Random Oracles, Revisited

Ran Canetti OJHd Go'drejm

7 Crypio sef

Proplem:

What It OuR CIiYpLo S
that aren't provably

EXampIe: [Hash FURCLIONS

Real world examples: SHAL, MD5
e We would like a hash function that has:
— Perfect randomness

— Collision resistant
— One-way

Example: FHashi FURCLIoNS

BUL what It these things arent enougn?
e Sometimes we don't know even know
what features we need!

Recall; The Randomi Oracle Model

e Random Oracle Model (ROM) lets us
replace un-provable components with
“perfect” oracles

e \With these taken care of, we can prove
the rest of the scheme

=4
N

tre redil WO

don't exist, will it still be secure?

‘w
L
L
a)
~
ﬁ

NOt necessarily?

e \We will come up with crypto schemes
where the real world implementation will
always be insecure

— no matter what function or collection of
functions we replace the oracle with

— Yet they will be provably secure in the Random
Oracle Model

Jnren...

[t the Random Oracle Model says
’ i - . l y
e But we know it's insecure in the real
world...

e Can we trust the Random Oracle Model?

Our Ingreaients

10 aemonstrate this problem, we need to

’i

— Signature Schemes
— Relations and Evasive Relations
— Correlation Intractability

Signature Schemes

e Signhatures are a little bit like MACs

e \When we sigh a message, we can:
— Authenticate messages
— Prove authorship
— Prevent tampering

-

—

<z

What IS a Signature Scheme?

e Unlike MACs, signatures are based on
Public keys and Private (secret) keys
— Signer generates a signature with Secret key

— Verifier checks the signature with Public key
and accepts or rejects it

Verifier \ Signer

i

0B
XAl -y

Anyone can Veriry.

e [he Verifier can be anyone
— We give out our Public Key
— Anyone can check a signature (even bad guys)

Verifier \ Signer

e

7 ® 4

Security: of Signature Schemes

e A signature scheme is secure if:
1. It's easy to sign

2. It's hard for an adversary to forge signatures
the signer didn't generate

Verifier \ Signer

OFE, S
XAl <y

Easy and Hard

e Easy for the signer to sign means
— Signing takes a polynomial number of time

Steps

Polynomial Time = 0(poly(k))
k = number of bits
poly() = some polynomial

5@ \ Signer

e
4

Easy and Hard

e Hard to forge means

— The probability an adversary can generate
forged signatures is negligible

— This also means the adversary should never
recover the secret key!

Verifier Adversary

Relations

— {for all y, x is an odd number}
— {for all x, y>100 AND y<100}

Satisfying ar Relation

e A Relation is satisfied by a pair (X, y) If
the pair meets its conditions

e For instance, we could reqguire that y=f(x)
for some function f

e Let’s give some examples...

EXample #1

quality)

x=0, f(0)=0 (satisfies R)
x=1, f(1)=2
x=2, f(2)=4
x=3, f(3)=6
x=4, f(4)=8

Evaluating Relations

e \We want relations that can be evaluated
In @ reasonable amount of time
— In other words, we need an efficient

algorithm to check if (x, y) satisfies the
relation

Rare or Evasive Relations

e \When we're looking at the input-output
pairs of a random oracle, some relations
are more likely to be satisfied.

— {for a
— {for a
— {for a
— {for a

X, X=Y} (very rare)

X, X#Y} (very common)

y, X is an odd number} (50%)
X, y>100 AND y<100} (never)

What's ani Evasive relation?

guery X 0]69

@,
oracle
e Pick a relation R
e Try to find an x for which (x,0(x)) is in R
e If the probability you can do this is

negligible, R is evasive

In other words, by definition, an
evasive relation is unlikely to be
satisfied by the input-output pairs of
a random oracle

Example off an Evasive Relation

e R={X, f(X)} for any function f
e [he above relation is evasive on pairs

(X, O(x))
— For each x, the probability that O(x)=f(x) is
extremely small

Correlation Intractability.

Correlation Intractability

e A function f is Correlation Intractable if:

— For every evasive relation, it's difficult to find
x such that (x,f(x)) satisfies the relation with
non-negligible probability

Correlation Intractability

e Remember: we defined evasive relations
as those relations not satisfied by the
input-outputs of a random oracle

e So Random Oracles are correlation-
intractable

e If all evasive relations are not satisfied by
a function f, f is also correlation
intractable

There are nos correlation intractable
filnctions!

e Simple enough to prove:
— Pick a relation R={Xx, fi(x)}
— Take any oracle input/output (X, O(x))

— The chance that the random value O(x) will
equal f(x) for any x is negligible

— But of course, (X, f(x)) will always satisfy the
relation

We ve identified a property off rahdom
oracles that functions dont have

PFOPEINLY Off FaNAOM! OraCIES

We KNow randoem oracles are correlation

e And functions are not correlation
intractable

The Big| Picture

e If we can prove a scheme secure in the
Random Oracle Model...

e And prove it's insecure in the real world

e Then there’'s a problem with the Random
Oracle Model !

our Aim

e But insecure using functions

outiine of our' Proof

Start vvjrn d I)erfe [y’ gooa Signature

b
-~

Signer

Message Signature

Bing

e Add a deliberate "bug” to our scheme

— If some condition arises, our scheme does
something really insecure

Message ——— @‘?D‘\ _____, Signature ©
‘§ or
- Secret Key ®

= If condition X
reveal the secret key !
Else
sign with the original, secure scheme

Bang

e Show that this condition won't eccur In
the Random Oracle Model

— In the R.O.M., our scheme is secure

Message ——— &;D‘\ . Signature ©

‘§ (0]

Secret Key ®
If condition X

reveal the secret key !
Else
=P sign with the original, secure scheme

BeNgo

e Show that the condition will occur In
the “real world™ when we replace
Random Oracles with functions

— So implementation is Insecure

Message &\@)\ Signature ©
or
Secret Key ®

If condition X
= reveal the secret key !l
Else
sign with the original, secure scheme

SO what's the trick...

e [he trick to all of this is figuring out what
to use for “Condition X*

— Something that won’t happen in the Random
Oracle Model...

— But will sometimes happen with functions

Adding a condition

e SO the scheme in ROM must be different
from the scheme in the real world

e So far, there is no difference

e So let's add a random oracle to our
scheme in ROM, which is replaced by a
function in the real world

Adding a Random Oracle

&@)\ Signature ©

Message —— 3
- or

Secret Key ©®
If [some condition involving an oracle] @.
reveal the secret key 1! ;
Else A A

—

signh with the original, secure scheme

Adding a condition

e SO our condition is going to involve a
random oracle

e \We'll need something that can tell the
difference between a random oracle (in
ROM) and a function (in the real world)

e But we know of something that can do
this!

We need an evasive relation

e An evasive relation will never be satisfied

by a random oracle, but can be satisfied
by a function

e So we'll pick some evasive relation

e [t should be something that our adversary
will know how to satisfy

Pick our Evasive Relation

e How about the relation R= { x,f(x) J ?
e [t's evasive

e And it's easy to satisfy in the real world if
f is the same function used to replace the
oracle

And our condition Is...

Pick some evasive relation R

R={x f(x) }

If [message, O(message) satisfies R]
reveal the secret key !

Else
sign with the original, secure scheme

Message ———

o

GSs Secret Key ©®

%

The scheme we've built

e Now that we have our condition and our
evasive relation, we have everything we
need for our scheme

e |Let's go through our entire scheme now,
step by step

Our Scheme ini ROM

AdVersary sends message m to the

5
o m
N

R = {X, f(x)} (evasive)

Our Scheme in ROM

e Adversary sends message m to the Signer.
e Sigher sends m to Random Oracle

o
<w -

o
N

R = {x, f(x)} (evasive)

Our Scheme in ROM

e Adversary sends message m to the Signer.
e Sigher sends m to Random Oracle
e Signer gets O(m) from Random Oracle

-
<~ o

R = {X, f(x)} (evasive) T

Our Scheme in ROM

e Signer checks if (m, O(m)) satisfies R

o

e

Ch
If m, O(m) satisfies {x, f(x)} '®
reveal the secret key w
Else signh the message

R = {x, f(x)} (evasive)

Our Scheme in ROM

e [he output of a Random Oracle will
practically never satisfy an evasive
relation

— . Signature ©

If m, O(m) satisfies {x, f(x)}'% @;"
aSa

reveal the secret key
Else sign the message -

R = {x, f(x)} (evasive)

'his scheme! is secure in ROM

e In the Random Oracle Model, our
condition is never met

e The scheme never reveals its secret key
e \We've shown that it is secure in the ROM

NOW, In the real world

When we implement the scheme, we

J ~)

e L et’s replace it with a function f

R = {X, f(x)} (evasive)

R = {X, f(x)} (evasive)

Our Scheme in the Real World

e Adversary sends message m to the Signer.
e Signer sends m to function f
e Signer gets f(m) from function f

o
<y -
o

R = {x, f(x)} (evasive)

Our Scheme in the Real World

e Signer checks if (m, f(m)) satisfies R

If m, f(m) satisfies {x, f(x)} %

reveal the secret key
Else signh the message

R = {x, f(x)} (evasive)

Our Scheme in the Real World

e [he relation Is satisfied, so the signer
reveals its secret key

— . Secret Key ®

If m, f(m) satisfies {x, f(x)} % n

reveal the secret key
Else sigh the message

R = {x, f(x)} (evasive)

This scheme! Is hot secure!

e An adversary can get this scheme to
reveal its secret key

e In fact, because of what we picked for R,
the adversary can always break the
scheme

e [t's definitely insecure in the real world

e \We leveraged this to build a scheme
secure in the ROM, insecure with a
function

Another Attempt

e Maybe using one function is too easy

e What if we implement using a collection of
functions (aka “function ensemble”)

— Ensemble is a collection of of functions f,..f_
— Like using a keyed hash, or MAC

Are Function Ensembles Better?

e \We will show that function ensembles
have the same problem as functions

e We can still build schemes that are
secure in the Random Oracle Model, but
insecure with a function ensemble

Using a Collection: off Functions

e [t's great to have a collection of functions,
but we can only use one at a time

e Everyone participating in the scheme must
know what function we're using

—
-
-
-
P
-
-
-

-
-
—
-
-
—
—
-
-
-
-
-
-
-
- -
—
- -
- -~
//
- -~
-
—
-
-
-
-
-
-
-
-
-
-

Using a Eunction EnSemBbIe

— Select one function f. at random when we
start our scheme, and tell everyone what s is

Function Ensemble F

e Proof

Agaln WE CNOOSE an evasive relation R

e \WWe know this evasive relation can’t be
satisfied by a Random Oracle

Implementation’ with FURction
Ensembles (Setup)

e First: signer picks one function; f, from a
function ensemble

e And publishes s to everyone

o

. <y

Function Ensemble F

Tihe adversary: attacks

e Adversary submits s as the message

o

<

If s, f(s) satisfies {x, f (x)}

reveal the secret key! n
Else

sign with the original, secure scheme

S e

Signer calls Function Oracle

e Signer gets f(s)

o
If s, f(s) satisfies {x, fx(X)v%

reveal the secret key!
Else
sign with the original, secure scheme

S e

Tihe adversary: attacks

e Signer checks!if s, fi.(s) satisfies the
relation R = {x, f (X)}

i
= If s, f(s) satisfies {x, fx(X)v%

reveal the secret key!
Else
sign with the original, secure scheme

S e

Tihe adversary: attacks

e [he relation Is satisfied, so the signer
reveals its secret key

s

I Qd \

If m, f,(m) satisfies {x, f (x)} f (m
=» reveal the secret key!)
Else
sign with the original, secure
scheme

— > Secret Key ®

But with Random Oracles...

e [he relation will' not be satisfied by a
Random Oracle

e So it will always sign securely

&%‘\ — Signature ©
If m, f (m) satisfies {x, f ()m‘
reveal the secret key!)

Else
=% sign with the original, secure scheme

n

1
S
hu"

DFOOT WOIKS In the Random

e But it doesn’t work if we use function
ensembles

2. Build a scheme that’s insecure if we
implement it using F

Proplem

We bullt our scheme to work with F
e SO our proof only holds wi

e Somebody could implement our scheme
with F’
— And our proof might not hold anymore

110 X this

VWE mUuSCL rig our sc
-3 L a il ,"C, -\V/-Y

ensemble in the universe

ensembles
— Chosen from the collection of all function

ensembles

‘- . ‘.

Function Ensemble F1 Function Ensemble F2 Function Ensemble F3

’-I

Function Ensemble F,

N

Collections oF Ens

From ensemple £
at random
e This gives us our function f'_

Function Ensemble F,

The proof IS familiar
e First, pick an evasive relation:
This time R={x,f'.(x)}

e Again, we know this evasive relation won't
be satisfied by a Random Oracle

Implementation: withr Many:.
Function Ensembles: (Setup)

e Signer has chosen ensemble F; then
function f', from it

e And publishes (i, s) to everyone

o

L — S
oy K3
‘v

Tihe adversary: attacks

e Adversary submits i || s as the message

o

<

Ifi|]s, F,(i|]| s)satisfies {x, f (x)}
reveal the secret key!

Else
sign with the original, secure scheme

i||]s——

Signer: calls the Function Oracle

e Signer calls the oracle to get fi.(i' || S)

i||]s——

o,
I8 |1, £, 11 5) satisfies {x, £,00} 0 /7 5

reveal the secret key!
Else
sign with the original, secure scheme

SIgner checks' the result

e Signer checksiifi || s, f.(i" || s) satisfies
the relation R = {Xx, f.(x)}

i||]s——

o,
> Ifi ||'s, i || 5) satisfies {x, £,00} %00 /7

reveal the secret key!
Else
sign with the original, secure scheme

Scheme breaks

e [he relation Is satisfied, so the signer
reveals its secret key

o

If s, fi (1 | | s) satisfies {x, f.(x)} VM

/] s
=» reveal the secret key!)
Else
sign with the original, secure scheme

i||]s——

— > Secret Key ®

Again...

ensemble

SUE With Random Oracles...

SECUre

RURNING time off the scheme

e \We have one problem:
— Signature schemes must take polynomial time

— In other words, we need to define a single
polynomial that bounds the running time of
our scheme

RURNING time off the scheme

e Unfortunately:

— All of the functions we consider take all
polynomial time to evaluate

— But we have to consider every possible one

e \We can’t come up with one polynomial
that bounds an infinite number of
functions

RURNING time off the scheme

e The best we say Is that our scheme runs
in at most super-polynomial time

e That violates the requirements of a
signature scheme

Stage 3: Reducing the Time

e In this final step we make our Signer and
Verifier run in polynomial time, by using
something called "Computationally Sound
proofs” (CS Proofs)

S. Micali. “CS Proofs”. 1994,

What's a Computationally Sound
(CS) proof?

e A Computationally Sound Proof is a

system for generating and verifying proofs
of statements

e \When we say "proofs”, we mean proofs
that are computer-generated and
computer-verifiable

S. Micali. “CS Proofs”. 1994,

How: we use' CS Proofis

e [nstead of evaluating f, we make the
attacker give us a proof of the statement
"(s, f(s)) is in RY"

e We only need to verify that the proof is
valid

S. Micali. “CS Proofs”. 1994,

Wiy aorwe do this?

(%)

0 20 40 60 80 100 120

HTime B EH

HOW MUCEH Iess time?

CS proofs always: take sub-polynomial time to
VEriTy

e S0 the time to verify any proof is bounded by a
single polynomial

Using| CS Proofs

e \We take our last scheme and modify it

— The adversary generates a proof w that his
iInput satisfies the relation

— The signer verifies this proof (will always take
polynomial time)

— If the proof is valid, the signer reveals his
secret key

Scheme using €S Prooefs in ROM

e Pick an evasive relation RY={ I [| x, fL(0 [] %) }

— S(— Signature ©

% :

If proof O(m) ?

(th?t m, O(m) is in I_(U) is valid)
give adversary private key ——

Else sigh msg

— Proof verifier won't accept proofs of untrue
statements

Scheme: using| €S Proofs with
Eunction Ensembles

e Pick an evasive relation RY={ I || x, fL([| %)

If proof
(that m, fi(m) is in RY) is valid

give adversary private key
Else sigh msg

Scheme using €S) Proofs with
Function Ensembles

e [his scheme Iis still insecure, because the
seed is known to the adversary

— He can easily satisfy RY by sending the seed as
the message to the Signer

— It's easy for him to generate a valid proof of
the true statement that (i || s, f'.(i||s))

satisfies RY

Security: off CS proofs

e Note that it doesn't matter (to the security
of our scheme) whether we can
implement CS proofs in the real world

— The adversary doesn't need to "cheat” the CS
Droof system

— He just gives the proof system only valid
Droofs

So now were done

VWhat wWe have shnown

Fe scheme which IS

|mplementat|on will be insecure.

Does thisi mean that ROM s
useless?

e [he schemes we built are contrived

e \We had to put in harmful modifications so
that the scheme would break in the real
world

e Real sighature schemes would not be
designhed this way

We'll talk more about this controversy on
Thursday

