
Random Oracles, RevisitedRandom Oracles, Revisited

Ran Canetti, Oded Goldreich, Ran Canetti, Oded Goldreich, 
Shai HaleviShai Halevi



Provable SecurityProvable Security

• We want to We want to proveprove that a crypto scheme  that a crypto scheme 
is secure before we use itis secure before we use it



Problem:Problem:

• What if our crypto scheme uses elements What if our crypto scheme uses elements 
that aren’t provably secure?that aren’t provably secure?



Example: Hash FunctionsExample: Hash Functions

• Real world examples: SHA1, MD5Real world examples: SHA1, MD5
• We would like a hash function that has:We would like a hash function that has:

– Perfect randomnessPerfect randomness
– Collision resistantCollision resistant
– One-wayOne-way SHA1

MD5



Example: Hash FunctionsExample: Hash Functions

• But what if these things aren’t enough?But what if these things aren’t enough?
• Sometimes we don’t know even know Sometimes we don’t know even know 

what features we need!what features we need!



Recall: The Random Oracle ModelRecall: The Random Oracle Model

• Random Oracle Model (ROM) lets us Random Oracle Model (ROM) lets us 
replace un-provable components with replace un-provable components with 
“perfect” oracles“perfect” oracles

• With these taken care of, we can prove With these taken care of, we can prove 
the rest of the schemethe rest of the scheme



But…But…

• When we implement the ideal system in When we implement the ideal system in 
the real world, where random oracles the real world, where random oracles 
don't exist, will it still be secure?don't exist, will it still be secure?



Not necessarily!Not necessarily!

• We will come up with crypto schemes We will come up with crypto schemes 
where the real world implementation will where the real world implementation will 
alwaysalways be insecure be insecure
– no matter whatno matter what function or collection of  function or collection of 

functions we replace the oracle withfunctions we replace the oracle with
– Yet they Yet they will will be provably secure in the Random be provably secure in the Random 

Oracle ModelOracle Model



Uh oh…Uh oh…

• If the Random Oracle Model says If the Random Oracle Model says 
something’s something’s securesecure

• But we know it’s But we know it’s insecureinsecure in the real  in the real 
world…world…

• Can we trust the Random Oracle Model?Can we trust the Random Oracle Model?



Our IngredientsOur Ingredients

• To demonstrate this problem, we need to To demonstrate this problem, we need to 
define some concepts:define some concepts:
– Signature SchemesSignature Schemes
– Relations and Evasive RelationsRelations and Evasive Relations
– Correlation IntractabilityCorrelation Intractability



Signature SchemesSignature Schemes

• Signatures are a little bit like MACsSignatures are a little bit like MACs
• When we sign a message, we can:When we sign a message, we can:

– Authenticate messagesAuthenticate messages
– Prove authorshipProve authorship
– Prevent tamperingPrevent tampering



What is a Signature Scheme?What is a Signature Scheme?

• Unlike MACs, signatures are based on Unlike MACs, signatures are based on 
Public keys and Private (secret) keysPublic keys and Private (secret) keys
– SignerSigner generates a signature with Secret key generates a signature with Secret key
– VerifierVerifier checks the signature with Public key  checks the signature with Public key 

and and accepts accepts or or rejectsrejects it it

Verifier Signer



Anyone can VerifyAnyone can Verify

• The The Verifier Verifier can be anyonecan be anyone
– We give out our Public KeyWe give out our Public Key
– Anyone can check a signature (even bad guys)Anyone can check a signature (even bad guys)

Verifier Signer



Security of Signature SchemesSecurity of Signature Schemes

• A signature scheme is A signature scheme is securesecure if: if:
1. It’s 1. It’s easyeasy to sign to sign
2. It’s 2. It’s hardhard for an adversary to forge signatures  for an adversary to forge signatures 

the signer didn’t generatethe signer didn’t generate

Verifier Signer



Easy and HardEasy and Hard

Signer

• EasyEasy for the signer to sign means for the signer to sign means
– Signing takes a polynomial number of time Signing takes a polynomial number of time 

stepssteps

Polynomial Time = O(poly(k))
k = number of bits
poly() = some polynomial



Easy and HardEasy and Hard

Verifier Adversary

• HardHard to forge means to forge means
– The probability an adversary can generate The probability an adversary can generate 

forged signatures is forged signatures is negligiblenegligible
– This also means the adversary should never This also means the adversary should never 

recover the secret key!recover the secret key!



RelationsRelations

• A A relationrelation is any set of conditions by  is any set of conditions by 
which we can evaluate some pair (x, y)which we can evaluate some pair (x, y)
– {for all x, x=y}{for all x, x=y}
– {for all x, x≠y}{for all x, x≠y}
– {for all y, x is an odd number}{for all y, x is an odd number}
– {for all x, y>100 AND y<100} {for all x, y>100 AND y<100} 



Satisfying a RelationSatisfying a Relation

• A Relation is A Relation is satisfiedsatisfied by a pair (x, y) if  by a pair (x, y) if 
the pair the pair meets its conditionsmeets its conditions

• For instance, we could require that y=f(x) For instance, we could require that y=f(x) 
for some function ffor some function f

• Let’s give some examples…Let’s give some examples…



Example #1Example #1

R = {x==y} (equality)R = {x==y} (equality)
f(x)=2xf(x)=2x

x=0, f(0)=0      (satisfies R)x=0, f(0)=0      (satisfies R)
x=1, f(1)=2x=1, f(1)=2
x=2, f(2)=4x=2, f(2)=4
x=3, f(3)=6x=3, f(3)=6
x=4, f(4)=8x=4, f(4)=8
......



Evaluating RelationsEvaluating Relations

• We want relations that can be We want relations that can be evaluatedevaluated  
in a reasonable amount of timein a reasonable amount of time
– In other words, we need an In other words, we need an efficientefficient  

algorithm to check if (x, y) satisfies the algorithm to check if (x, y) satisfies the 
relationrelation



Rare or Evasive RelationsRare or Evasive Relations

• When we’re looking at the input-output When we’re looking at the input-output 
pairs of a random oracle, some relations pairs of a random oracle, some relations 
are more likely to be satisfied. are more likely to be satisfied. 
– {for all x, x=y} (very rare){for all x, x=y} (very rare)
– {for all x, x≠y} (very common){for all x, x≠y} (very common)
– {for all y, x is an odd number} (50%){for all y, x is an odd number} (50%)
– {for all x, y>100 AND y<100} (never){for all x, y>100 AND y<100} (never)



What's an Evasive relation?What's an Evasive relation?

                    query x              O(x)query x              O(x)

                                                      oracleoracle
• Pick a relation RPick a relation R
• Try to find an x for which (x,O(x)) is in RTry to find an x for which (x,O(x)) is in R
• If the probability you can do this is If the probability you can do this is 

negligible, R is negligible, R is evasiveevasive



In other words, In other words, by definitionby definition, an , an 
evasive relation is unlikely to be evasive relation is unlikely to be 

satisfied by the input-output pairs of satisfied by the input-output pairs of 
a random oraclea random oracle



Example of an Evasive RelationExample of an Evasive Relation

• R={x, f(x)} for any function fR={x, f(x)} for any function f
• The above relation is The above relation is evasiveevasive on pairs    on pairs   

(x, O(x))(x, O(x))
– For each x, the probability that O(x)=f(x) is For each x, the probability that O(x)=f(x) is 

extremelyextremely small small



Correlation IntractabilityCorrelation Intractability

• A property of random oracles that we A property of random oracles that we 
want our “real world” function to havewant our “real world” function to have



Correlation IntractabilityCorrelation Intractability

• A function f is Correlation Intractable if:A function f is Correlation Intractable if:
– For For everyevery evasive relation, it’s difficult to find  evasive relation, it’s difficult to find 

x such that (x,f(x)) satisfies the relation with x such that (x,f(x)) satisfies the relation with 
non-negligible probability non-negligible probability 



Correlation IntractabilityCorrelation Intractability

• Remember: we defined evasive relations Remember: we defined evasive relations 
as those relations as those relations notnot satisfied by the  satisfied by the 
input-outputs of a random oracleinput-outputs of a random oracle

• So So Random OraclesRandom Oracles  are are correlation-correlation-
intractableintractable

• If If all evasive relations are not satisfiedall evasive relations are not satisfied by  by 
a function f, f is also a function f, f is also correlation correlation 
intractableintractable



There are no correlation intractable There are no correlation intractable 
functions!functions!

• Simple enough to prove:Simple enough to prove:
– Pick a relation R={x, f(x)}Pick a relation R={x, f(x)}
– Take any oracle input/output (x, O(x))Take any oracle input/output (x, O(x))
– The chance that the random value O(x) will The chance that the random value O(x) will 

equal f(x) for any x is equal f(x) for any x is negligiblenegligible
– But of course, (x, f(x)) will always satisfy the But of course, (x, f(x)) will always satisfy the 

relationrelation





So far…So far…

• We’ve identified a property of random We’ve identified a property of random 
oracles that functions don’t haveoracles that functions don’t have



Property of random oraclesProperty of random oracles

• We know random oracles are We know random oracles are correlation correlation 
intractableintractable

• And functions are And functions are notnot  correlation correlation 
intractableintractable



The Big PictureThe Big Picture

• If we can prove a scheme If we can prove a scheme securesecure in the  in the 
Random Oracle Model…Random Oracle Model…

• And prove it’s And prove it’s insecureinsecure in the real world in the real world
• Then there’s a problem with the Random Then there’s a problem with the Random 

Oracle Model !Oracle Model !



Our AimOur Aim

• We want to build a scheme that’s We want to build a scheme that’s securesecure  
using Random Oraclesusing Random Oracles

• But insecure using But insecure using functionsfunctions



Outline of our ProofOutline of our Proof

• Start with a perfectly good Signature Start with a perfectly good Signature 
Scheme that's secureScheme that's secure

SignatureMessage

Signer



BingBing

• Add a deliberate “bug” to our schemeAdd a deliberate “bug” to our scheme
– If some condition arises, our scheme does If some condition arises, our scheme does 

something really something really insecureinsecure

Signature 
or

Secret Key 

Message

If condition X
   reveal the secret key !!!
Else
   sign with the original, secure scheme



BangBang

• Show that this condition Show that this condition won’t occur in won’t occur in 
the Random Oracle Modelthe Random Oracle Model
– In the R.O.M., our scheme is In the R.O.M., our scheme is securesecure

Message

If condition X
   reveal the secret key !!!
Else
   sign with the original, secure scheme

Signature 
or

Secret Key 



BongoBongo

• Show that the condition Show that the condition willwill  occur in occur in 
the “real world”the “real world” when we replace  when we replace 
Random Oracles with functionsRandom Oracles with functions
– So So implementationimplementation is  is insecureinsecure

Message

If condition X
   reveal the secret key !!!
Else
   sign with the original, secure scheme

Signature 
or

Secret Key 



So what’s the trick…So what’s the trick…

• The trick to all of this is figuring out what The trick to all of this is figuring out what 
to use for “Condition X”to use for “Condition X”
– Something that Something that won’twon’t happen in the Random  happen in the Random 

Oracle Model…Oracle Model…
– But But will will sometimessometimes happen with functions happen with functions



Adding a conditionAdding a condition

• So the scheme in ROM must be different  So the scheme in ROM must be different  
from the scheme in the real worldfrom the scheme in the real world

• So far, there is no differenceSo far, there is no difference
• So let's add a random oracle to our So let's add a random oracle to our 

scheme in ROM, which is replaced by a scheme in ROM, which is replaced by a 
function in the real world function in the real world 



Adding a Random OracleAdding a Random Oracle

Message

If [some condition involving an oracle]
   reveal the secret key !!!
Else
   sign with the original, secure scheme

Signature 
or

Secret Key 



Adding a conditionAdding a condition

• So our condition is going to involve a So our condition is going to involve a 
random oraclerandom oracle

• We'll need something that can tell the We'll need something that can tell the 
difference between a random oracle (in difference between a random oracle (in 
ROM) and a function (in the real world)ROM) and a function (in the real world)

• But we know of something that can do But we know of something that can do 
this!this!



We need an evasive relationWe need an evasive relation

• An evasive relation will never be satisfied An evasive relation will never be satisfied 
by a random oracle, but can be satisfied by a random oracle, but can be satisfied 
by a functionby a function

• So we'll pick some evasive relationSo we'll pick some evasive relation
• It should be something that our adversary It should be something that our adversary 

will know how to satisfywill know how to satisfy



Pick our Evasive RelationPick our Evasive Relation

• How about the relation R= { x,f(x) } ?How about the relation R= { x,f(x) } ?
• It's evasiveIt's evasive
• And it's easy to satisfy in the real world if And it's easy to satisfy in the real world if 

f is the same function used to replace the f is the same function used to replace the 
oracle oracle 



And our condition is...And our condition is...

Message

If [message, O(message) satisfies R]
     reveal the secret key !!!
Else
     sign with the original, secure scheme

Signature  or
Secret Key 

Pick some evasive relation R
R = { x, f(x) }

O(Message)

Message



The scheme we've builtThe scheme we've built

• Now that we have our condition and our Now that we have our condition and our 
evasive relation, we have everything we evasive relation, we have everything we 
need for our schemeneed for our scheme

• Let's go through our entire scheme now, Let's go through our entire scheme now, 
step by stepstep by step



Our Scheme in ROMOur Scheme in ROM

• Pick R = { x, f(x) } as our evasive relation



Our Scheme in ROMOur Scheme in ROM

• Adversary sends message m to the SignerAdversary sends message m to the Signer

m

R = {x, f(x)} (evasive)



Our Scheme in ROMOur Scheme in ROM

• Adversary sends message m to the SignerAdversary sends message m to the Signer
• Signer sends m to Random OracleSigner sends m to Random Oracle

m
m

R = {x, f(x)} (evasive)



Our Scheme in ROMOur Scheme in ROM

• Adversary sends message m to the SignerAdversary sends message m to the Signer
• Signer sends m to Random OracleSigner sends m to Random Oracle
• Signer gets O(m) from Random OracleSigner gets O(m) from Random Oracle

m
m

O(m)
R = {x, f(x)} (evasive)



Our Scheme in ROMOur Scheme in ROM

• Signer checks if ( m, O(m) ) satisfies RSigner checks if ( m, O(m) ) satisfies R

m
m

If m, O(m) satisfies {x, f(x)}
     reveal the secret key
Else sign the message

O(m)

R = {x, f(x)} (evasive)



Our Scheme in ROMOur Scheme in ROM

• The output of a Random Oracle will The output of a Random Oracle will 
practically practically nevernever satisfy an evasive  satisfy an evasive 
relationrelation

m
m

If m, O(m) satisfies {x, f(x)}
     reveal the secret key
Else sign the message

O(m)

Signature 

R = {x, f(x)} (evasive)



This scheme is secure in ROMThis scheme is secure in ROM

• In the Random Oracle Model, our In the Random Oracle Model, our 
condition is never metcondition is never met

• The scheme never reveals its secret keyThe scheme never reveals its secret key
• We've shown that it is We've shown that it is securesecure in the ROM in the ROM



Now, in the real worldNow, in the real world

• When we When we implementimplement the scheme, we  the scheme, we 
replace the Random Oraclereplace the Random Oracle

• Let’s replace it with a function Let’s replace it with a function ff



Our Scheme in the Real WorldOur Scheme in the Real World

• Adversary sends message m to the SignerAdversary sends message m to the Signer

m

R = {x, f(x)} (evasive) f



Our Scheme in the Real WorldOur Scheme in the Real World

• Adversary sends message m to the SignerAdversary sends message m to the Signer
• Signer sends m to function fSigner sends m to function f

m
m

R = {x, f(x)} (evasive)

f



Our Scheme in the Real WorldOur Scheme in the Real World

• Adversary sends message m to the SignerAdversary sends message m to the Signer
• Signer sends m to function fSigner sends m to function f
• Signer gets f(m) from function fSigner gets f(m) from function f

m
m

f(m)

R = {x, f(x)} (evasive) f



Our Scheme in the Real WorldOur Scheme in the Real World

• Signer checks if ( m, f(m) ) satisfies RSigner checks if ( m, f(m) ) satisfies R

m
m

If m, f(m) satisfies {x, f(x)}
     reveal the secret key
Else sign the message

f(m)

R = {x, f(x)} (evasive)

f



Our Scheme in the Real WorldOur Scheme in the Real World

• The relation The relation isis satisfied, so the signer  satisfied, so the signer 
reveals its secret keyreveals its secret key

m
m

If m, f(m) satisfies {x, f(x)}
     reveal the secret key
Else sign the message

f(m)

Secret Key 

R = {x, f(x)} (evasive)

f



This scheme is not secure!This scheme is not secure!

• An adversary can get this scheme to An adversary can get this scheme to 
reveal its secret keyreveal its secret key

• In fact, because of what we picked for R, In fact, because of what we picked for R, 
the adversary can the adversary can alwaysalways break the  break the 
schemescheme

• It’s definitely It’s definitely insecureinsecure  in the real worldin the real world





So far…So far…

• Random Oracles have properties that Random Oracles have properties that 
functions don’tfunctions don’t

• We leveraged this to build a scheme We leveraged this to build a scheme 
securesecure in the ROM,  in the ROM, insecureinsecure with a  with a 
function function 



Another AttemptAnother Attempt

• Maybe using one function is too easyMaybe using one function is too easy
• What if we implement using a collection of What if we implement using a collection of 

functions (aka “functions (aka “function ensemblefunction ensemble”)”)
– Ensemble is a collection of of functions fEnsemble is a collection of of functions f11..f..fnn

– Like using a keyed hash, or MACLike using a keyed hash, or MAC



Are Function Ensembles Better?Are Function Ensembles Better?

• We will show that We will show that function ensemblesfunction ensembles  
have the same problem as have the same problem as functionsfunctions

• We We can still build schemes that are can still build schemes that are 
securesecure in the Random Oracle Model, but  in the Random Oracle Model, but 
insecureinsecure with a function ensemble with a function ensemble



Using a Collection of FunctionsUsing a Collection of Functions

• It’s great to have a collection of functions, It’s great to have a collection of functions, 
but we can only use but we can only use oneone at a time  at a time 

• Everyone participating in the scheme must Everyone participating in the scheme must 
know what function we’re usingknow what function we’re using

f



Using a Function EnsembleUsing a Function Ensemble

• To use a function ensemble:To use a function ensemble:
– Select one function Select one function ffss at random when we  at random when we 

start our scheme, and tell everyone what start our scheme, and tell everyone what ss is is

fs
ss

Function Ensemble F



The ProofThe Proof

• Again we choose an evasive relation RAgain we choose an evasive relation R

• This time This time R={x,fR={x,fxx(x)}(x)}

• We know this evasive relation can’t be We know this evasive relation can’t be 
satisfied by a Random Oraclesatisfied by a Random Oracle



Implementation with Function Implementation with Function 
Ensembles (Setup)Ensembles (Setup)

• First: signer picks one function First: signer picks one function ffss from a  from a 
function ensemblefunction ensemble

• And publishes And publishes ss to everyone to everyone

fs

Function Ensemble F

s



The adversary attacksThe adversary attacks

• Adversary submits Adversary submits ss as the message as the message

s

fs

If s, fs(s) satisfies {x, fx(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme



Signer calls Function OracleSigner calls Function Oracle

• Signer gets fSigner gets fss(s)(s)

s

fs

s

fs(s)If s, fs(s) satisfies {x, fx(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme



If s, fs(s) satisfies {x, fx(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme

The adversary attacksThe adversary attacks

• Signer checks if s, fSigner checks if s, fss(s)(s)  satisfies the satisfies the 
relation R = {x, frelation R = {x, fxx(x)}(x)}

s

fs

s

fs(s)



The adversary attacksThe adversary attacks

• The relation The relation isis satisfied, so the signer  satisfied, so the signer 
reveals its secret key reveals its secret key 

m

fs

m

fs(m)

Secret Key 

If m, fs(m) satisfies {x, fx(x)}
   reveal the secret key!
Else
   sign with the original, secure 
scheme



Thus…Thus…

• The scheme is insecure when The scheme is insecure when 
implemented with a implemented with a function ensemblefunction ensemble



If m, fs(m) satisfies {x, fx(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme

But with Random Oracles…But with Random Oracles…

• The relation will The relation will notnot be satisfied by a  be satisfied by a 
Random OracleRandom Oracle

• So it will always sign So it will always sign securelysecurely

m

m

O(m)

Signature 



So…So…

• As before, the proof works in the Random As before, the proof works in the Random 
Oracle ModelOracle Model

• But it doesn’t work if we use function But it doesn’t work if we use function 
ensemblesensembles



There’s a small problemThere’s a small problem

• We’ve shown that we can We’ve shown that we can 
1. pick 1. pick oneone function ensemble F function ensemble F
2. Build a scheme that’s 2. Build a scheme that’s insecureinsecure if we  if we 

implement it using Fimplement it using F



ProblemProblem

• We built our scheme to work with FWe built our scheme to work with F
• So our proof So our proof onlyonly holds with F holds with F
• Somebody could implement our scheme Somebody could implement our scheme 

with F’with F’
– And our proof might not hold anymoreAnd our proof might not hold anymore



To fix thisTo fix this

• We must rig our scheme so that it’ll be We must rig our scheme so that it’ll be 
insecureinsecure for  for every possibleevery possible function  function 
ensemble in the universeensemble in the universe



Collections of EnsemblesCollections of Ensembles

• We start with a collection of function We start with a collection of function 
ensemblesensembles
– Chosen from the collection of all function Chosen from the collection of all function 

ensemblesensembles

Function Ensemble F1 Function Ensemble F2 Function Ensemble F3



Collections of EnsemblesCollections of Ensembles

• When we start our scheme, we pick the When we start our scheme, we pick the iithth  
function ensemble at randomfunction ensemble at random

Function Ensemble Fi



Collections of EnsemblesCollections of Ensembles

• From ensemble FFrom ensemble Fii, we pick the , we pick the ssthth function  function 
at randomat random

• This gives us our function This gives us our function ffii
ss

Function Ensemble Fi

fi
s



Same IdeaSame Idea

• The proof is familiarThe proof is familiar
• First, pick an evasive relation:First, pick an evasive relation:

This time R={x,fThis time R={x,fii
ss(x)}(x)}

• Again, we know this evasive relation won’t Again, we know this evasive relation won’t 
be satisfied by a Random Oraclebe satisfied by a Random Oracle



Implementation with Many Implementation with Many 
Function Ensembles (Setup)Function Ensembles (Setup)

• Signer has chosen ensemble Signer has chosen ensemble FFii, , then then 
function function ffii

ss from it from it

• And publishes And publishes (i,(i,  s)s) to everyone to everyone

fi
s

i, s



The adversary attacksThe adversary attacks

• Adversary submits Adversary submits i i || || ss as the message as the message

i || s

fi
s

If i || s,  fi
s(i || s) satisfies {x, fi

s(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme



Signer calls the Function OracleSigner calls the Function Oracle

• Signer calls the oracle to get fSigner calls the oracle to get fii
ss(i || s)(i || s)

fi
s

i || s
f i

s(i || s)

i || s

If i || s,  fi
s(i || s) satisfies {x, fi

s(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme



Signer checks the resultSigner checks the result

• Signer checks if i || s, fSigner checks if i || s, fii
ss(i || s)(i || s)  satisfies satisfies 

the relation R = {x, fthe relation R = {x, fii
ss(x)}(x)}

fi
s

If i || s,  fi
s(i || s) satisfies {x, fi

s(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme

i || s
f i

s(i || s)

i || s



Scheme breaksScheme breaks

• The relation The relation isis satisfied, so the signer  satisfied, so the signer 
reveals its secret key reveals its secret key 

Secret Key 

If s, fi
s(i || s) satisfies {x, fi

s(x)}
   reveal the secret key!
Else
   sign with the original, secure scheme

i || s
f i

s(i || s)

i || s

fi
s



Again…Again…

• The scheme is insecure when The scheme is insecure when 
implemented with any implemented with any function function 
ensembleensemble



But with Random Oracles…But with Random Oracles…

• Same as before, the evasive relation will Same as before, the evasive relation will 
never be satisfied, so the scheme will be never be satisfied, so the scheme will be 
securesecure



Running time of the schemeRunning time of the scheme

• We have one problem:We have one problem:
– Signature schemes must take polynomial timeSignature schemes must take polynomial time
– In other words, we need to define a single In other words, we need to define a single 

polynomial that polynomial that boundsbounds the running time of  the running time of 
our schemeour scheme



Running time of the schemeRunning time of the scheme

• Unfortunately:Unfortunately:
– All of the functions we consider take all All of the functions we consider take all 

polynomial time to evaluatepolynomial time to evaluate
– But we have to consider But we have to consider every possible oneevery possible one

• We can’t come up with one polynomial We can’t come up with one polynomial 
that bounds an infinite number of that bounds an infinite number of 
functionsfunctions



Running time of the schemeRunning time of the scheme

• The best we say is that our scheme runs The best we say is that our scheme runs 
in at most in at most super-polynomialsuper-polynomial time time

• That violates the requirements of a That violates the requirements of a 
signature schemesignature scheme





Stage 3: Reducing the TimeStage 3: Reducing the Time

• In this final step we make our Signer and In this final step we make our Signer and 
Verifier run in Verifier run in polynomialpolynomial time, by using  time, by using 
something called “Computationally Sound something called “Computationally Sound 
proofs” (CS Proofs)proofs” (CS Proofs)

S. Micali. “CS Proofs”. 1994.



What's a Computationally Sound What's a Computationally Sound 
(CS) proof?(CS) proof?

• A Computationally Sound Proof is a A Computationally Sound Proof is a 
system for generating and verifying proofs system for generating and verifying proofs 
of statementsof statements

• When we say "proofs", we mean proofs When we say "proofs", we mean proofs 
that are computer-generated and that are computer-generated and 
computer-verifiablecomputer-verifiable

S. Micali. “CS Proofs”. 1994.



How we use CS ProofsHow we use CS Proofs

• Instead of evaluating f, we make the Instead of evaluating f, we make the 
attacker give us a proof of the statement attacker give us a proof of the statement 
"(s, f"(s, f i i

ss(s)) is in R(s)) is in RUU  ""

• We only need to verify that the proof is We only need to verify that the proof is 
validvalid

S. Micali. “CS Proofs”. 1994.



Why do we do this?Why do we do this?

• Verifying a proof takes less time than computing Verifying a proof takes less time than computing 
ff i i

ss(x)(x)

2
0

5
0

1
0

0

0 20 40 60 80 100 120

Verify Proof

Compute Function

Prove

Time



How much less time?How much less time?

• CS proofs always take sub-polynomial time to CS proofs always take sub-polynomial time to 
verifyverify

• So the time to verify So the time to verify anyany  proof is bounded by a proof is bounded by a 
single polynomialsingle polynomial



Using CS ProofsUsing CS Proofs

• We take our last scheme and modify itWe take our last scheme and modify it
– The adversary generates a proof The adversary generates a proof   that his that his 

input satisfies the relationinput satisfies the relation
– The signer The signer verifiesverifies this proof (will always take  this proof (will always take 

polynomial time)polynomial time)
– If the proof is valid, the signer reveals his If the proof is valid, the signer reveals his 

secret keysecret key



Scheme using CS Proofs in ROMScheme using CS Proofs in ROM

• Pick an evasive relation RPick an evasive relation RU={  ={  i || x i || x , f, f i i
xx((i || xi || x)  })  }

m = i || s, π

m

O(m)

Signature 

If proof π 
(that m, O(m) is in RU) is valid
   give adversary private key
Else sign msg



Scheme using CS Proofs in ROMScheme using CS Proofs in ROM

• Ideal scheme is secure because Ideal scheme is secure because 
– RRUU is evasive is evasive
– Proof verifier won’t accept proofs of untrue Proof verifier won’t accept proofs of untrue 

statementsstatements



• Pick an evasive relation RPick an evasive relation RU={  ={  i || x i || x , f, f i i
xx((i || xi || x)  })  }

m = i || s, π

m

f  i
s(m)

Private key 

If proof π 
(that m, f i

s(m) is in RU) is valid
   give adversary private key
Else sign msg

f i
s

Scheme using CS Proofs with Scheme using CS Proofs with 
Function EnsemblesFunction Ensembles



Scheme using CS Proofs with Scheme using CS Proofs with 
Function EnsemblesFunction Ensembles

• This scheme is still insecure, because the This scheme is still insecure, because the 
seed is known to the adversaryseed is known to the adversary
– He can easily satisfy RHe can easily satisfy RUU by sending the seed as  by sending the seed as 

the message to the Signerthe message to the Signer
– It's easy for him to generate a valid proof of It's easy for him to generate a valid proof of 

the true statement that (i || s, fthe true statement that (i || s, f i i
ss(i||s)) (i||s)) 

satisfies Rsatisfies RUU



Security of CS proofsSecurity of CS proofs

• Note that it doesn't matter (to the security Note that it doesn't matter (to the security 
of our scheme) whether we can of our scheme) whether we can 
implement CS proofs in the real worldimplement CS proofs in the real world
– The adversary doesn't need to "cheat" the CS The adversary doesn't need to "cheat" the CS 

proof systemproof system
– He just gives the proof system only valid He just gives the proof system only valid 

proofsproofs



So now we're doneSo now we're done



What we have shownWhat we have shown

• We can build a signature scheme which is We can build a signature scheme which is 
secure in ROM, but for which secure in ROM, but for which anyany  
implementation will be insecure.implementation will be insecure.



Does this mean that ROM is Does this mean that ROM is 
useless?useless?

• The schemes we built are contrivedThe schemes we built are contrived
• We had to put in harmful modifications so We had to put in harmful modifications so 

that the scheme would break in the real that the scheme would break in the real 
worldworld

• Real signature schemes would not be Real signature schemes would not be 
designed this waydesigned this way
We'll talk more about this controversy on We'll talk more about this controversy on 
ThursdayThursday



Questions?Questions?


