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CPMC: Automatic Object Segmentation Using
Constrained Parametric Min-Cuts

João Carreira and Cristian Sminchisescu

Abstract —We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images
using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground
segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a
sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the
corresponding segments by training a continuous model to predict how likely they are to exhibit real world regularities (expressed as
putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum
marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in
the VOC 2009 and 2010 datasets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a
segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image
segmentation and labeling challenges.

Index Terms —Image Segmentation, figure-ground segmentation, learning
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1 INTRODUCTION

Reliably identifying the spatial extent of objects in images is
important for high-level vision tasks like object recognition.
A region that covers an object fully provides a characteristic
spatial scale for feature extraction, isolates the object from
potentially confusing background signals and allows for in-
formation to be propagated from parts of the object to the
whole. For example, a region covering a human fully makes
it possible to propagate the person identity from the easierto
identify face area to the rest of the body.

Given an image, the space of all possible regions, or seg-
ments that can be obtained, is exponentially large. However,
in our perceived visual world not all image regions are equally
likely to arise from the projection of a three-dimensional
object. Objects are usually compact and this results in their
projection in the image being connected; it is also common
for strong contrast edges to mark objects boundaries. Such
properties reduce the number of plausible object regions
greatly, but may not be sufficient to unambiguously identify
the optimal spatial support for each of the objects in an image.

In this paper, we follow a two step strategy by combining
a figure-ground, multiple hypothesis bottom-up approach to
segmentation with subsequent verification and ranking based
on mid-level region properties. Key to an effective solution is
the capability to leverage the statistics of real-world objects
in the selection process. One possibility would be to learn the
parameters of the segmentation algorithm directly, by training
a machine learning model using large amounts of human
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annotated data. However, the local scope of dependencies and
the intrinsically combinatorial nature of image segmentation
diminishes the effectiveness of learning in such ‘pixel spaces’
as many interesting features such as the convexity and the
smoothness of a region boundary are difficult to capture
locally. On the other hand, once sufficient image support
is available, learning to distinguish ‘good’ segments that
represent plausible projections of real-world surfaces, from
accidental image partitions becomes in principle feasible. This
motivates our novel decomposition of the problem into two
stages. In the first stage, we explore the space of regions
that can inferred from local measurements, using cues such as
good alignment with image edges. The process of enumerating
regions with plausible alignment with the image contours
is performed using exact combinatorial methods based on
parametric max-flow. Then, in the restricted space of generated
regions, we use a learned combination of advanced mid-level
features in order to induce a more accurate global ranking of
those regions in terms of their probability to exhibit ‘object-
like’ regularities.

A key question, and one of our contributions, is how should
image partitions be generated. Should region hypotheses be
allowed to overlap with each other? Should one aim at multi-
region image segmentations early? We argue that segmentation
is already a sufficiently challenging problem without such con-
straints. It may therefore be more appropriate to enforce global
inter-region spatial consistency at a later stage of processing,
by higher-level routines that have access to a sufficient spatial
support for this calculation. We argue that attempts to enforce
complex multi-region consistency constraints early may disal-
low the speculative behavior necessary for sampling regions
effectively, given the inherently ambiguous nature of the low-
level cues one typically operates on initially. Hence, differently
from most of the existing approaches to segmentation, we
derive methods to generateseveral independent figure-ground
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Fig. 1: Our object segmentation framework. Segments are ex-
tracted around regularly placed foreground seeds, with various
background seeds corresponding to image boundary edges, for
all levels of foreground bias, which has the effect of producing
segments at different locations and spatial scales. The resulting
set of segments is ranked according to their plausibility of
being good object hypotheses, based on mid-level properties.
Ranking involves first removing duplicates, then diversifying
the segment overlap scores using maximum marginal relevance
measures.

partitions, rather than a battery of splits of each image into
multiple, non-overlapping regions1.

Our proposed framework is depicted in fig. 1. We first solve
a large number of independent binary min-cut problems on an
image grid, at multiple scales. These are designed as energy
functions efficiently solvable with parametric min-cut/max-
flow techniques. The resulting pool of segments is minimally
filtered to remove trivial solutions and ranked using a regressor
trained to predict to what extent the segments exhibit the
regularities typical of real-world objects, based on theirlow
and mid-level region properties. Because standard ranking
tends to place redundant instances of a same segment in close-
by positions, we diversify the resulting set using Maximal
Marginal Relevance measures and retain only the top ranked
segments.

The quality of the list of object hypotheses returned by
our algorithm is evaluated empirically by measuring how
accurate they are with respect to pixel-level ground truth
human annotations, in object recognition datasets. We also
record performance as a function of the number of segments.
Results are reported on several publicly available benchmarks:
MSRC [5], the Weizmann Segmentation Database [6] and both
VOC2009 and VOC2010 [7], [8] where the proposed method
is shown to significantly outperform the state of the art, while
at the same time using significantly fewer segments.

Several visual analysis methods may benefit from outputs
like the ones provided by our algorithm. Object detectors
usually scan a large number of bounding boxes in sliding
window schemes [9], [10] without considering the plausi-
bility of pixel grouping within each. Semantic segmentation
algorithms [11], [12], [13], [14] incorporate the outputs of
these object detectors, and may need to mediate the transition

1. The algorithm proposed in this paper has been recently employed to
generate multi-region, full image segmentations, by sampling high-scoring
sets of non-overlapping figure-ground segmentations, modeled as maximal
cliques, with competitive results [3], [4].

between the rectangular regions produced by the detector and
the desired free-form regions that align with object boundaries.
Unsupervised object discovery [15] also requires good class-
independent object proposals. While the presentation focuses
on the problem of object segmentation, the proposed method is
general and can rank lists of segments that exhibit the statistics
of non-object, ‘stuff’ regions such as grass or sky, as long as
appropriate ground truth training data is provided.

An implementation of the proposed algorithm is made
publicly available via our website [16].

Paper Organization: Section§2 reviews the related literature,
§3 introduces the methodology used to generate an initial pool
of segments for an image and§4 presents the segment ranking
procedure. Section§5 presents experimental results and shows
comparisons with the state of the art. An extension of the
basic algorithm to include bounding box constraints and the
corresponding results are described in§5.3. We conclude and
discuss ideas for future work in§6.

2 RELATED WORK

One of the first image segmentation approaches, published
more than 40 years ago by Muerle and Allen [17], aimed
to compute ‘object’ regions. Small patches having similar
gray-level statistics were iteratively merged, starting at a seed
patch. Region growing stopped when none of the neighboring
candidate patches was sufficiently similar to the current region.
The process was repeated until all pixels were assigned.
This method took advantage of the fundamental grouping
heuristic that neighboring pixels with different color aremore
likely to belong to different objects. However it produced
very local solutions and was not able to deal with textured
regions, and even less, take advantage of more sophisticated
object statistics. Later, more accurate techniques emerged—
good surveys can be found in [18], [19], [20]. However, most
methods still pursued a single optimal segmentation of an
image into a set of non-overlapping regions that covered it
fully (a multi-region image partitioning). But a sufficiently
good partitioning is not easy to obtain given the ambiguity of
low and mid-level cues. Moreover, there were no quantitative
benchmarks to gauge progress and most papers only described
the merits of the output segmentations qualitatively, usually
based on results obtained on a few images.

As a consequence, in the nineties, part of the recognition
community lost confidence that a reliable segmentation pro-
cedure would be found and began investigating solutions that
avoided bottom-up segmentation entirely [21]. This trend led
to the current prevalence of bounding box detectors operating
on sliding windows [9], [22]. These detectors rely on a dense
evaluation of classifiers in overlapping rectangular image
regions, with consistency usually enforced a posteriori bynon-
maxima suppression operations. Sliding window methods are
effective in localizing certain objects like faces or motorbikes,
but do not obviously generalize to more complex structures
and cannot be easily adapted for general 3d scene understand-
ing: e.g. information predicted on rectangular image regions
is not sufficient for tasks such as vision-based manipulation
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of a cup by a robot, where it is critical to precisely identify
the cup handle in order to grasp it.

Such considerations made a revival of segmentation in-
evitable. The trend has gained momentum during the past
ten years, propelled by the creation of annotated benchmarks
[7], [23] and new segmentation performance metrics [7],
[24]. A second important factor was the adoption of machine
learning techniques to optimize performance on benchmarks.
A third factor was relaxing the constraint of working with a
single partitioning. A popular approach emerged by computing
several independent segmentations, possibly using different
algorithms. This idea was pursued by Hoiemet al. [25] for
geometric labeling problems. Russelet al. [15] computed
normalized cuts for different number of segments and image
sizes in the context of unsupervised object discovery. By
generating tens to hundreds of thousands of segments per
image, Malisiewicz and Efros [26] produced very good quality
regions for the MSRC dataset, by merging pairs and triplets of
segments obtained using the Mean Shift [27], Normalized Cuts
[28] and Felzenszwalb-Huttenlocher’s (FH) [29] algorithms.
Steinet al. [30] solved Normalized Cut problems for different
number of segments, on a special affinity matrix derived from
soft binary mattes, whereas Rabinovichet al. [31] shortlisted
segmentations that reoccured, hence were potentially more
stable.

The computation of multiple segmentations can also be
organized hierarchically. Shi and Malik [28] recursively solve
relaxations of a Normalized Cut cost based on graphs con-
structed over pixel nodes. Sharonet al. [32] proposed al-
gebraic multigrid techniques to efficiently solve normalized
cuts problems at multiple levels of granularity, where graphs
with increasingly more complex features were used at coarser
levels. Arbeĺaez et al. [33] derive a segment hierarchy by
iteratively merging superpixels produced by an oriented water-
shed transform. They use the output of the learned globalPb
boundary detector [34] and can represent the full hierarchy
elegantly by a single ultrametric contour map. The hierarchy
is a natural representation for segmentation, as it lends itself
to compositional representations. However, inaccuraciesin
one level (due to incorrect merging of two regions from the
previous level, for example), tend to propagate to all coarser
levels. Therefore, given the same segmentation technique,
generating a single hierarchy is likely to be less robust than
using independent segmentations.

Differently, our region sampling methodology generates
multiple independent binary hierarchies constrained at dif-
ferent positions in the image. Each level of the hierarchy
corresponds to a partitioning into figure and ground, where
only the figure region is retained, and regions at finer levelsare
nested inside coarser levels regions (this is a property induced
by our parametric max-flow methodology [35]). In this way,
we aim to better sample the space of plausible regions popping
up at different image locations. We compute these partitionings
using energies mostly related to the ones developed for inter-
active segmentation applications, where, however, computing
a single figure-ground solution is typical. In these applications,
max-flow algorithms are quite popular because they can obtain
exact optima for certain energy minimization problems that

involve region and boundary properties [36]. Generally the
user assigns some pixels to the foreground and background
regions manually and these constrain an energy function,
which is optimized using a global minimization algorithm.
The two steps are repeated until the set of manually assigned
pixels constrain the solution sufficiently to make the resulting
binary segmentation satisfactory. Variants requiring less man-
ual interaction have been developed, such as GrabCut [37],
where a simple rectangular seed around the object of interest
is manually initialized and an observation model is iteratively
fitted by expectation maximization (EM). Alternatively, Bagon
et al. [38] require a user to simply click a point inside the
object of interest, and use EM to estimate a sophisticated self-
similarity energy.

Max-flow techniques can only globally optimize energies
defined on local features such as contrast along the boundary
and good pixel fit to a color or texture model. Interesting relax-
ation approaches exist for some energies whose minimization
is NP-hard, such as curvature regularity of the boundary [39]
and approximations have been developed for energies with
connectivity priors [40]. However, many other more global
properties, such as convexity or symmetry, are significantly
more challenging to optimize directly. This motivates our
segment generation and ranking procedure. We differ from
existing methods not only in leveraging an efficient parametric
max-flow methodology to solve for multiple breakpoints of the
cost, thus exploring a much larger space of plausible segment
hypotheses in polynomial time, but also in using regression
methods on generic mid-level features, in conjunction with
ranking diversification techniques, to score the generatedseg-
ments. This fully automates the process of distilling a repre-
sentative, yet compact segment pool. No manual interactionis
necessary in our method.

One of the big challenges in segmentation is to leverage the
statistics of real world images in order to obtain more coherent
spatial results. Methods that learn low-level statistics have
been applied to distinguish real from apparent contours [41],
[42], [43] and similar from dissimilar superpixels [25]. Ren
and Malik [44] use a random search algorithm to iteratively
hypothesize segmentations by combining different superpixels,
and use a classifier to distinguish good segmentations from
bad ones. Pen and Veksler [45] learn to select the best
segment among a small set generated by varying the value
of one parameter, in the context of interactive segmentation.
Models based on mid-level properties have also been learned
to distinguish good from bad regions [44]. High-level shape
statistics can be incorporated into binary segmentation models,
usually as non-parametric distributions of templates [46], [47],
[48]. Expressive part-based appearance models have also been
developed [49], [50], [51], [52]. As objects in real images
exhibit large variability in pose, have high intra-class variation
and are often occluded, it is likely that such methods may
require bottom-up initialization, which an algorithm likeours
can provide. Effectively leveraging high-level shape priors in
the initial steps of a visual processing pipeline may not always
be feasible.

Our method aims to learn what distinguishes meaningful
regions, covering full objects, from accidental pixel group-
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ings. Since our original presentation at VOC2009 [53] and
publication [54], related ideas have been pursued. Endres
and Hoiem [55] follow a processing pipeline related to ours,
but employ a learned affinity measure between superpixels,
rather than pixels, and a structured learning approach on a
maximum marginal relevance measure similar to the one we
originally proposed to diversify ranking. To generate figure-
ground segments, Levinshteinet al. [56] developed a proce-
dure based on parametric max-flow principles similar to ours,
but use a graph where new similarity measures are constructed
on superpixels. In parallel work, Alexeet al. [57] learn a
naive Bayes model to distinguish bounding boxes enclosing
objects from those containing amorphous background, without
knowledge of the shape and appearance of particular object
classes. They also show how to sample bounding boxes from
the model efficiently but do not provide segmentations. Salient
object detection [58] approaches are also relevant to our
work, but they focus on selection criteria inspired by attention
mechanisms. We are instead interested in computing regions
that cover every object in an image well, independently of
whether they ‘pop out’ from the rest of the scene or not.

3 CONSTRAINED PARAMETRIC MIN-CUTS
(CPMC)
In order to generate a pool of segments with high probability
of not missing regions with good object overlap, multiple
constrained parametric min-cut (CPMC) problems are solved
with different seeds and unary terms. This leads to a large and
diverse pool of segments at multiple spatial scales. The seg-
ments corresponding to implausible solutions are subsequently
discarded using simple ratio cut criteria. The remaining are
clustered so that all but representative segments with low
energy are retained, among those extremely similar. The final
working set of segments is significantly reduced, but at the
same time the most accurate segments are preserved.

3.1 Setting up the Energy Functions

For each image, alternative sets of pixels, called seeds, are
hypothesized to belong to the foreground and the back-
ground. The foreground seeds are placed on a grid, whereas
background seeds are associated with sets of pixels along
the image border. For each combination of foreground and
background seeds we compute figure-ground segmentations
with multiple levels of foreground bias. The levels of bias are
induced by varying the cost of assigning non-seed pixels to the
foreground. Inference consists of finding minimum cuts for the
different values of foreground bias — in fact searching over
multiple foreground biases is intrinsic to our parametric max
flow procedure. The optimization problem is formulated next.

Let I(V) → R3 be an image defined on a set of pixelsV.
As commonly done in graph-based segmentation algorithms,
the similarity between neighboring pixels is encoded as edges
of a weighted graphG = (V, E). Here, each pixel is a node
in the setV. The foreground and background partitions are
represented by labels1 and 0, respectively. Seed pixelsVf

are constrained to the foreground andVb to the background
by setting infinity energy to any labeling where they receive

the contrasting label. Our overall objective is to minimizean
energy function over pixel labels{x1, ..., xN}, xi ∈ {0, 1},
with N the total number of pixels. In particular, we optimize
the following energy function:

Eλ(X) =
∑

u∈V

Dλ(xu) +
∑

(u,v)∈E

Vuv(xu, xv) (1)

with λ ∈ R, and unary potentials given by:

Dλ(xu) =















0 if xu = 1, u /∈ Vb

∞ if xu = 1, u ∈ Vb

∞ if xu = 0, u ∈ Vf

f(xu) + λ if xu = 0, u /∈ Vf

(2)

The foreground bias is implemented as a cost incurred by
the assignment of non-seed pixels to background, and consists
of a pixel-dependent valuef(xu) and an uniform offsetλ.
Two different functionsf(xu) are used in practice. The first
is constant and equal to0, resulting in a uniform (variable)
foreground bias. The second function uses color. Specifically,
RGB color distributionspf (xu) on seedVf andpb(xu) on seed
Vb are estimated to derivef(xu) = ln pf (xu)− ln pb(xu). The
probability distribution of pixelj belonging to foreground is
defined aspf (i) = exp[−γ ·minj(||I(i) − I(j)||)], with γ a
scaling factor, andj indexing representative pixels in the seed
region, selected as centers resulting from ak-means algorithm
(k is set to 5 in all of our experiments). The background
probability is defined similarly. This choice of function ismoti-
vated by efficiency, being much faster to estimate compared to
the frequently used Gaussian mixture model [37]. Color-based
unary terms are more effective when the color of the object
is distinctive with respect to the background, as well as when
objects have thin parts. Uniform unary terms are more useful
in the opposite case. The complementary effects of these two
types of unary energy terms are illustrated in fig. 2.

The pairwise termVuv penalizes the assignment of different
labels to similar neighboring pixels:

Vuv(xu, xv) =

{

0 if xu = xv

g(u, v) if xu 6= xv
(3)

with similarity between adjacent pixels given byg(u, v) =

exp
[

−max(gPb(u),gPb(v))
σ2

]

. gPb returns the output of the
multi-cue contour detector globalPb [34] at a pixel. The square
distance is also an option we experimented with, instead of the
max operation, with similar results. Theboundary sharpness
parameterσ controls the smoothness of the pairwise term.

The function defined by eq. 1 is submodular. Given a pair of
foreground and background seeds andf(xu), the cost can be
minimized exactly for all values ofλ in the same complexity
as a single max-flow problem, using a parametric solver [59].
In canonical form, parametric max-flow problems differ from
their max-flow counterparts in that capacities from the source
node are allowed to be linear functions of a parameter, hereλ.
As λ (effectively our foreground bias) varies there are at most
(N − 1) different cuts in the transformed graph, whereN is
the number of nodes, although for the graphs encountered in
vision problems there are generally far fewer (see our study
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Fig. 2: Different effects of uniform and color-based unary
terms. For illustration, a single foreground seed was placed
manually at the same location for two energy problems, one
with uniform and another with color unary terms. Shown
are samples from the set of successive energy breakpoints
(increasingλ values) from left to right, as computed by
parametric max-flow. Uniform unary terms are used in rows
1 and 3. Color unary terms are used in even rows. Uniform
unary terms are most effective in images where the background
and foreground have similar color. Color unary terms are more
appropriate for objects with elongated shapes.

in §3.3). The values ofλ for which the cut values change
are usually known asbreakpoints. When the linear capacity
functions from the source are either non-increasing or non-
decreasing functions ofλ, the problem is said to be monotonic.
Our energy problems are monotonic because, for all unary
terms,λ is multiplied by the same factor,1. This important
property implies that all cuts computed for a particular choice
of source and sink seeds are nested.

In this work we use thehighest label pseudoflowsolver
[60], which has complexityO(mN log(N)) for image graphs
with N nodes andm edges. The complexity of the CPMC
procedure is thusO(kmN log(N)), as we solve multiple
parametric max-flow problems, for each of thek combinations
of foreground and background seeds, and for different choices
of f(xu). The pseudoflow implementation we used requires a
set ofλ parameters for which to compute cuts. For the study in
§3.3, we additionally use an implementation based on Galloet
al. [35] in order to analyze the segmentation results produced
by a push-relabel parametric max-flow solver which retrieves
all breakpoints [61].

The graph construction that maps to the energy functions
in (1), for each choice of foreground and background seed,
augments the original problem dependency graphG with two
special nodes, sources and sinkt that must be in separate
partitions in any binary cut [36]. The unary energy terms are
encoded as edges between these special nodes and the nodes
in V.

3.2 Effect of Grid Geometry

As foreground seeds, we chose groups of pixels that form
small solid squares. We have experimented with three differ-
ent strategies to place them automatically: rectangular grid
geometry, centroids of superpixels obtained with normalized
cuts, and centroids of variable size regions, closest to each

rectangular grid position, obtained using segments obtained by
the algorithm of [29]. As shown in table 1, the performance
differences are not very significant (see section§5 for details
about the datasets and the evaluation criteria).

The background seedsare necessary in order to prevent
trivial cuts that leave the background set empty. We used four
different types: seeds including pixels that cover the fullimage
boundary, just the vertical edges, just the horizontal edges and
all but the bottom image edge. This selection strategy allows us
to extract objects that are only partially visible, due to clipping
at different image boundaries.

In practice we solve around 180 instances of problem (1) for
each image, for 30λ values each (during processing, we skip
duplicate breakpoints), defined on a logarithmic scale. Theset
of figure-ground segmentations is further enlarged by splitting
the ones with multiple connected foreground components. The
final pool has up to 10,000 segments per image.

As an alternative to multiple ’hard‘ background seeds, it is
possible to use a single ’soft‘ background seed. This can be a
frame one pixel wide covering the border of the image, with
each pixel having a finite penalty associated to its assignment
to the foreground. This construction is more efficient, as it
decreases the number of energy problems to solve by75%.
We used this type of background seeds in an extension of the
basic algorithm, presented in section§5.3.

Seed placement MSRC score Weizmann score

Grid 0.85± 0.1 0.93± 0.06
NCuts 0.86± 0.09 0.93± 0.07

FH 0.87± 0.08 0.93± 0.07

TABLE 1: Effect of spatial seed distribution. The use of
superpixel segmentation algorithms (e.g.Normalized Cuts or
FH [29]) to spatially distribute the foreground seeds does not
significantly improve the average covering score on the
MSRC dataset, over regular seed geometries. On Weizmann,
the average best F-measure is the same for all distributions,
perhaps because the objects are large and any placement
strategy eventually distributes some seeds inside the object.

3.3 Effect of λ Schedule

The effect of solving problem (1) for allλ values, instead
of a preset logarithmicλ schedule, was evaluated on the
training set of the PASCAL VOC 2010 segmentation dataset
(the typical distinction into training and testing is not relevant
for the purpose of this experiment, where the goal is only to
analyze the number of breakpoints obtained using different
search strategies). We use a6x6 regular grid of square seeds
and solve using two procedures: (1)20 values ofλ sampled
on a logarithmic scale (only the distinct energy optima are
recorded) and, (2) allλ values, as computed as breakpoints
of (1). We have recorded the average computational time per
seed, the ground truth covering score, and the number of
breakpoints obtained under the twoλ-search strategies. The
results are shown in table 2, suggesting that a presetλ schedule
is a sensible option. Using only20 values produces almost the
same covering as the one obtained using all values, it is4 times
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Fig. 3: Frequency of the parametric max flow breakpoints for
each seed, on the training set of the VOC2010 segmentation
dataset. These results were obtained using a6x6 uniform grid
of seeds. The number of breakpoints has mean 110, and a
heavier tail towards a larger number of breakpoints.

faster and generates10% of the total number of breakpoints,
hence fewer segments. We also plot the distribution of the
number of breakpoints per seed in fig. 3, under the same
experimental conditions. The frequency of breakpoints has
a dominantly unimodal (bell) shape, with mean110, but a
slightly heavier tail towards larger numbers of segments. There
are never less than 15 breakpoints in this dataset.

# λ values # breakpoints Time (s) Covering

20 12.3 1.8 0.713
all 114.6 7.5 0.720

# objects 1-2 3-4 5-6 7-13

# breakpoints allλ 112.19 124.60 125.29 142.83
# breakpoints20 λ 12.27 12.64 13.08 13.45

# images 717 147 68 32

TABLE 2: Covering results obtained on the training set of
VOC2010, based on a6x6 grid of uniform seeds. The table
compares the results of solving CPMC problems for20
values ofλ, sampled on a logarithmic scale, with the results
obtained by solving for all possible values ofλ. Shown are
the average number of breakpoints per seed, and the average
time required to compute the solutions for each seed.
Computing all breakpoints for each seed provides modest
ground truth covering improvements, at the cost of
generating a larger number of segments and an increased
computation time. The second table shows that images
containing a larger number of ground truth objects tend to
generate more breakpoints per seed.

3.4 Fast Segment Rejection

Generating a large set of segments increases the hit rate of
the algorithm, but many segments are redundant or do not
obey the statistics of real-world surfaces imaged by a camera.
For images with large homogeneous regions, the original
hypothesis generation step can also produce many copies of

the same segment because of the seeding strategy — every
seed placed inside the region would tend to generate the
same segment for the sameλ. Moreover, sometimes visually
arbitrary segments are created, as artifacts of the foreground
bias strength and the seed constraints employed.

We deal with these problems using a fast rejection step.
We first filter very small segments (up to 150 pixels in
our implementation), then sort the segments using a simple
criterion (we have used the ratio cut [62] as this is scale
invariant and very selective) and retain up to 2,000 of the
highest scoring segments. Then we hierarchically cluster the
segments using overlap as a similarity measure, to form groups
with all segments of at least 0.95 spatial overlap. For each
cluster, we retain the segment with the lowest energy.

The number of segments that pass the fast rejection step
is usually small, being indicative of how simple or cluttered
the structure of an image is. In general, simple datasets have
lower average number of segments. But even in the difficult
PASCAL VOC 2009 dataset, the average was 154.

4 MID-LEVEL SEGMENT RANKING

Gestalt theorists [63], [64] argued that properties such as
proximity, similarity, symmetry and good continuation are
key to visual grouping. One approach would be to model
such properties in the segmentation process, as long-range
dependencies in a random field model [65], [66]. However,
this poses significant modeling and computational challenges.
With a segment set generated using weaker constraints, lever-
aging Gestalt properties becomes easier: rather than guide
a complex inference procedure based on higher-order, long-
range dependencies, we only need to check conformance with
Gestalt regularities. It is therefore interesting to explore how
the qualitative Gestalt theories can be implemented in such
a framework and what effects they produce in practice. An
important question is whether Gestalt properties can be used
to predict if segments have regularities typical of projections
of real objects, without leveraging prior knowledge about the
classes of objects present in the image. This is a potentially
challenging decision problem, since the visual aspects of
objects are extremely diverse. However, if object regularities
can be identified, images could be represented by a handful of
segments, which are easier to interpret and process by higher-
level visual routines than a large set of pixels or superpixels.

In this work, we take an empirical approach: we compile
a large set of features and annotated examples of segments
of many objects from different categories, and use machine
learning techniques to uncover their significance. Three sets
of features (34 in total) are considered to describe each
segment, representing graph, region and Gestalt properties.
Graph properties, in particular variations of cut values, have
long been used as cost functions in optimization methods
for segmentation. Region properties encode mainly the
statistics of where and at what scale objects tend to appear in
images. Finally, Gestalt properties include mid-level cues like
convexity and continuity, which can encode object regularities
(e.g.objects background segments are usually non-convex and
object boundaries are usually smoother than the boundaries



J. CARREIRA AND C. SMINCHISESCU: CONSTRAINED PARAMETRIC MIN-CUTS FOR AUTOMATIC OBJECT SEGMENTATION 7

of accidental segments).

Graph partition properties (8 features) include thecut (sum
of affinities along the segment boundary) [67], theratio cut
(sum of affinity along the boundary divided by their number)
[62], the normalized cut (ratio of cut and affinity inside
foreground, plus ratio of cut and affinity on background)
[28], the unbalanced normalized cut(cut divided by affinity
inside foreground) [32], and theboundary fraction of low
cut, 4 binary variables signaling if the fraction of the cut is
larger than a threshold, normalized by segment perimeter, for
different thresholds.

Region properties (18 features) include area, perimeter,
relative coordinates of the region centroid in the image,
bounding box location and dimensions, major and minor axis
lengths of the ellipse having the same normalized second
central moments as the region, eccentricity, orientation,
convex area, Euler number, diameter of a circle with the
same area as the region, ratio of pixels in the region to pixels
in the total bounding box, perimeter and absolute distance to
the center of the image. Some of these features can be easily
computed in Matlab using theregionpropsfunction.

Gestalt properties (8 features)are implemented mainly as
normalized histogram distances based on theχ2 comparison
metric:χ2(x, y) =

∑

i
(xi−yi)

2

xi+yi
[68]. Let the texton histogram

vector on the foreground region betf , and the one on
the background betb. Then inter-region texton similarityis
computed as theχ2(tf , tb). Intra-region texton similarityis
computed as

∑

i 1(tf (i) > k), with 1 the indicator function,
and k a threshold, set to0.3% the area of the foreground
in our implementation. The textons are obtained using the
globalPb implementation [33], which uses65 nearest neighbor
codewords.

Another two features we use areinter-region brightness
similarity, defined asχ2(bf , bb), with bf andbb intensity his-
tograms with256 bins, andintra-region brightness similarity
defined as

∑

i 1(bf (i) > 0).
We also extract theintra-region contour energyas the sum

of edge energy inside the foreground region, computed using
globalPb, normalized by the length of the region perimeter.
We also extract aninter-region contour energy, as the sum of
edge energies along the boundary normalized by the perimeter.

Other Gestalt features we consider includecurvilinear con-
tinuity and convexity. The first is the integral of the segment
boundary curvature. We use an angle approximation to the
curvature [69] on triplets of points sampled regularly (every
15 pixels in our tests). Convexity is measured as the ratio of
areas of the foreground region and its convex hull.

All features are normalized by subtracting their mean and
dividing by their standard deviation.

4.1 Learning

The objective of our ranking process is to identify segments
that exhibit object-like regularities and discard most others.
One quality measure for a set of segments with respect to

Fig. 4: Feature importance for the random forests regressor
learned on the VOC2009 segmentation training set. The minor
axis of the ellipse having the same normalized second central
moments as the segment (here ‘Minor Axis Length’) is,
perhaps surprisingly, the most important. This feature used
in isolation results in relatively poor rankings however (see
fig. 5a). The Graph properties have small importance. The
‘Boundary fraction of low cut’ features, being binary, do
not contribute at all. Gestalt features have above average
importance, particularly the contour energies.

the ground truth iscovering [33]. Let S be the set of ground
truth segments for an image,S′ be the set of machine segments
andS′(r) the subset of machine segments at rankr or higher.
Then, the covering ofS by S′(r) can be defined as:

C(S, S′(r)) =
1

N

∑

R∈S

|R| ∗ max
R′∈S′(r)

O(R,R′) (4)

whereN is the total number of pixels in annotated objects
in the image,|R| is the number of pixels in the ground truth
segmentR, andO is a similarity measure between two regions.

We cast the problem of ranking the figure-ground hy-
potheses as regression onmaxR∈S O(R,R′), the maximum
similarity a segment has with a ground truth object, against
the segment features. The idea is that if regression is accurate,
the generated segments most similar to each ground truth will
be placed at high ranks. Then many lower ranked segments
can be discarded without reducing the covering measure. As
similarity measureO we useoverlap [7]:

O(S,G) =
|S ∩G|
|S ∪G| (5)

which penalizes both under-segmentations and over-
segmentations and is scale invariant. An alternative to
overlap, which we used in one of our experiments, is the
F-measure[6]:

F =
2RP

P +R
(6)

whereP and R are the precision and recall of pixels in a
machine segment relative to a ground truth segment.
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For ranking, we experimented with both linear regression
and random forests [70], a competitive non-linear model that
averages over multiple regression trees. We used a random
forests implementation available online [71] and used default
parameters, except for the number of trees,200, and the
number of candidate variables to select from, at random, at
each split node, which we set to10.

The importanceof our features as learned by the random
forests regressor [70], is shown in fig. 4. Some region prop-
erties appear to be quite informative, particularly features
such as segment width and height and the location in the
image. The ‘Minor Axis Length’ feature, which gets the
highest importance works quite poorly in isolation, however
(as illustrated in fig. 5a), suggesting that some cues are only
effective in conjunction with other features. Convexity and
the edge energy along the boundary are also assigned large
importance, as expected.

4.2 Maximum Marginal Relevance Diversification

Applying standard regression for ranking does not come
without issues. Similar segments have similar features, which
causes them to regress to the same values and be ranked in
adjacent positions. The covering measure only considers the
best overlap with each ground truth object, hence redundant
segments in adjacent positions do not increase covering and
tend to lower the ranks of segments that best overlap other
objects. More segments then need to be retained to achieve
the same score.

An effective way to deal with such effects is todiversify the
ranking, in order to prevent that minor variations of a segment
saturate the pool. We achieve this based on Maximal Marginal
Relevance (MMR) measures [72]. To our knowledge this is
the first application of this technique to image segmentation.
Starting with the originally top-scored segment, the MMR
induces an ordering where the next selected segment (with
maximum marginal relevance) is the one maximizing the
original score minus a redundancy measure with respect to
segments already selected. This procedure is iterated until
all segments have been re-ranked. The redundancy measure
we employ is the overlap with the set of previously selected
segments based on the MMR measure.

Formally, letH be the full set of figure-ground segmenta-
tions andHp ⊂ H hypotheses already selected. Lets(Hi) be
our predicted score for a given figure-ground segmentation and
o(Hi, Hj) the overlap between two figure-ground segmenta-
tions. The recursive definition for the next maximal marginal
relevance selection [72] is given as:

MMR = argmax
Hi∈H\Hp

[

θ · s(Hi)− (1− θ) · max
Hj∈Hp

o(Hi, Hj))
]

The first term is the score and the second is the redundancy.
Parameterθ regulates the trade-off between the predicted
score and the diversity measures in the firstN selections. For
example withθ = 0 the ranking will ignore individual scores,
and select the next element in the set, having minimal overlap
with any of the previously chosen elements. In contrast, with
θ = 1 the element with the highest score will always be

selected next. The best trade-off depends on the application. If
high precision is desired then a higher weight should be given
to the predicted score, whereas if recall is more important,
then a higher weight should be given to diversity. Ifθ is very
small, then ranking will be close to random. For our VOC
experiments we have cross-validated atθ = 0.75.

5 EXPERIMENTS

We study both the quality of the pool of object hypotheses gen-
erated by CPMC and the loss in quality incurred by selecting
the topmostN object hypotheses, as opposed to the use of a
much larger pool. We experiment with three publicly available
datasets: Weizmann’s Segmentation Evaluation Database [6],
MSRC [5] and the VOC2009 train and validation sets for the
object-class segmentation problem [7].

Weizmann consists of 100 gray-valued images having a
single prominent foreground object. The goal is to generate
coverage of the entire spatial support of the object in the
image using a single segment, and as accurately as possible.
We compare the performance of CPMC with published results
from two state of the art segmentation algorithms. The results
are reported using theaverage best F-measurecriterion. For
each ground truth object the most similar segment with respect
to F-measure (eq. 6) is selected and the value of the similarity
is recorded. These top similarities are then averaged.

The MSRC dataset is quite different, featuring 23 different
classes, including some ‘stuff’ classes, such as water and grass.
It has up to11 objects present in each of its nearly 600 images.
We use this dataset to evaluate the quality of the pool of
segments generated, not the individual rankings.

The VOC 2009 dataset is challenging for segmentation, as
it contains real-world images from Flickr, with 20 different
classes of objects. The background regions are not annotated.
In both MSRC and VOC2009, which contain multiple ground-
truth objects per image we use thecovering (eq. 4) with
overlap (eq. 5) as a segment similarity measure.

5.1 Segment Pool Quality

The automatic results obtained using CPMC on the Weizmann
dataset are shown in table 3a together with the previous best
result, by Bagon et al [38], which additionally requires the
user to click a point inside the object. We also compare with
the method of Alpertet al. [6], which is automatic. Results
for CMPC were obtained using an average of 53 segments
per image. Visibly, it generates an accurate pool of segments.
Results on MSRC and VOC2009 are compared in table 3b to
Arbeláezet al. [33], which is arguably one of the state of the
art methods for low-level segmentation. The methodology of
the authors was followed, and we report average coverings. We
use all the unique segments in the hierarchy returned by their
algorithm [33] to compute the score. The pool of segments
produced by CPMC appears to be significantly more accurate
and has an order of magnitude fewer segment hypotheses. A
filtering procedure could be used for gPb-owt-ucm to reduce
the number segments, but at a potential penalty in quality. The
relation between the quality of segments and the size of the
ground truth objects is shown in fig. 7.
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Weizmann F-measure

CPMC 0.93± 0.009
Bagonet al. [38] 0.87± 0.010
Alpert et al. [6] 0.86± 0.012

(a) Average best F-measure scores over the entire Weizmann dataset. Bagon’s
algorithm produces a single figure-ground segmentation but requires a user
to click inside the object. Alpert’s results were obtained automatically by
partitioning the image into one full image segmentation typically having
between 2 and 10 regions. The table shows that for each image, among
the pool of segment hypotheses produced by CPMC, there is usually one
segment which is extremely accurate. The average number of segments that
passed our fast rejection step was 53 in this dataset.

MSRC Covering N Segments

CPMC 0.85± 0.1 57
gPb-owt-ucm [20] 0.78± 0.15 670

VOC2009 Covering N Segments

CPMC 0.78± 0.18 154
gPb-owt-ucm [20] 0.61± 0.20 1286

(b) Average of covering scores on MSRC and VOC2009 train+validation
datasets, compared to Arbeláezet al. [33], here gPb-owt-ucm. Scores show
the covering of ground truth by segments produced using each algorithm.
CPMC results before ranking are shown, to evaluate the quality of the pool
of segments from various methods.

TABLE 3: CPMC segment quality on multiple datasets.

5.2 Ranking Object Hypotheses

We evaluate the quality of our ranking method on both the
validation set of the VOC2009 segmentation dataset, and on
hold-out sets from the Weizmann Segmentation Database. The
training set of VOC2009 consists of750 images, resulting in
114, 000 training examples, one for each segment passing the
fast rejection step. On the Weizmann Segmentation Database
we randomly select50 images, resulting in2, 500 training
examples, and we test on the remaining 50 images.

We plot curves showing how well the ground truth for each
image is covered on average, as a function of the number of
segments we retain per image. The segments are added to the
retained list in the order of their ranking.

The curve marked as ‘upper bound’ describes the maximum
quality measure possible given the generated segments, which
can be obtained if the segments are ranked by their known
overlap with ground truth. Note that on Weizmann the upper
bound is flat because each image has one single ground truth
object, whereas on VOC images there can be multiple objects,
hence the upper bound increases as more than one segment
is considered per image (on the horizontal axis). The curve
labeled as ‘random’ is based on randomly ranked segments. It
is a baseline upon which the ranking operation should improve
in order to be useful.

On Weizmann we compare a random forests regressor
trained on the images in that dataset with a predictor trained
on VOC2009. The results in fig. 5a are similar, showing that
the model is not overfitting to the statistics of the individual
datasets. This also shows that it is possible to learn to rank
segments of arbitrary objects, using training regions fromonly
20 classes. The learned models are significantly better than
ranking based on the value of any single feature such as the cut
or the ratio cut. On VOC2009 we have also run experiments
where we have complemented the initial feature set with
additional appearance and shape features — a bag of dense
gray-level SIFT [73] features computed on the foreground
mask, a bag of local shape contexts [74] computed on its
boundary, and a HOG pyramid [75] with3 levels computed
on the bounding box fitted on the boundary of the segment,
for a total of 1,054 features. In this case, we trained a linear
regressor for ranking (this is significantly faster than random
forests, which takes about 8 hours to train for the model with
34 features). The results are shown in fig. 5b. Clearly the new
features help somewhat, producing results that are slightly

better than the ones obtained by the linear regressor on the
basic feature set. We will revisit them in§5.3. However, these
are not better than a random forests model trained on the basic
feature set. This shows that the set of basic features is already
quite expressive in conjunction with nonlinear models.

Notice that by using this ranking procedure, followed by
diversification, we can obtain more accurate object hypotheses
than those provided by the best existing segmentation algo-
rithm of [33]. In fact, by using the top7 segments produced
by our ranking procedure, we obtain the same covering,0.61,
as obtained using the full hierarchy of1, 286 distinct segments
in [33].

5.3 Subframe-CPMC Extension

We have experimented with a different variant of the algo-
rithm, the Subframe-CPMC, on the Pascal VOC2010 dataset.
The goal was to achieve high object recall while at the same
time preserve segmentation quality, with a mindset towards
detection applications. To score a detection hypothesis ascor-
rect, benchmarks such as the Pascal VOC require a minimum
overlap between a correctly classified region and the ground
truth. In addition, benchmarks disregard the area of the ground
truth regions (e.g.an object with500 pixels is just as important
as one occupying the full image), hence what matters is not
so much achieving highcoveringscores (which explicitly take
into account the size of the segments), but highoverlap.

Subframe-CPMC uses an additional type of seed, and is
configured to generate a larger number of segments. First
we make the overall process faster by solving the energy
problems at half the image resolution. Quantitative results
were equivalent. We also changed the seeding strategy to
use a single soft background seed and increased the number
of foreground seeds, by using a grid of6x6 instead of the
previous5x5. We reduced the value of theσ parameter by30%
in eq. 3, resulting in more segments due to reduced affinities
between neighboring pixels.

We have also complemented the existing seeds withsub-
frames, background seeds composed of the outside of rectan-
gles covering no more than25% of the area in the image,
with a single square foreground seed in the center. These
seeds constrain segments to smaller regions in the image, as
they force the possible contours to lie inside the rectangular
region. This is especially helpful for segmenting small objects
in cluttered regions, as can be seen in fig. 7. For this type of



10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR 2012

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of segments retained

A
ve

ra
ge

 B
es

t F
−

m
ea

su
re

Weizmann Segmentation Dataset

 

 

RF trained on VOC09
RF trained on Weizmann
RF trained on Weizmann (diversified)
Rank on value (−Ratio Cut)
Rank on value (−Minor Axis Length)
Random Selection
Upper Bound

(a) Average best segment F-measure as we vary the number of retained
segments given by our ranking procedure. Results were averaged over three
different splits of 50 training and 50 testing images. Note that when working
with our top-scored 5 segments per image, the results already equal the ones
obtained by the interactive method of Bagonet al. [38]. Note also that using
this learned ranking procedure, it is possible to compress the original pool
of segments to a fifth (10 segments), at negligible loss of quality.
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(b) Complementing the basic descriptor set with additional appearance and
shape features improves the ranking slightly, but the basic set is still superior
when used in conjunction with a more expressive random forests regressor.
Further diversifying the ranking improves the average covering given by
the first topN segments significantly.

Fig. 5: Ranking results on the Weizmann and VOC2009 datasets. Different rankers are compared with the optimal ranker
(”Upper bound”) and with random ranking (”Random selection”).

seed we also solve problems with and without a color unary
term. Two alternative types of subframe seeds were tried: a
5x5 regular grid of square subframes of fixed dimension, with
width set to40% of the image, and bounding boxes from a
deformable parts detector [9], [76] with default parameters,
set to the regime of high recall but low precision. For the
detector, we discard class information and keep the40 top-
scored bounding boxes smaller than a thresholdC, in this
case25% of the image area. Subframe energy problems are
optimized efficiently by contracting all nodes corresponding
to pixels belonging to background seeds into a single node,
thereby reducing the size of the graph significantly.

The parameterσ, controlling the sharpness of the boundary,
has an important influence on the number of generated
segments. A value of2.5 with the color-based seeds leads to
225 segments, average overlap of0.61 and covering of0.74,
whereas forσ = 1 the method produces an average of876
segments, average overlap of0.69 and covering0.76. We used
σ = 1 for the uniform seeds,σ =

√
2 for the color seeds, and

σ =
√
0.8 for the subframe seeds. This leads to a larger pool

of segments, but also of higher quality, as noticeable in table 4.

Additional Features: Working with a larger pool of segments
poses additional demands on the accuracy of ranking. An
improvement we pursued was to enlarge the set of mid-level
features with shape and texture descriptors. In§5.2 this was
shown to improve results, but the dimensionality of these
features made linear regression the most practical learning
choice. A nonlinear random forests regressor on the basic
feature set was still superior.

The additional shape and texture features we use are his-
tograms, which are known to be most effective when used with
certain nonlinear similarities, such as a Laplacian-RBF embed-
ding k(x, y) = exp(−∑ |xi − yi|) [68]. Here we handle one
of these similarity functions with linear regression, by first
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Fig. 7: Quality of the segments in the combined VOC2009
train and validation sets, as a function of the area of the
ground truth segments. Object area has been discretized into
20 bins on a log scale. In the case of the ground truth curve
the y-axis corresponds to the number of segments assigned
in each bin (ground truth segments have an overlap value of
1 with themselves). Medium and large size objects, that are
more frequent, are segmented significantly more accurately
by CPMC than by gPb-owt-ucm [33]. Subframe-CPMC is
competitive with gPb-owt-ucm on small objects, but generates
a larger segment pool than plain CPMC (in the order of 700
instead of 150 elements).

applying a randomized feature map to linearly approximate
the Laplacian-RBF kernel [77], [78].

We adjusted the extended feature set from§5.2 slightly.
To represent texture we extracted two bags of words for
each segment, one defined over gray-level SIFT features as
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Fig. 6: Segmentation and ranking results obtained using therandom forests model learned on the VOC2009 training set, with
the features described in sec.§4. The green regions are the segment foreground hypotheses.The first image on each row
shows the ground truth, the second and third images show the most plausible segments given by CPMC, the last two images
show the leastplausible segments, and the fourth and fifth images show segments intermediatelyplaced in the ranking. The
predicted segment scores are overlaid. The first three images are from the VOC2009 validation set and rows2, 4 and6 show
the diversified rankings, withθ = 0.75. Note that in the diversified ranking, segments scored nearby tend to be more dissimilar.
The last three rows show results from the Weizmann Segmentation Database. The algorithm has no prior knowledge of the
object classes, but on this dataset, it still shows a remarkable preference for segments with large spatial overlap withthe
imaged objects, yet there are neither chariots nor vases in the training set, for example. The lowest ranked object hypotheses
are usually quite small reflecting perhaps the image statistics in the VOC2009 training set.
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before and a new one over color SIFT features, both sampled
every 4 pixels and at4 different scales (16, 24, 36 and 54
pixels wide) to ensure a degree of scale invariance. Each
feature was quantized using a300-dimensional codebook.
To represent shape we computed two pyramid HOGs, both
with gradient orientation quantized into20 bins, the first with
the background segment gradients masked out on a pyramid
composed of four levels, for a total of1, 700 dimensions.
The other PHOG was computed directly on the contour of
the segment, with both foreground and background gradients
masked out and a pyramid of three levels for a total of
420 dimensions. We map the joint vector of the two bags
of words for texture features into a2, 000-dimensional
randomized feature map drawn from the Fourier transform
of the Laplacian-RBF kernel [77], and process similarly the
two PHOGs corresponding to shape features. We also append
our original34-dimensional feature set resulting in a total of
4, 034 features.

VOC2010 Results:The overlap measure is popular for dis-
tinguishing hits from misses in detection benchmarks. In the
VOC2010 dataset we evaluate the recall under two different
hit-metrics: 50% minimum segment overlap and50% mini-
mum bounding box overlap. Using the50% segment overlap
criterion, the algorithm obtains, on average per class,87.73%
and 83.10% recall, using800 and 200 segments per image,
respectively. Under a50% bounding box overlap criterion,
the algorithm achieves91.90% when using800 segments and
87.65%, for 200 segments.

The top200 ranked segments gave on average0.82 covering
and 0.71 best overlap, which improves upon the results of
CPMC without subframes on the VOC2009 (0.78 and 0.66
with all segments). These results are made possible because
of the richer pools of segments, but also because the ranking
is accurate. A reduction of on average around 500 segments
per image results only in a loss of 0.03 average best overlap.

Details are shown in figs. 11 and 12, whereas image results
are shown in fig. 9. The learned weights of the linear regressor
for all features are displayed in fig.8.

Quality Measure Grid Subframes BB Detector No Subframes

Overlap 0.74 0.76 0.71
Covering 0.83 0.84 0.82

N segments 736 758 602

TABLE 4: Results on the training set of the VOC2010
segmentation dataset. Color and uniform seeds are
complemented with subframe seeds, either placed on a
regular grid or obtained from a bounding box detector. Using
a regular grid gives only slightly inferior results compared to
results obtained using detector responses. Both give a large
improvement in the recall of small objects, compared to
models that do not use subframes. This is reflected in the
overlap measure, which does not take into account the area
of the segments.
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Fig. 11: Average overlap between ground truth objects and
the best Subframe-CPMC segments on the validation set of
VOC2010. We compare results obtained when considering all
segments, just the top ranked 100 or 200 and a baseline that
selects 100 segments randomly from the pool of all segments.
Certain classes appear to be considerably harder to segment,
such as bicycles, perhaps due to their wiry structure.

6 CONCLUSIONS

We have presented an algorithm that casts the automatic image
segmentation problem as one of generating a compact set
of plausible figure-ground object hypotheses. It does so by
learning to rank figure-ground segmentations, using ground
truth annotations available in object class recognition datasets
and based on a set of low and mid-level properties. The
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Fig. 9: Segmentation results on images from the validation set of the VOC2010 database. Thefirst column contains the original
images, thesecondgives the human ground truth annotations of multiple objects, the third shows the best segment in the
Subframe-CPMC pool for each ground truth object, thefourth shows the best segment among the ones ranked in the top-200.
The proposed algorithm obtains accurate segments for objects at multiple scales and locations, even when they are spatially
adjacent. See fig. 10 for challenging cases.
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Fig. 10: Examples, taken from the validation set of VOC2010,where the CPMC algorithm encounters difficulties. Thefirst
column shows the images, thesecondthe human ground truth annotations of multiple objects, thethird shows the best segment
in the entire Subframe-CPMC pool for each ground truth object, the fourth shows the best segment among the ones ranked
in the top-200. Partially occluded objects (first two rows),wiry objects (third row) and objects with low background contrast
(fourth and fifth row) can cause difficulties.
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Fig. 12: Recall at50% overlap between regions of ground
truth objects and the best Subframe-CPMC segments (top)
and between ground truth bounding boxes and best Subframe-
CPMC segment bounding boxes (bottom). Note that bicycles
are difficult to segment accurately due to their wiry structure,
but there is usually some segment for each bicycle that has an
accurate bounding box, such as the ones shown in the third
row of fig. 2. These results are computed on the validation set
of the VOC2010 segmentation dataset.

algorithm uses a very powerful new procedure to generate a
pool of figure-ground segmentations — the Constrained Para-
metric Min-Cuts (CPMC). This uses parametric max-flow to
efficiently compute non-degenerate figure-ground hypotheses
at multiple scales on an image grid, followed by maximum
relevance ranking and diversification. We have shown that the
proposed framework is able to compute compact sets of seg-
ments that represent the objects in an image more accurately
than existing state of the art segmentation methods. These
sets of segments have been used successfully in segmentation-
based recognition frameworks [1], [79], as well as for multi-
region image segmentation [3], [4] and cosegmentation [80].

One difficulty for the current method is handling objects

composed of disconnected regions that may arise from oc-
clusion. While the energy minimization problems we solve
sometimes generate such multiple regions, we chose to sepa-
rate them into individual connected components, because they
only rarely belong to the same object. In fact, in many such
cases it may not be possible to segment the object correctly
without top-down information. For exemple segmenting peo-
ple embraced might require the knowledge of the number of
arms a person has, and the configurations they can be in. It
might be possible to handle such scenarios in a bottom-up
fashion in simple situations, when cues like strong continuity
may be exploited, but it appears more adequate to do this
analysis at a higher level of scene interpretation.

The low-level segmentation and ranking components are
also susceptible to improvement. Both components perform
satisfactorily conditioned on the current state-of-the-art and
datasets. One promising direction to improve the segmentation
is the development of more sophisticated unary terms. Other
advances may come from minimizing more powerful energy
functions or the use of additional representations beyond
regions. For example curves [81] may be more appropriate
for objects that have long ‘wiry’ structures such as bicycles.
The ranking component can be improved by developing better
learning methodology, better features and by using more
training data. At this point the segmentation component seems
to allow the most improvement, but if applications set stringent
constraints with respect to the maximum number of segments
retained per image then ranking can become a bottleneck.

A somewhat suboptimal aspect of the proposed method is
that energy minimization problems are solved independently,
and the same number of problems is generated for all images,
notwithstanding some having a single object and others
having plenty. An interesting extension would make the
process dynamic by making decisions on where and how
to extract more segments conditioned on the solutions of
the previous problems. This would be conceivably more
efficient and would make the transition to video smoother. A
sequential, conditional process could also make for a more
biologically plausible control structure.
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