
Crash Course in
Reductionist
Cryptography

Adam Stubblefield
Designing Security Systems

What is Cryptography?

What is Cryptography?

Move to h3

What is Cryptography?

Move to h3

What is Cryptography?

Move to h4

What do we need?

• An encapsulation method shared by the two
parties (and the adversary)

• This varies depending on what goal we’re
trying to achieve

• Some secret information known only to the
two parties called the key

k = 011010
|k| = 6

The Adversary

• The adversary wants to break the security
of our encapsulation method

• He isn’t all powerful - he’s just some
(possibly randomized) computer algorithm

• We will say that the system is secure if this
bounded adversary can’t break our scheme
in a reasonable amount of time

Atomic Primitives

• We can’t prove that they exist, we have to
assume that they do

• Moreover, we have to assume that specific
algorithms implement them

• Fortunately, if one algorithm turns out not
to implement one, we can just switch it out
for another

Functions

f : D → R

Domain
Inputs

Range
Outputs

Functions
Families

• F : K × D → R
• For each key in K, you get a different

function FK : D → R

• You can also think of it as a multivariable
function: F(k, x) = y

Let D, R ⊆ {0,1}* be
finite non-empty sets.
We denote the set of

all functions
f : D → R

as Func(D,R)

If D={0,1}n and

R={0,1}m we set
Func(n,m)=Func(D,R)

and
Func(n) = Func(D, D)

Naming Functions

• If we order the domain D = (x1, x2, ...), then

we can “name” each function by the values
(f(x1), f(x2), ...)

• We can then create a family of functions out
of Func(D, R) by using these names as the
keys

x 000 001 010 011 100 101 110 111

f(x) 01 00 10 11 10 10 01 00

k = (01, 00, 10, 11, 10, 10, 01, 00)

Function from Func(3,2)

Random Functions

• To select a random function f from this
family, just pick a key k at uniformly at
random and set f = Fk

• Note that this definition of a random
function has nothing to do with the function
itself and only to do with how it is chosen

Another View

• Think of the random function as a black box

• You can give it an input and it will give you
the corresponding output:

• 101? 10. 111? 00. 101? 10.

• It always has to give you the same output
when you repeat an input

As a Program

Function f(x):
If I’ve been asked about x before

Return t[x]
Else

Set t[x] to a random element of the range
Return t[x]

Fix X = {0, 1}n

and Y = {0,1}m, then
Pr[f(X)=Y] =

Fix X = {0, 1}n

and Y = {0,1}m, then
Pr[f(X)=Y] =

1

2m

Fix X1,X2 = {0, 1}n

and Y = {0,1}m, then
Pr[f(X1)=Y|f(X2)=Y] =

Fix X1,X2 = {0, 1}n

and Y = {0,1}m, then
Pr[f(X1)=Y|f(X2)=Y] = 1

2m

Pr[f(X1)=Y and

f(X2)=Y] =
If X1 = X2

If X1 ≠ X2

Pr[f(X1)=Y and

f(X2)=Y] =
If X1 = X2

If X1 ≠ X2

1

2m

Pr[f(X1)=Y and

f(X2)=Y] =
If X1 = X2

If X1 ≠ X2

1

2m

1

22m

Pr[f(X1) ⊕ f(X2)=Y] =

If X1 = X2 and Y = 0

If X1 ≠ X2

If X1 = X2 and Y ≠ 0

Pr[f(X1) ⊕ f(X2)=Y] =

If X1 = X2 and Y = 0

If X1 ≠ X2

If X1 = X2 and Y ≠ 0

1

0

1

2m

Pseudorandom
Function

• Informally, a pseudorandom function (PRF) is a
family of functions whose members are
difficult for an adversary to distinguish from
a random function

Pseudorandom
Function

• We’re going to give the adversary oracle
access to a function g

• He can ask what g returns given any
inputs

• Sometimes g will be a randomly selected
from our pseudorandom family, sometimes g
will be a random function

• The adversary will try to tell us which g is

World 0 World 1

Random Function

g

Pseudorandom
Function

g

I’m in world 0

World 0 World 1

Random Function

g

Pseudorandom
Function

g

I’m in world 0

More Formally

• We want to quantify how good an adversary
A is at telling world 0 from world 1

• We call this the advantage of adversary A,
and compute it:

Pr[A says 1 in world 1] - Pr[A says 1 in world 0]

Adversaries

• Different adversaries have different
advantages

• Some adversaries might just be more
“clever” than others

• Some adversaries might use more resources
that others

Resources

• Time: what is the running time
(computational complexity) of A?

• Also includes the size of A’s code and the
running time of setting up the worlds

• Queries: how many times does A query the
g oracle?

Security of a PRF

• A PRF F is “secure” if all “reasonable”
adversaries have “small” prf-advantage

• The prf-advantage of all (t,q)-bounded
adversaries in distinguishing F is less than ε

Permutations

f : D → D

Domain
Inputs

Range
Outputs

Let D ⊆ {0,1}* be finite
non-empty sets and let
n, N ≥ 1 be integers.
We denote the set of

all functions
f : D → D

as Perm(D)

If D={0,1}n we set
Perm(n) = Perm(D)

Random Permutation

• You can key the permutations just like the
functions, and select a random permutation
by selecting a random key

• The algorithmic definition is a little different:
you have to make sure that you never reuse
an element in the range

Notions of Security
For Pseudorandom
Permutations (PRP)

• Chosen Plaintext Attack (CPA): attacker has
to decide whether g is a random
permutation or a PRP

• Chosen CIphertext Attack (CCA): attacker
also gets access to the inverse of g

Next Time

• How do we prove things using these
definitions?

• Why are PRFs and PRPs important to me?

