Crash Course in
Reductionist
Cryptography

Adam Stubblefield
Designing Security Systems

What is Cryptography?

What is Cryptography?

A%
at Is
Cryptography?

-

A%
at Is
Cryptography?

-

What do we need?

® An encapsulation method shared by the two
parties (and the adversary)

® This varies depending on what goal we're
trying to achieve

® Some secret information known only to the
two parties called the key

k=011010
k| =6

The Adversary

® The adversary wants to break the security
of our encapsulation method

® He isn’t all powerful - he’s just some
(possibly randomized) computer algorithm

® We will say that the system is secure if this
bounded adversary can’t break our scheme
in a reasonable amount of time

Atomic Primitives

® We can’t prove that they exist, we have to
assume that they do

® Moreover, we have to assume that specific
algorithms implement them

® Fortunately, if one algorithm turns out not

to implement one, we can just switch it out
for another

Functions

Functions
Families

® F:KxD—R

® For each key in K, you get a different
function Fi . : D = R

® You can also think of it as a multivariable
function: F(k, x) =y

Let D,R < {0, 1}* be
finite non-empty sets.
We denote the set of

all functions
fol) iR
as Func(D,R)

if D={0,1}"" and

R={0,1}" we set
Func(n,m)=Func(D,R)
and
Func(n) = Func(D, D)

Naming Functions

e If we order the domain D = (XI’XZ’ ...), then

we can “‘name” each function by the values

(f(x |), f(Xz)’ ...)

® We can then create a family of functions out

of Func(D, R) by using these names as the
keys

Function from Func(3,2)

000

001

010

Ol |

100

101

110

f(x)

Ol

00

|0

|0

|0

Ol

00

k=(01,00,10,11,10,10,01,00)

Random Functions

® To select a random function f from this

family, just pick a key k at uniformly at
random and set f = Fk

® Note that this definition of a random
function has nothing to do with the function
itself and only to do with how it is chosen

Another View

® Think of the random function as a black box

® You can give it an input and it will give you
the corresponding output:

e [01210.111?200.101?210.

® |t always has to give you the same output
when you repeat an input

As a Program

Function f(x):

If 've been asked about x before
Return t[x]

Else
Set t[x] to a random element of the range
Return t[X]

Fix X = {0, 1}"

andY = {0,1}'", then
Prif(X)=Y] =

Fix X = {0, 1}"

andY = {0,1}"" then
Prif(X)=Y] =

Fix X, X, = {0, 1}"

andY = {0,1}'", then
Prif(X,)=Y[f(X5)=Y] =

Fix X, X, = {0, 1}"

andY = {0,1}'", then
Prf(X)=Y[f(X5)=Y] =

2m

Pr[f(>X,)=Y and

Pr[f(>X,)=Y and

Pr[f(>X,)=Y and

-

- I"_.'

f(X

-

- I"_.'

f(X

Pseudorandom
Function

® |nformally, a pseudorandom function (PRF) is a
family of functions whose members are
difficult for an adversary to distinguish from
a random function

Pseudorandom
Function

® We're going to give the adversary oracle
access to a function g

® He can ask what g returns given any
Inputs

® Sometimes g will be a randomly selected
from our pseudorandom family, sometimes g
will be a random function

® The adversary will try to tell us which g is

World 0 World |

Random Function Pseudorandom
Function

- I’'min world 0

World 0

Random Function

World |

Pseudorandom
Function

I’'m in world O

More Formally

® We want to quantify how good an adversary
A is at telling world O from world |

® We call this the advantage of adversary A,
and compute it:

Pr[A says | in world |] - Pr[A says | in world O]

Adversaries

Different adversaries have different
advantages

Some adversaries might just be more
“clever” than others

Some adversaries might use more resources
that others

Resources

® Time: what is the running time
(computational complexity) of A?

® Also includes the size of A’s code and the
running time of setting up the worlds

® Queries: how many times does A query the
g oracle!?

Security of a PRF

® A PRF Fis“secure” if all “reasonable”
adversaries have “small” prf-advantage

® The prf-advantage of all (t,q)-bounded
adversaries in distinguishing F is less than €

Permutations

Let D € {0, 1 }* be finite
non-empty sets and let
n, N 2 | be integers.
We denote the set of
all functions
£l l)
as Perm(D)

|
=

f ,,{0_ 1} we set

Random Permutation

® You can key the permutations just like the
functions, and select a random permutation
by selecting a random key

® The algorithmic definition is a little different:
you have to make sure that you never reuse
an element in the range

Notions of Security
For Pseudorandom
Permutations (PRP)

® Chosen Plaintext Attack (CPA): attacker has
to decide whether g is a random
permutation or a PRP

® Chosen Clphertext Attack (CCA): attacker
also gets access to the inverse of g

Next Time

'ﬂ..J - =

~ ® How do we prove things using these

:) T L e S
1 -I,:l-'- o R H =
.._ ‘_._:_:I:,rll .II:- ,--“.._" r _.'"‘ ‘! - .

