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What do we need?

• An encapsulation method shared by the two 
parties (and the adversary)

• This varies depending on what goal we’re 
trying to achieve

• Some secret information known only to the 
two parties called the key

k = 011010
|k| = 6



The Adversary

• The adversary wants to break the security 
of our encapsulation method

• He isn’t all powerful - he’s just some 
(possibly randomized) computer algorithm

• We will say that the system is secure if this 
bounded adversary can’t break our scheme 
in a reasonable amount of time



Atomic Primitives

• We can’t prove that they exist, we have to 
assume that they do

• Moreover, we have to assume that specific 
algorithms implement them

• Fortunately, if one algorithm turns out not 
to implement one, we can just switch it out 
for another



Functions

f : D → R

Domain
Inputs

Range
Outputs



Functions
Families

• F : K × D → R
• For each key in K, you get a different 

function FK :  D → R

• You can also think of it as a multivariable 
function: F(k, x) = y



Let D, R ⊆ {0,1}* be 
finite non-empty sets. 
We denote the set of 

all functions 
f : D → R

as Func(D,R)



If D={0,1}n and 

R={0,1}m we set 
Func(n,m)=Func(D,R)

and 
Func(n) = Func(D, D)



Naming Functions

• If we order the domain D = (x1, x2, ...), then 

we can “name” each function by the values 
(f(x1), f(x2), ...)

• We can then create a family of functions out 
of Func(D, R) by using these names as the 
keys



x 000 001 010 011 100 101 110 111

f(x) 01 00 10 11 10 10 01 00

k = (01, 00, 10, 11, 10, 10, 01, 00)

Function from Func(3,2)



Random Functions

• To select a random function f from this 
family, just pick a key k at uniformly at 
random and set f = Fk 

• Note that this definition of a random 
function has nothing to do with the function 
itself and only to do with how it is chosen



Another View

• Think of the random function as a black box

• You can give it an input and it will give you 
the corresponding output:

• 101? 10. 111? 00. 101? 10.

• It always has to give you the same output 
when you repeat an input



As a Program

Function f(x):
If I’ve been asked about x before

Return t[x]
Else

Set t[x] to a random element of the range
Return t[x] 



Fix X = {0, 1}n 

and Y = {0,1}m, then
Pr[f(X)=Y] = 
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Fix X1,X2 = {0, 1}n 
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Fix X1,X2 = {0, 1}n 

and Y = {0,1}m, then
Pr[f(X1)=Y|f(X2)=Y] = 1

2m



Pr[f(X1)=Y and 

f(X2)=Y] =
If X1 = X2

If X1 ≠ X2
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Pr[f(X1)=Y and 

f(X2)=Y] =
If X1 = X2

If X1 ≠ X2
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Pr[f(X1) ⊕ f(X2)=Y] =

If X1 = X2 and Y = 0

If X1 ≠ X2

If X1 = X2 and Y ≠ 0



Pr[f(X1) ⊕ f(X2)=Y] =

If X1 = X2 and Y = 0

If X1 ≠ X2

If X1 = X2 and Y ≠ 0

1

0

1

2m



Pseudorandom 
Function

• Informally, a pseudorandom function (PRF) is a 
family of functions whose members are 
difficult for an adversary to distinguish from 
a random function



Pseudorandom 
Function

• We’re going to give the adversary oracle 
access to a function g

• He can ask what g returns given any 
inputs

• Sometimes g will be a randomly selected 
from our pseudorandom family, sometimes g  
will be a random function

• The adversary will try to tell us which g is 
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More Formally

• We want to quantify how good an adversary 
A is at telling world 0 from world 1

• We call this the advantage of adversary A, 
and compute it:

Pr[A says 1 in world 1] - Pr[A says 1 in world 0]



Adversaries

• Different adversaries have different 
advantages

• Some adversaries might just be more 
“clever” than others

• Some adversaries might use more resources 
that others



Resources

• Time: what is the running time 
(computational complexity) of A?

• Also includes the size of A’s code and the 
running time of setting up the worlds

• Queries: how many times does A query the 
g oracle?



Security of a PRF

• A PRF F is “secure” if all “reasonable” 
adversaries have “small” prf-advantage

• The prf-advantage of all (t,q)-bounded 
adversaries in distinguishing F is less than ε



Permutations

f : D → D

Domain
Inputs

Range
Outputs



Let D ⊆ {0,1}* be finite 
non-empty sets and let 
n, N ≥ 1 be integers. 
We denote the set of 

all functions 
f : D → D

as Perm(D)



If D={0,1}n we set 
Perm(n) = Perm(D)



Random Permutation

• You can key the permutations just like the 
functions, and select a random permutation 
by selecting a random key

• The algorithmic definition is a little different: 
you have to make sure that you never reuse 
an element in the range



Notions of Security
For Pseudorandom 
Permutations (PRP)

• Chosen Plaintext Attack (CPA): attacker has 
to decide whether g is a random 
permutation or a PRP

• Chosen CIphertext Attack (CCA): attacker 
also gets access to the inverse of g



Next Time

• How do we prove things using these 
definitions?

• Why are PRFs and PRPs important to me?


