
Your Suggestions

Given one random
oracle R(x) how can we

make two random
oracles H(x) and G(x)

H(x) = R(0 || x)
G(x) = R(1 || x)

Random bitsMessage

⊕ G

H ⊕

s t

Public key: f

Private key: f -1

E(m)=f(s||t)

Zeros

Security of OAEP

• Construction and proof published in
Eurocrypt ‘94

• Included in standards like SET (payment
system proposed by Visa and Mastercard)

Early Objections

• Use random oracles, not really proving
anything

• Security bound not tight enough

• Proof says that if someone can break
OAEP, can invert trapdoor permutation

• Also tells how long it will take

000000000
Random bitsmb Zeros

⊕

⊕

s t

The only way A
can win is if it
has asked for
G[r] and H[s]

We just look at
our tables

G[]

H[]

r

y = f(x) = f(s || t)

000000000
Random bitsmb Zeros

⊕

⊕

s t

The only way A
can win is if it
has asked for
G[r] and H[s]

We just look at
our tables

G[]

H[]

r

y = f(x) = f(s || t)

Cost of Attack

• If adversary that breaks OAEP takes n steps:

• He could ask for n different encryptions

• Each encryption uses 2 oracle queries, i.e.
one entry in each table

• Trying all the combinations to break

OWTP takes O(n2) operations

Cost of Attack

• If we want the attack on OAEP to take 280
steps, we need the attack on the OWTP

(e.g. RSA) to take at least 2160 steps

• With our best current attack on RSA, we’d
need to use really big and inefficient keys
(~5000 bit keys)

But...

• The proof is wrong

• There’s a hole in the argument

• There is a counter example

• What we were trying to prove isn’t even
true

Proof of Security

• Similar game to before:

• Adversary given access to encryption and
decryption oracles

• Also given access to the random oracles
G and H

• Given the encryption of either m0 or m1,

has to decide which it is

Break OAEP, you’ve
broken the OWTP

• Use the adversary that breaks OAEP to
break the underlying one-way trapdoor
permutation

• If the adversary can win at the m0 or m1

game, we can invert f (i.e. given a y, come up
with x s.t. f(x) = y)

Adversary B(f, y)
// Wants to find x s.t. f(x) = y
Run A

When A asks for G(x):
 See if G[x] exists, if so return it
 Generate G[x] at random, return it
When A asks for H(x):
 See if H[x] exists, if so return it
 Generate H[x] at random, return it

...

m 000000000 010110101

⊕

⊕

s t

When A asks for E(m):

return f(s || t)

G[]

H[]

m 000000000 010110101

⊕

⊕

When A asks for D(c):

G[]

H[]

m 000000000 010110101

⊕

⊕

When A asks for D(c):

G[]

H[]

m 000000000 010110101

⊕

⊕

When A asks for D(c):

G[]

H[]

aG[a]

b H[b]

m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[]

H[]

aG[a]

b H[b]

m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[]

H[]

aG[a]

b H[b]

G[a] ⊕ b a

m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[]

H[]

For index a of G[]
 For index b of H[]
 if f(b || a⊕H[b]) = c
 if G[a]⊕b has Zeros

 return G[a]⊕b
return ⊥

aG[a]

b H[b]

G[a] ⊕ b a

A gives us m0 and m1

No matter what, we say that

the encryption is y

(remember that y is the thing

we’re trying to invert)

000000000
Random bitsmb Zeros

⊕

⊕

s t

The only way A
can win is if it
has asked for
G[r] and H[s]

We just look at
our tables

G[]

H[]

r

y = f(x) = f(s || t)

000000000
Random bitsmb Zeros

⊕

⊕

s t

The only way A
can win is if it
has asked for
G[r] and H[s]

G[]

H[]

r

A Weird OWTP

• Given y you can compute the first few bits
of x s.t. y = f(x)

• Given y you can compute some z s.t. x and
w differ only in a few specific locations
where y = f(x) and z = f(w) differ

• Don’t know of any real examples, but can’t
rule it out

We Want CCA

• OAEP paper proves that OAEP is plaintext
aware (PA1)

• Few years later, another paper by Bellare et.
al. show that:

• Plaintext awareness implies CCA

• This implies OAEP is IND-CCA

We Want CCA

• OAEP paper proves that OAEP is plaintext
aware (PA1)

• Few years later, another paper by Bellare et.
al. show that:

• Plaintext awareness (PA2) implies CCA

• This does not imply OAEP is IND-CCA

Some Good News

• OAEP is still secure when the OWTP is
RSA (uses a special property of RSA)

• Easy to fix OAEP so that it works with any
OWTP (OAEP+)

• For some OWTPs OAEP is overkill (SAEP)

msg rnd
Random bitsMessage

⊕ G

H ⊕

s t

Public key: f

Private key: f -1

E(m)=f(s||t)

J(msg || rnd)

Lessons

• OAEP published in respected, peer-reviewed
security conference by two top
cryptographers

• PA→CCA paper published is respected,
peer-reviewed security conference by same
top cryptographer (and students)

• Bug not found until seven years later when
Shoup tried to prove that OAEP was IND-
CCA directly

Sources of Security
Designs

• Commercial products

• Truly revolutionary one million bit virtual
matrix encryption

Sources of Security
Designs

• Standards

• Reviewed by other members of the
standards committee

• What if the standards committee doesn’t
include any security people?

Sources of Security
Design

• “The Literature”

• Peer reviewed academic conferences and
journals

Conferences

• Each program committee member given a
stack of about 20 papers to review in a
month

• Lead time to publication: 9 months

Journals

• A couple of reviewers given a couple of
months to review one paper

• Lead time to publication: > 2 years

“The proof below spans more
than 23 pages, and as much as I
tried to simplify and to explain
clearly, it is quite a pain to read.

Frankly, I don’t believe that
anyone will ever go through
the trouble of reading and

verifying it.”

Fermat’s Last Theorem

• Proof over 200 pages

• Subtle flaw found, able to be plugged before
publication

Best Practice?

• Use what everyone else uses

• At least people will be looking at it

• Still have to make sure that your
implementation is secure

Our First Proof

• We want to prove that the following
construction a is weakly unforgable MAC on
variable length messages in the R.O.M:

• ROMACk1, k2(m) = fk1(R(k2 || m))

If fk1 is a weakly unforgable MAC on L bits and

R is a random oracle with fixed L bit outputs
then ROMACk1, k2 is a weakly unforgable

MAC on variable length inputs.

Adversary given access
to R and MAC and has
to generate a valid new

(m, t) pair

Given an adversary that
forges ROMAC, come
up with an adversary

that forges f

Step 1: Run A
Step 2: Show how to
answer A’s queries
Step 3: Show how to
use A’s forgery of
ROMAC to forge f

