a ground truth segment.
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For ranking, we experimented with both linear regressimelected next. The best trade-off depends on the applicatio
and random forests [70], a competitive non-linear model thhigh precision is desired then a higher weight should bergive
averages over multiple regression trees. We used a randmnthe predicted score, whereas if recall is more important,
forests implementation available online [71] and used wiefathen a higher weight should be given to diversityd Ifs very
parameters, except for the number of tre8), and the small, then ranking will be close to random. For our VOC
number of candidate variables to select from, at random, etperiments we have cross-validateddat 0.75.
each split node, which we set 1.

The importanceof our features as learned by the randorg, EXPERIMENTS

forests regressor [70], is shown in fig. 4. Some region ProRe study both the quality of the pool of object hypotheses gen

erties appear to be quite informative, particularly feesur . G .
such as segment width and height and the location in t (raated by CPMC and the loss in quality incurred by selecting

image. The ‘Minor Axis Length’ feature, which gets the € topmost\ object hypotheses, as opposed to the use of a

highest importance works quite poorly in isolation, hOV\revemuCh larger pool. We experiment with three publicly aveiab

(as illustrated in fig. 5a), suggesting that some cues a od tasets: Weizmann’s Segmentation Evaluation Databdse [6
o ' 119. >a), sugg g ang SRC [5] and the VOC2009 train and validation sets for the
effective in conjunction with other features. Convexitydan

the edge energy along the boundary are also assigned Iachb)&e/c?—class segme_ntatlon problem [7]. . .
importance, as expected. “Weizmann consists of 100 g_ray-valued images having a
single prominent foreground object. The goal is to generate
) . ) o coverage of the entire spatial support of the object in the
4.2 Maximum Marginal Relevance Diversification image using a single segment, and as accurately as possible.
Applying standard regression for ranking does not conwe compare the performance of CPMC with published results
without issues. Similar segments have similar featuresciwh from two state of the art segmentation algorithms. The tesul
causes them to regress to the same values and be rankegaréreported using thaverage best F-measureriterion. For
adjacent positions. The covering measure only consid&rs tach ground truth object the most similar segment with ieispe
best overlap with each ground truth object, hence redundagt--measure (eq. 6) is selected and the value of the sityilari
segments in adjacent positions do not increase covering agdecorded. These top similarities are then averaged.
tend to lower the ranks of segments that best overlap othelThe MSRC dataset is quite different, featuring 23 different
objects. More segments then need to be retained to achiekgsses, including some ‘stuff’ classes, such as water s g
the same score. It has up tol1 objects present in each of its nearly 600 images.
An effective way to deal with such effects isdaversify the We use this dataset to evaluate the quality of the pool of
ranking, in order to prevent that minor variations of a segimesegments generated, not the individual rankings.
saturate the pool. We achieve this based on Maximal MarginalThe VOC 2009 dataset is challenging for segmentation, as
Relevance (MMR) measures [72]. To our knowledge this s contains real-world images from Flickr, with 20 diffetten
the first application of this technique to image segmentatioclasses of objects. The background regions are not andotate
Starting with the originally top-scored segment, the MMRn both MSRC and VOC2009, which contain multiple ground-
induces an ordering where the next selected segment (witlith objects per image we use tlevering (eq. 4) with
maximum marginal relevance) is the one maximizing theverlap (eq. 5) as a segment similarity measure.
original score minus a redundancy measure with respect to
segments already selected. This procedure is iterated ugty Segment Pool Quality

all segments have been re-ranked. The redundancy measure _ its obtained using CPMC he Wei
we employ is the overlap with the set of previously selectej}'e automatu;resu IS0 t;tla|n3e usmgh it orr: the _e|zmz;nn
segments based on the MMR measure. ataset are shown in table 3a together with the previous best

Formally, let H be the full set of figure-ground segmenta/€Sult: by Bagon et al [38], which additionally requires the

tions andH, c H hypotheses already selected. Ls¢H;) be user to click a point inside the object. We also compare with
p . ) . . .
our predicted score for a given figure-ground segmentation a'¢ method of Alperet al [6], which is automatic. Results

o(H;, H;) the overlap between two figure-ground segmentglQr CMPC were Optaimd using an average of 53 segments
tions. The recursive definition for the next maximal margin®€" image. Visibly, it generates an accurate pool of segsnent
relevance selection [72] is given as: Results on MSRC and VOC2009 are compared in table 3b to

Arbelaezet al. [33], which is arguably one of the state of the
art methods for low-level segmentation. The methodology of
MMR = argmax [0 - s(H;) — (1 —6) - max o(H;,H;))] the authors was followed, and we report average coverings. W
Hi€ H\H, i€ty use all the unique segments in the hierarchy returned by thei
The first term is the score and the second is the redundaredgorithm [33] to compute the score. The pool of segments
Parameterf regulates the trade-off between the predictgoroduced by CPMC appears to be significantly more accurate
score and the diversity measures in the fivsselections. For and has an order of magnitude fewer segment hypotheses. A
example withd = 0 the ranking will ignore individual scores, filtering procedure could be used for gPb-owt-ucm to reduce
and select the next element in the set, having minimal gverlthe number segments, but at a potential penalty in qualitg. T
with any of the previously chosen elements. In contrasth witelation between the quality of segments and the size of the
0 = 1 the element with the highest score will always beground truth objects is shown in fig. 7.
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Weizmann F-measure MSRC Covering N Segments
CPMC 0.93+ 0.009 CPMC 0.85+ 0.1 57
Bagonet al. [38] 0.87+ 0.010 gPb-owt-ucm [20] 0.78t 0.15 670
Alpert et al. [6] 0.86 + 0.012 -
- - VOC2009 Covering N Segments
(a) Average best F-measure scores over the entire WeizmaasetlaBagon’s CPVIC 0785018 154
algorithm produces a single figure-ground segmentation dmires a user gPb-owt-uem [20] 0.61 020 1286

to click inside the object. Alpert's results were obtainedomatically by
partitioning the image into one full image segmentation tylpichaving

between 2 and 10 regions. The table shows that for each imageng
the pool of segment hypotheses produced by CPMC, there idlyiguee

segment which is extremely accurate. The average number of segythat
passed our fast rejection step was 53 in this dataset.

(b) Average of covering scores on MSRC and VOC2009 trairigtatibn
datasets, compared to Arbekzet al. [33], here gPb-owt-ucm. Scores show
the covering of ground truth by segments produced using eldrithm.
CPMC results before ranking are shown, to evaluate the tguaflithe pool

of segments from various methods.

TABLE 3: CPMC segment quality on multiple datasets.

5.2 Ranking Object Hypotheses better than the ones obtained by the linear regressor on the
We evaluate the quality of our ranking method on both thbeaSIC feature set. We will revisit them §5.3. Hoyvever, these .
. . are not better than a random forests model trained on the basi
validation set of the VOC2009 segmentation dataset, and gn . . .
| . 1Pature set. This shows that the set of basic features iachire
hold-out sets from the Weizmann Segmentation Database. %u(?te expressive in coniunction with nonlinear models
training set of VOC2009 consists G50 images, resulting in q P ) )

114,000 training examples, one for each segment passing thNotlce that by using this ranking procedure, followed by

o ; . Iversification, we can obtain more accurate object hyethe
fast rejection step. On _the We|zmann_Segmentat|on_D_atab%ﬁgn those provided by the best existing segrjnenta)t/ion algo-
we randomly select0 images, resu_ltmg |r127_500 training rithm of [33]. In fact, by using the toff segments produced
examples, and we test on the remaining 50 images.

. y our ranking procedure, we obtain the same covefirgj,,

: we p_lot curves showing how well the gr_ound truth for eac s, obtained using the full hierarchy bf286 distinct segments
image is covered on average, as a function of the numberin 33]
segments we retain per image. The segments are added to ttle '
retained list in the order of their ranking.

The curve marked as ‘upper bound’ describes the maximu® Subframe-CPMC Extension
quality measure possible given the generated segmentshwhive have experimented with a different variant of the algo-
can be obtained if the segments are ranked by their knowthm, the Subframe-CPMC, on the Pascal VOC2010 dataset.
overlap with ground truth. Note that on Weizmann the upp@he goal was to achieve high object recall while at the same
bound is flat because each image has one single ground tititie preserve segmentation quality, with a mindset towards
object, whereas on VOC images there can be multiple objedigtection applications. To score a detection hypothestoas
hence the upper bound increases as more than one segmestt benchmarks such as the Pascal VOC require a minimum
is considered per image (on the horizontal axis). The cureeerlap between a correctly classified region and the ground
labeled as ‘random’ is based on randomly ranked segmentsirifth. In addition, benchmarks disregard the area of thargto
is a baseline upon which the ranking operation should imgrotruth regions €.g.an object with500 pixels is just as important
in order to be useful. as one occupying the full image), hence what matters is not

On Weizmann we compare a random forests regressar much achieving highoveringscores (which explicitly take
trained on the images in that dataset with a predictor tchin@to account the size of the segments), but higkrlap
on VOC2009. The results in fig. 5a are similar, showing that Subframe-CPMC uses an additional type of seed, and is
the model is not overfitting to the statistics of the indivatlu configured to generate a larger number of segments. First
datasets. This also shows that it is possible to learn to rawk make the overall process faster by solving the energy
segments of arbitrary objects, using training regions fomly problems at half the image resolution. Quantitative rasult
20 classes. The learned models are significantly better thmare equivalent. We also changed the seeding strategy to
ranking based on the value of any single feature such as thewse a single soft background seed and increased the number
or the ratio cut. On VOC2009 we have also run experiment$ foreground seeds, by using a grid &6 instead of the
where we have complemented the initial feature set wifirevious5x5. We reduced the value of theparameter by0%
additional appearance and shape features — a bag of deinseq. 3, resulting in more segments due to reduced affinities
gray-level SIFT [73] features computed on the foregrourttbtween neighboring pixels.
mask, a bag of local shape contexts [74] computed on itsWe have also complemented the existing seeds wih-
boundary, and a HOG pyramid [75] with levels computed frames background seeds composed of the outside of rectan-
on the bounding box fitted on the boundary of the segmeugles covering no more tha25% of the area in the image,
for a total of 1,054 features. In this case, we trained a tineaith a single square foreground seed in the center. These
regressor for ranking (this is significantly faster thand@m seeds constrain segments to smaller regions in the image, as
forests, which takes about 8 hours to train for the model withey force the possible contours to lie inside the rectargul
34 features). The results are shown in fig. 5b. Clearly the neegion. This is especially helpful for segmenting smallel$
features help somewhat, producing results that are sfighih cluttered regions, as can be seen in fig. 7. For this type of
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Weizmann Segmentation Dataset VOCO09 Segmentation Dataset (validation set)
% 1 : : ‘ ‘ 08— =
$ 0.9 I 90.7{ o
g 0.8f ip9” .- 1 S 062 |
F . P o VY Iy
T 0.7 —RF trained on VOCO09 2058 7 Linear Regression (+ additional features)
L 0.6/ ¢ | ¢ RF trained on Weizmann 8 ' # |---Linear Regression
@ 0.5 ¢ . |---RF trained on Weizmann (diversified) o 0-4f /7 |---Random Forests (diversified)
m 0.4r - Rank on value (—Ratio Cut) 20.3: o Random Forests
%0-3’. Rank on value (—Minor Axis Length) @ 0.2~ - Rank on value (-Ratio Cut)
S 0.2t Random Selection 51 0 17‘ Random selection
3 O-é’ — Upper Bound 'O' —Upper bound |
< 0 10 20 30 40 50 0 50 100 150
Number of segments retained Number of segments retained

(a) Average best segment F-measure as we vary the number ofecttai (b) Complementing the basic descriptor set with additiongleapance and
segments given by our ranking procedure. Results were ae@ager three shape features improves the ranking slightly, but the basiis still superior

different splits of 50 training and 50 testing images. Not thhen working when used in conjunction with a more expressive random foresfressor.
with our top-scored 5 segments per image, the results alrepdl the ones Further diversifying the ranking improves the average dagegiven by

obtained by the interactive method of Bagetral. [38]. Note also that using  the first top N segments significantly.

this learned ranking procedure, it is possible to compresttginal pool

of segments to a fifth (10 segments), at negligible loss of tuali

Fig. 5: Ranking results on the Weizmann and VOC2009 datafefferent rankers are compared with the optimal ranker
("Upper bound”) and with random ranking ("Random selectjon

seed we also solve problems with and without a color una VOC2009 training+validation set
term. Two alternative types of subframe seeds were tried: > § % — ‘ : ‘ ‘ ! I
5x5 regular grid of square subframes of fixed dimension, it @ ssl ~ Ground Truth ]
width set t040% of the image, and bounding boxes from zg £ ||—CPMC
deformable parts detector [9], [76] with default paramgter & S || == CPMC-subframe 1
set to the regime of high recall but low precision. For th g S 250 = gPb-owt-ucm ]
detector, we discard class information and keep4bdop- o 3 rd ‘.
scored bounding boxes smaller than a thresh@|din this -8 5 2 1
case25% of the image area. Subframe energy problems a £ %S 150/ i
optimized efficiently by contracting all nodes correspaondi 8 >
to pixels belonging to background seeds into a single noc § S 100f 7
thereby reducing the size of the graph significantly. 23 | Ry ]
The parametes, controlling the sharpness of the boundary = g
has an important influence on the number of generat ~ = ° 28 71 178 448 1120 2844 7165 18054 45491 114622
segments. A value df.5 with the color-based seeds leads t Ground truth segment area (pixels)

225 segments, average overlap @61 and covering 0i0.74,

whereas forc = 1 the method produces an averages8@t Fig. 7: Quality of the segments in the combined VOC2009
segments, average overlaplo$9 and covering).76. We used train and validation sets, as a function of the area of the
o = 1 for the uniform seedsy = /2 for the color seeds, and ground truth segments. Object area has been discretized int
o = /0.8 for the subframe seeds. This leads to a larger poRd bins on a log scale. In the case of the ground truth curve
of segments, but also of higher quality, as noticeable ifetdb the y-axis corresponds to the number of segments assigned
in each bin (ground truth segments have an overlap value of

Additional Features: Working with a larger pool of segments1 with themselves). Medium and large size objects, that are
poses additional demands on the accuracy of ranking. Amore frequent, are segmented significantly more accurately
improvement we pursued was to enlarge the set of mid-le\®f CPMC than by gPb-owt-ucm [33]. Subframe-CPMC is
features with shape and texture descriptors§3i2 this was competitive with gPb-owt-ucm on small objects, but geresrat
shown to improve results, but the dimensionality of theselarger segment pool than plain CPMC (in the order of 700
features made linear regression the most practical legrninstead of 150 elements).
choice. A nonlinear random forests regressor on the basic
feature set was still superior.

The additional shape and texture features we use are tapplying a randomized feature map to linearly approximate
tograms, which are known to be most effective when used withe Laplacian-RBF kernel [77], [78].
certain nonlinear similarities, such as a Laplacian-RBbedn We adjusted the extended feature set fr§®2 slightly.
ding k(x,y) = exp(—>_ |x; — y;|) [68]. Here we handle one To represent texture we extracted two bags of words for
of these similarity functions with linear regression, bysffir each segment, one defined over gray-level SIFT features as
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Fig. 6: Segmentation and ranking results obtained usingahdom forests model learned on the VOC2009 training sé¢h wi
the features described in seégl. The green regions are the segment foreground hypoth€&kesfirst image on each row
shows the ground truth, the second and third images show ts pfausible segments given by CPMC, the last two images
showthe leastplausible segments, and the fourth and fifth images show eetgimtermediatelyplaced in the ranking. The
predicted segment scores are overlaid. The first three isnagefrom the VOC2009 validation set and rogyst and6 show

the diversified rankings, with = 0.75. Note that in the diversified ranking, segments scored ye@r to be more dissimilar.
The last three rows show results from the Weizmann SegniemtBatabase. The algorithm has no prior knowledge of the
object classes, but on this dataset, it still shows a rerbégkpreference for segments with large spatial overlap with
imaged objects, yet there are neither chariots nor vasdseitraining set, for example. The lowest ranked object Hygses

are usually quite small reflecting perhaps the image staigt the VOC2009 training set.
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before and a new one over color SIFT features, both samp Weights of Ranking Features for CPMC-subframe

every 4 pixels and at4 different scales 16, 24, 36 and 54

pixels wide) to ensure a degree of scale invariance. Ea

feature was quantized using #00-dimensional codebook.

To represent shape we computed two pyramid HOGs, bc 0.1t ]

with gradient orientation quantized inf0) bins, the first with | Texture — BOWSs

the background segment gradients masked out on a pyraic 0.05f Shape - PHOGs

composed of four levels, for a total df, 700 dimensions. -G

The other PHOG was computed directly on the contour < Or

the segment, with both foreground and background gradiel _g 55

masked out and a pyramid of three levels for a total ¢

420 dimensions. We map the joint vector of the two bag -0.1- ]

of words for texture features into &,000-dimensional

randomized feature map drawn from the Fourier transfor 0 1000 2000 3000 2000

of the Laplacian-RBF kernel [77], and process similarly th Feature Indices

two PHOGs corresponding to shape features. We also append

our original 34-dimensional feature set resulting in a total ofFig. 8: Learned feature weights for the Subframe-CPMC

4,034 features. model. The original set of mid-level features and region
properties gets higher weights, texture features getrirger

VOC2010 Results:The overlap measure is popular for disdiate weights and shape features get sr‘nalle’r weights. fEextu

tinguishing hits from misses in detection benchmarks. I tieatures might help discard amorphous ‘stuff’ regions sash

VOC2010 dataset we evaluate the recall under two differe#fiass, water and sky.

hit-metrics: 50% minimum segment overlap an&)% mini-

mum bounding box overlap. Using tl®% segment overlap Average best over|ap
criterion, the algorithm obtains, on average per clags;3% 1 — —

0.15fOriginal feature set i

and 83.10% recall, using800 and 200 segments per image,
respectively. Under &0% bounding box overlap criterion, |
the algorithm achieve81.90% when using’300 segments and 0
87.65%, for 200 segments. ]

The top200 ranked segments gave on averag covering 0.61 ' |
and 0.71 best overlap, which improves upon the results ¢ h
CPMC without subframes on the VOC2009.78 and 0.66 0.4 1
with all segments). These results are made possible beca -Al_l segments (avg 805)
of the richer pools of segments, but also because the rank EnghESt ranked 200
is accurate. A reduction of on average around 500 segmeO'Z’ DHighest ranked 100
per image results only in a loss of 0.03 average best overl; B Random 100

Details are shown in figs. 11 and 12, whereas image rest © o &, 9, % %, % %, %, %. %, %, %, %, 7% 20, %, Soxla,

T . ° % ” 0 % %o O %5 Y 7,

are shown in fig. 9. The learned weights of the linear regres: 0;;0/0 %" k ”,gé % ’bf,:o%oi%s K O/%
for all features are displayed in fig.8. ® % S ”

Fig. 11: Average overlap between ground truth objects and
Quality Measure _ Grid Subframes BB Detector No Subframes the best Subframe-CPMC segments on the validation set of

Overlap 0.74 0.76 0.71 VOC2010. We compare results obtained when considering all
Covering 0.83 0.84 0.82 segments, just the top ranked 100 or 200 and a baseline that
N segments 736 758 602

selects 100 segments randomly from the pool of all segments.
TABLE 4: Results on the training set of the VOC2010 Certain classes appear to be considerably harder to segment
segmentation dataset. Color and uniform seeds are such as bicycles, perhaps due to their wiry structure.
complemented with subframe seeds, either placed on a

regular grid or obtained from a bounding box detector. Using

a regular grid gives only slightly inferior results compdt®e 6 CONCLUSIONS

results obtained using detector responses. Both give a larg

improvement in the recall of small objects, compared to  We have presented an algorithm that casts the automatieimag
models that do not use subframes. This is reflected in the segmentation problem as one of generating a compact set
overlap measure, which does not take into account the areaf plausible figure-ground object hypotheses. It does so by
of the segments. learning to rank figure-ground segmentations, using ground
truth annotations available in object class recognitiotasizts

and based on a set of low and mid-level properties. The
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Fig. 9: Segmentation results on images from the validat&étrotthe VOC2010 database. Tfiest column contains the original
images, thesecondgives the human ground truth annotations of multiple objettiethird shows the best segment in the
Subframe-CPMC pool for each ground truth object, fingrth shows the best segment among the ones ranked in the top-200.
The proposed algorithm obtains accurate segments for tshanultiple scales and locations, even when they areadiyati
adjacent. See fig. 10 for challenging cases.
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10/10/2006 “ 10/10/2006 “ 10/10/2006

Fig. 10: Examples, taken from the validation set of VOC204fere the CPMC algorithm encounters difficulties. Thet
column shows the images, teecondthe human ground truth annotations of multiple objectsthirel shows the best segment

in the entire Subframe-CPMC pool for each ground truth dbjae fourth shows the best segment among the ones ranked
in the top-200. Partially occluded objects (first two rows)ry objects (third row) and objects with low background trast
(fourth and fifth row) can cause difficulties.
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Recall at 50% overlap composed of disconnected regions that may arise from oc-
100 i - clusion. While the energy minimization problems we solve
Ii sometimes generate such multiple regions, we chose to sepa-
rate them into individual connected components, becawse th
only rarely belong to the same object. In fact, in many such
cases it may not be possible to segment the object correctly
601 ' ] without top-down information. For exemple segmenting peo-
h | | ple embraced might require the knowledge of the number of
a0l | | arms a person has, and the configurations they can be in. It
Bl All segments (avg 805) might be possible to handle such scenarios in a bottom-up

DHighest ranked 200 fashion in simple situations, when cues like strong coritynu

20t DHighest ranked 100 H may b_e exploi?ed, but it appears more adequate to do this
analysis at a higher level of scene interpretation.

0 -Randomloo The low-level segmentation and ranking components are
‘9%%/%'000@:'0,;%"@,“@,“ééo@%é%g”%%,:%oo,%%@so@%f% also susceptible to improvement. Both components perform
%% Y, | %2 B2 "%, satisfactorily conditioned on the current state-of-theand

; o datasets. One promising direction to improve the segnientat
Recall at 50% boundlng box Ovel’|ap is the development of more sophisticated unary terms. Other
100 T ‘ — advances may come from minimizing more powerful energy

I | functions or the use of additional representations beyond
regions. For example curves [81] may be more appropriate
for objects that have long ‘wiry’ structures such as bicgcle
The ranking component can be improved by developing better
60f h 1 learning methodology, better features and by using more

80F B . : i

%

sor [ I i :

training data. At this point the segmentation componeninsee
to allow the most improvement, but if applications set gfeint

o Bl All segments (avg 805) constraints with respect to the maximum number of segments
[]Highest ranked 200 retained per image then ranking can become a bottleneck.

20 . H A somewhat suboptimal aspect of the proposed method is
DngheSt ranked 100 that energy minimization problems are solved indepengentl
Il Random 100 and the same number of problems is generated for all images,

0 T WO WO TN TN W W RO W NN N TN N i

0.0, 0, 0,0 G Q Cs Oy O & 4 O Bn, 4 So O 4 i i i i i
%’%/% %o Oyt % %2y %%, %Z)% %oo%é%o,é%%o notwithstanding some having a single object and others
%6 % 8,7 %2 7, having plenty. An interesting extension would make the
A %, %o R, 22

process dynamic by making decisions on where and how
Fig. 12: Recall at50% overlap between regions of groundo extract more segments conditioned on the solutions of
truth objects and the best Subframe-CPMC segmemois) ( the previous problems. This would be conceivably more
and between ground truth bounding boxes and best Subfraratficient and would make the transition to video smoother. A
CPMC segment bounding boxdsoftom). Note that bicycles sequential, conditional process could also make for a more
are difficult to segment accurately due to their wiry stroefu biologically plausible control structure.

but there is usually some segment for each bicycle that has an

accurate bounding box, such as the ones shown in the third

row of fig. 2. These results are computed on the validation S KNOWLEDGEMENTS
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