Crash Course in Reductionist Cryptography

Adam Stubblefield Designing Security Systems

What do we need?

- An encapsulation method shared by the two parties (and the adversary)
 - This varies depending on what goal we're trying to achieve
- Some secret information known only to the two parties called the key
 k = 011010
 |k| = 6

The Adversary

- The adversary wants to break the security of our encapsulation method
- He isn't all powerful he's just some (possibly randomized) computer algorithm
- We will say that the system is secure if this bounded adversary can't break our scheme in a reasonable amount of time

Atomic Primitives

- We can't prove that they exist, we have to assume that they do
- Moreover, we have to assume that specific algorithms implement them
- Fortunately, if one algorithm turns out not to implement one, we can just switch it out for another

Functions

Range Outputs

 $f: D \rightarrow R$

Functions Families

- $F: K \times D \rightarrow R$
- For each key in K, you get a different function $F_K : D \rightarrow R$
- You can also think of it as a multivariable function: F(k, x) = y

Let $D, R \subseteq \{0, I\}^*$ be finite non-empty sets. We denote the set of all functions $f: D \rightarrow R$ as Func(D,R)

If $D = \{0, 1\}^n$ and $R=\{0,1\}^m$ we set Func(n,m)=Func(D,R) and Func(n) = Func(D, D)

Naming Functions

- If we order the domain $D = (x_1, x_2, ...)$, then we can "name" each function by the values $(f(x_1), f(x_2), ...)$
- We can then create a family of functions out of Func(D, R) by using these names as the keys

Function from Func(3,2)

X	000	001	010	011	100	101	110	
f(x)	01	00	10	11	10	10	01	00

k = (01, 00, 10, 11, 10, 10, 01, 00)

Random Functions

• To select a random function f from this family, just pick a key k at uniformly at random and set $f = F_k$

 Note that this definition of a random function has nothing to do with the function itself and only to do with how it is chosen

Another View

• Think of the random function as a black box

- You can give it an input and it will give you the corresponding output:
 - 101? 10. 111? 00. 101? 10.
- It always has to give you the same output when you repeat an input

As a Program

Function f(x):
If I've been asked about x before
 Return t[x]
Else
 Set t[x] to a random element of the range
 Return t[x]

Fix X = $\{0, I\}^n$ and Y = $\{0, I\}^m$, then Pr[f(X)=Y] =

Fix X = {0, I}ⁿ and Y = {0, I}^m, then Pr[f(X)=Y] = $\frac{1}{2^{m}}$

Fix $X_1, X_2 = \{0, 1\}^n$ and $Y = \{0, 1\}^{m}$, then $\Pr[f(X_1)=Y|f(X_2)=Y] =$

Fix $X_1, X_2 = \{0, 1\}^{T}$ and $Y = \{0, 1\}^{m}$, then $\Pr[f(X_1)=Y|f(X_2)=Y] = \frac{1}{2^m}$

$Pr[f(X_{1})=Y \text{ and}$ $f(X_{2})=Y] =$

If $X_1 = X_2$

If $X_1 \neq X_2$

$\Pr[f(X_1)=Y and$ $f(X_2) = Y] =$ $|f X_1 = X_2|$ 2^{m} If $X_1 \neq X_2$

$\Pr[f(X_1)=Y and$ $f(X_2) = Y] =$ If $X_1 = X_2$ 2^{m} If $X_1 \neq X_2$ 2m

$\Pr[f(X_1) \oplus f(X_2)=Y] =$

If $X_1 = X_2$ and Y = 0If $X_1 = X_2$ and $Y \neq 0$ If $X_1 \neq X_2$

$\Pr[f(X_1) \oplus f(X_2)=Y] =$

 $\mathbf{0}$

 2^{m}

If $X_1 = X_2$ and Y = 0If $X_1 = X_2$ and $Y \neq 0$ If $X_1 \neq X_2$

Pseudorandom Function

 Informally, a pseudorandom function (PRF) is a family of functions whose members are difficult for an adversary to distinguish from a random function

Pseudorandom Function

- We're going to give the adversary oracle access to a function g
 - He can ask what g returns given any inputs
- Sometimes g will be a randomly selected from our pseudorandom family, sometimes g will be a random function
- The adversary will try to tell us which g is

World 0

Random Function

l'm in world 0

World I

Pseudorandom Function

World 0

Random Function

World I

Pseudorandom Function

l'm in world 0

More Formally

- We want to quantify how good an adversary A is at telling world 0 from world 1
- We call this the *advantage* of adversary A, and compute it:

Pr[A says I in world I] - Pr[A says I in world 0]

Adversaries

- Different adversaries have different advantages
- Some adversaries might just be more "clever" than others
- Some adversaries might use more resources that others

Resources

- Time: what is the running time (computational complexity) of A?
 - Also includes the size of A's code and the running time of setting up the worlds
- Queries: how many times does A query the g oracle?

Security of a PRF

- A PRF *F* is "secure" if all "reasonable" adversaries have "small" prf-advantage
- The prf-advantage of all (t,q)-bounded adversaries in distinguishing F is less than E

Permutations

Domain Inputs

Range Outputs

 $f: D \rightarrow D$

Let $D \subseteq \{0, I\}^*$ be finite non-empty sets and let $n, N \ge 1$ be integers. We denote the set of all functions $f: D \rightarrow D$ as Perm(D)

If $D=\{0, I\}^n$ we set Perm(n) = Perm(D)

Random Permutation

- You can key the permutations just like the functions, and select a random permutation by selecting a random key
- The algorithmic definition is a little different: you have to make sure that you never reuse an element in the range

Notions of Security For Pseudorandom Permutations (PRP)

- Chosen Plaintext Attack (CPA): attacker has to decide whether g is a random permutation or a PRP
- Chosen Clphertext Attack (CCA): attacker also gets access to the inverse of g

Next Time

- How do we prove things using these definitions?
- Why are PRFs and PRPs important to me?