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Lecture 10: MRF Examples: Weak Membrane, MFT, Deterministic
Annealing

I This lecture describes the MRF formulation of the weak-membrane model.
It describes how mean-field theory algorithms can be used to estimate the
minimum of the free energy.

I The lecture also describes Grab-Cut, which is a binary MRF for segmenting
a foreground object from the background (requiring human initialization –
recall CPMC). This relates to graph-cut algorithms – max-flow/min-cut.
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The line process model (I)

I Our first example is the classic line process model (Geman & Geman,
1984; Blake & Zisserman, 2003) which is an MRF formulation of the
weak-membrane model, developed as a way to segment images. It has
explicit line process variables that “break” images into regions where the
intensity is piecewise smooth. Our presentation follows the work of Koch
et al. (1986), who translated it into neural circuits.

I The model takes intensity values ~I as input, and outputs smoothed
intensity values. But this smoothness is broken at places where the
intensity changes are too high. The model has continuous variables ~J
representing the intensity, and binary-valued variables ~l for the line
processes (or edges). The model is formulated as performing maximum a
posteriori (MAP) estimation. The algorithm for estimating MAP is a
neural network model that can be derived from the original Markov model
(Geman & Geman, 1984) by mean field theory (Geiger & Yuille, 1991).
Note that in this model, the variables do not have to represent intensity.
Instead they can represent texture, depth, or any other property that is
spatially smooth except at sharp discontinuities.
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The line process model (II)

I For simplicity we present the weak membrane model in one dimension.
The input is ~I = {I (x) : x ∈ D}; the estimated, or smoothed, image is
~J = {J(x) : x ∈ D}; and the line processes are denoted by
~l = {l(x) : x ∈ D}, where l(x) ∈ {0, 1}.

I The model is specified by a posterior probability distribution:

P( ~J,~l |~I ) =
1

Z
exp{−E [ ~J,~l : ~I ]/T},

where

E [ ~J,~l : ~I ] =
∑
x

(I (x)−J(x))2+A
∑
x

(J(x+1)−J(x))2(1−l(x))+B
∑
x

l(x).
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The line process model (III)

The first term ensures that the estimated intensity J(x) is close to the input
intensity I (x). The second encourages the estimated intensity J(x) to be
spatially smooth (e.g., J(x) ≈ J(x + 1)), unless a line process is activated by
setting l(x) = 1. The third pays a penalty for activating a line process. The
result encourages the estimated intensity to be piecewise smooth unless the
input I (x) changes significantly, in which case a line process is switched on and
the smoothness is broken. The parameter T is the variance of the probability
distribution and has a default value T = 1.
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The line process model and neural circuits (I)

I This model can be implemented by a neural circuit (Koch et al., 1986).
The connections between these neurons is shown in the previous figure. To
implement this model Koch et al., (1986) proposed a neural net model
that is equivalent to doing mean field theory on the weak membrane MRF
(as discussed earlier) by replacing the binary-valued line process variables
l(x) by continuous variables q(x) ∈ [0, 1] (corresponding roughly to the
probability that the line process is switched on).

I This gives an algorithm that updates the regional variables ~J and the line
variables ~q in a coupled manner. It is helpful, as before, to introduce a new
variable ~u which relates by q(x) = 1

1+exp{−u(x)/T} and u(x) = T log q(x)
1−q(x)

.
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The line process model and neural circuits (II)

dJ(x)

dt
= −2(J(x)− I (x))

= −2A{(1− q(x))(J(x)− J(x + 1)) + (1− q(x − 1))(J(x)− J(x − 1))}, (5)

dq(x)

dt
=

1

T
q(x)(1− q(x)){A(J(x + 1)− J(x))2 − B − T log

q(x)

1− q(x)
}, (6)

du(x)

dt
= −u(x) + A(J(x + 1)− J(x))2 − B. (7)

The update rule for the estimated intensity ~J behaves like nonlinear diffusion,
which smooths the intensity while keeping it similar to input ~I . The diffusion is
modulated by the strength of the edges ~q. The update for the lines ~q is driven
by the differences between the estimated intensity; if this is small, then the
lines are not activated.
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The line process model and neural circuits (III)

This algorithm has a Lyapunov function L( ~J, ~q) (derived using mean field
theory methods) and so will converge to a fixed point, with

L( ~J, ~q) =
∑
x

(I (x)− J(x))2 + A
∑
x

(J(x + 1)− J(x))2(1− q(x)) + B
∑
x

q(x)

+T
∑
x

{q(x) log q(x) + (1− q(x)) log(1− q(x))}. (8)
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Relations to electrophysiology (I)

I There is some evidence that a generalization of this models roughly
matches the electrophysiological findings for those types of stimuli. The
generalization is performed by replacing the intensity variables I (x), J(x)
by a filterbank of Gabor filters so that the weak membrane model enforces
edges at places where the texture properties change (Lee et al., 1992).
The experiments, and their relation to the weak membrane models are
reviewed in (Lee & Yuille, 2006). The initial responses of the neurons, for
the first 80 msec, are consistent with the linear filter models described
earlier. But after 80 msec, the activity of the neurons changes and appears
to take spatial context into account.

I While the weak membrane model is broadly consistent with the perceptual
phenomena of segmentation and “filling in,” the types of filling in, their
dynamics, and the neural representations of contours and surface are
complicated (von der Heydt, 2002; Komatsu, 2006). Exactly how contour
and surface information is represented and processed in cortex is an active
topic of research (Grossberg & Hong, 2006; Roe et al., 2012).
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The EM Perspective

I An alternative way to derive the same update equations for the weak
membrane model is to formulate this problem as
Expectation-Maximization where the line process variable l is treated as a
hidden variable and the task is to estimate J.

I We have P(J, l |I ) and want to estimate J∗ = arg min{− logP(J|I )}. We
introduce a dummy variable Q(l) and require it to be factorizable, i.e.,
Q(l) =

∏
x qx(lx). Then we use the standard EM free energy and obtain∑

x{qx log qx + (1− qx) log(1− qx)}+
∑

x(J(x)− I (x))2 + A
∑

x(J(x +
1)− J(x))2(1− qx) + B

∑
x qx . This is the same as the formulation earlier

(with slightly different notation).

I This shows connections between mean field theory and
Expectation=Maximization. It also illustrates the benefits of formulation
EM in terms of minimizing a free energy. Unlike earlier formulations of
EM, we can put restrictions on the form of Q(l). In this case, there is no
need to because the solution naturally takes the form of a factorizable
distribution. But if the weak membrane model is extended to
two-dimensions and coupling terms are introduced between horizontal and
vertical line processes, then the solution Q() will not be factorizable – but
we can make a practical approximation by requiring it to be factorizeable.
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Annealing and Continuation Methods (1)
I We now discuss a continuation method called deterministic annealing

which can improve mean field theory. This specifies a family of free energy
functions F (.,T ) parameterized by a temperature T . The fixed value
T = 1 corresponds to the problem that you want to solve. The key idea is
that the energy functions get more convex as T increases. So the
algorithm finds a minimum of F (.,T ) for large T and gives it initial
conditions for minimizing F (.,T ) at smaller T . There is no guarantee that
this algorithm converges to the global minimum. But empirically it yields
good results.

I Deterministic annealing was inspired by simulated annealing. This was
based on the following observation. Suppose we are trying to estimate the
most probable states of the probability distribution x∗ = arg maxx P(x).
We introduce a temperature parameter T and a family of probability
distributions related to P(x).

I More precisely, we define a one-parameters family of distributions
∝ {P(x)}1/T where T is a temperature parameter (the constant of
proportionality is the normalization constant). This is equivalent to
specifying Gibbs distributions P(x;T ) = 1

Z(T )
exp{−E(x)/T}, where the

default distribution P(x) occurs at T = 1.
I The key observation is that as T 7→ 0, the distribution gets strongly

peaked about the state x∗ = arg minx E(x) with lowest energy (or states if
there are two or more global minima). Conversely, at T 7→ ∞ all states will
become equally likely and P(x;T ) will tend to the uniform distribution.
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Annealing and Continuation Methods (2)

I Simulated Annealing (e.g., Geman and Geman 1984) uses Markov Chain
Monte Carlo (MCMC) to obtain random samples x from P(x : T ). The
random samples are most likely to be at places where P(x : T ) is large.
Hence as T 7→ 0 the random samples must lie at the global minimum
x∗ = arg minE(x).

I But for small T it is very hard to sample from P(x : T ) and MCMC will
take a very long time to converge. So the suggestion is to perform MCMC
sampling at large T , where sampling is likely to converge faster, and lower
the temperature and continue sampling. This is called simulated annealing
(”annealing” is a physical process which involves lowering the
temperature).

I Simulated Annealing is conceptually attractive (and in the early 1980’s)
there were great hopes for it as an algorithm for minimizing energy
functions (there were even proofs that it would converge to the global
minimum, but this might take longer than exhaustive search!). In practice,
simulated annealing has only been useful for a small range of problems.
One problem is that MCMC algorithms (see handouts) are often slow and
need hand=designing to be effective).
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Annealing and Continuation Methods (3)

I Deterministic Annealing was inspired by Simulated Annealing. The idea is
that we apply mean field theory to approximate the distributions P(x : T )
at different temperatures. This gives a family of free energy functions
F (.,T ) parameterized by T , (i.e. F (.,T ) is the Kullback-Liebler
divergence between P(x : T ) and Q(x). Deterministic annealing proposes
to minimize F (.,T ) at large T (where the free energy is more convex) and
use this as initial conditions for minimizing it at lower temperature.

I More precisely, we compute the free energy as a function of T (multiplying
by T for reasons will become clear in a few lines) and dropping the log
partition function). This gives:

TFMFT()
¯

=
∑
ij∈E

∑
xi ,xj

bi (xi )bj(xj)ψij(xi , xj)

+
∑
i∈V

∑
xi

bi (xi )φi (xi , z) + T
∑
i∈V

∑
xi

bi (xi ) log bi (xi ). (9)

I The second term of the free energy is the entropy term. It is the only term
that depends on the temperature T (linearly) and it is also convex in
bi (xi ). Hence at large T the entropy term dominates the free energy and
hence the free energy becomes convex. As T 7→ ∞, the solution consists
of setting bi (xi ) to be constant, i.e. the maximum entropy solution.


