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Abstract

We present a systematic investigation of the leakage of compromising information via electro-
magnetic (EM) emanations from chipcards and other devices. This information leakage differs
substantially from and is more powerful than the leakage from other conventional side-channels
such as timing and power. EM emanations are shown to consist of a multiplicity of compro-
mising signals, each leaking somewhat different information. Our experimental results confirm
that these signals could individually contain enough leakage to break cryptographic implementa-
tions and to defeat countermeasures against other side-channels such as power. Using techniques
from Signal Detection Theory, we also show that generalized and far more devastating attacks
can be constructed from an effective pooling of leakages from multiple signals derived from EM
emanations.

The magnitude of EM exposure demands a leakage assessment methodology whose correctness
can be rigorously proved. We define a model that completely and quantitatively bounds the
information leaked from multiple (or all available) EM side-channel signals in CMOS devices and
use that to develop a practical assessment methodology for devices such as chipcards.

1 Introduction

Side—channel cryptanalysis has been used successfully to attack many cryptographic implementations
[10, 11]. Most of the publicly available literature on side—channels deals with attacks based on timing
or power. While it is rumored that there is a large body of classified literature on exploiting leakages
due to electromagnetic (EM) emanations, there is scant information about this in the public domain.

With the recent declassification of portions of the TEMPEST documents [7], initial reports by
J. J. Quisquater[12] and publication of some EM attacks [9], an awareness of the potential of the
EM side—channel is developing. However, some basic questions remain unanswered. For instance,
what are the causes and types of EM emanations? How does information leaked via EM emanations
compare with leakages from other side—channels? What implementations are vulnerable to EM side—
channel attacks? Can the EM side—channel overcome countermeasures designed to provide protection
against other side—channel attacks? Given the set of EM emanations available to an adversary, is it



possible to bound the net information leaked in an information theoretic sense, i.e., independent of the
computational and signal processing abilities of the adversary? With questions such as these in mind,
we conducted a systematic investigation of EM side—channel leakage from chipcards. In this paper,
we address each of these basic questions.

A crucial insight from our investigation is that the output of even a single EM sensor consists of
multiple compromising signals of different types, strengths and information content. Of these, high
amounts of compromising information is usually found in very low energy signals. It is therefore
imperative that signals be separated early in the acquisition process to avoid loss of low energy signals
due to precision limits of signal capturing equipment. Here, we differ from [9] where signals are
obtained from different micro—antenna positions, but nevertheless the output of the sensor is treated
as a single signal. While careful positioning of a micro—antenna can acquire and emphasize some low
energy signals, without further signal separation, some high information, low energy signals can still
be overwhelmed by adjacent lower information, higher energy sources.

We describe the basis for this insight in Section 2. We first discuss the causes and types of various
EM signals that we observed using several sensors. These include several unexpected signals that are
easy to overlook if one does not suspect their existence. For instance, despite extensive work with power
signals, researchers had so far missed the very faint, but far more compromising amplitude modulated
EM signals present in the power line and other conductors attached to the chipcard. We then describe
the experimental equipment, techniques used to extract compromising signals and empirical evidence
that confirms that different signals carry different information.

Since EM emanations permit the use of several conductive and radiative sensors each containing
multiple signals, an adversary has a wide array of compromising signals at his disposal. In situations
where the power side—channel is not available, e.g., the power supply is filtered or the attack has to
be mounted from a distance, the advantages of using EM are obvious. The more pertinent question
is whether this abundance of signals provides any practical advantage in using the EM side—channel
in situations where the traditional side—channels such as power are also available. This question is
especially appropriate given the high cost of some EM equipment.

In Section 3, we answer this question in the affirmative. We demonstrate that even low cost EM
equipment which can collect only one signal at a time is quite effective against fielded devices. For
all devices, we obtained signals which were amenable to attacks such as simple and differential elec-
tromagnetic attacks (SEMA and DEMA [12]). We were able to successfully attack cryptographic
implementations of block ciphers such as DES, public key schemes such as RSA on chipcards and SSL
Accelarators and even proprietary algorithms such as the prescribed COMP128 GSM authentication
scheme. More interestingly, in many devices we could obtain EM signals in which some leakages were
excessive, i.e., they had a far superior signal to noise ratio than in the power signal !. These excessive
leakages form the basis of devastating attacks against fielded systems including those resistant to power
analysis attacks. We present such attacks against two major classes of power analysis countermea-
sures [11, 1, 6] implemented on a test system 2. We show that the attack against the secret-sharing
countermeasures of [1, 6] is powerful enough to work even in the case when the code of a protected
implementation is unknown.

Despite their effectiveness, our low—cost attacks provide only a glimpse of what is possible. We
collected only one signal at a time and followed the intuitive strategy of using the signal source with

'Most devices have classes of “bad” instructions with excessive leakages.
2A test system was chosen to avoid disclosing weaknesses of commercially deployed systems.



the best signal to noise ratio. A better funded adversary would deploy several sensors® to collect
multiple signals. More importantly, he will use techniques from Signal Detection Theory to launch far
more sophisticated and devastating attacks. As we show, such attacks can be highly efficient requiring
greatly reduced number of samples: more than an order of magnitude less than traditional schemes
that employ simple intuitive statistics such as the mean signal and the Ly—norm. The theory also
prescribes better adversarial strategies. For instance, we show that if only two sensor signals can be
collected, the intuitive strategy of picking the two signals with the best signal-to—noise ratio can be sub—
optimal. Therefore, for the purpose of determining vulnerabilities and for devising countermeasures,
it is essential to have a formal model to understand and assess how such an adversary can best exploit
the wide array of signals available from the sensors that he can deploy.

Formulating such an adversarial model has numerous pitfalls. Ideally, the model should capture the
strongest side—channel attacks possible on an implementation of a cryptographic algorithm involving
secret data. While it is easy to define such a model, using it to assess vulnerabilities will inevitably
move the focus from information leakage from sensors to the analysis of algorithm and implementation
specific attacks that various adversaries with a wide spectrum of capabilities could employ.

To refocus the attention on information extractable from the sensors, our model will focus only on
elementary leakages, i.e., information leaked during elementary operations of CMOS devices. Such a
focus is not limiting in the information—theoretic sense as we prove that all side—channel information
leakage in a computation can be viewed as a composition of elementary leakages from all of its elemen-
tary operations. The model of elementary leakages maps directly to first order differential side-channel
attacks (attacks in which different cycles of each computation are considered independently, such as
DEMA) on implementations. These elementary leakages also serve as basic building blocks for the
design and analysis of more sophisticated, algorithm and implementation specific attacks.

In Section 4, we describe the adversarial model in terms of hypothesis testing. The model provides
a formal way of comparing efficacies of various signal selection and processing techniques that can be
applied by resource limited adversaries in terms of success probabilities achieved. It also provides a
framework to quantify and bound the information leakage from the sensors in terms of the best error
probability achieved by an all-powerful adversary. Using this model, we describe some sophisticated
and counter-intuitive strategies, based on Signal Detection Theory, that a resource limited adversary
can use to launch devastating attacks. Next, we describe a methodology based on the same Theory
that addresses the issue of assessing any type of leakage in an information—theoretic sense. The
methodology permits the computation of bounds on the best error probability achieved by an all-
powerful adversary. While such an assessment is impractical for arbitrary devices, it is feasible for the
practically important case of chipcards with small word lengths. We then show (Theorem 1) that such
an assessment also completely captures side—channel leakages in arbitrary attacks on implementations.

2 EM Signals and Leakages

This section describes the origin and types of various EM signals that we have observed*. We provide
empirical evidence that confirms that different signals carry different information and describe the
experimental equipment and techniques used to extract various compromising signals.

3In practice, any adversary will be limited by the number and types of sensors that he can deploy.
4While there is an obvious overlap with the declassified TEMPEST documents (NACSIM 5000) [13], we only describe
what we have verified in our investigations.



2.1 Origin of EM Emanations

EM emanations arise as a consequence of current flows within the control, I/O, data processing or
other parts of a device. These flows and resulting emanations may be wntentional or unintentional.
Each current carrying component of the device not only produces its own emanations based on its
physical and electrical characteristics but also affects the emanations from other components due to
coupling and circuit geometry.

Of these numerous emanations, those induced by data processing operations carry the most com-
promising information. In CMOS devices, ideally, current only flows when there is a change in the logic
state of a device. In addition, all data processing is typically controlled by a “square-wave” shaped
clock. Each clock edge triggers a short sequence of state changing events and corresponding currents in
the data processing units. The events are transient and a steady state is achieved well before the next
clock edge. At any clock cycle, the events and resulting currents are determined by a small number
of bits of the logic state of the device, i.e., one only needs to consider the active circuits during that
clock cycle. These bits, termed as relevant bits in [1], constitute the relevant state of the device. These
currents result in many compromising emanations in several unintended ways. Such emanations carry
information about the currents and hence the events and relevant state of the device. In practice,
CMOS devices are not ideal there may be many very small leakage currents in inactive parts of the
circuit as well. These can be approximated as a small gaussian noise term having negligible correlation
with any particular inactive part of the circuit.’?

Since each active component of the device produces and induces various types of emanations, these
multiple emanations provide multiple views of events unfolding within the device. Views emphasizing
different active components can be obtained by using different types and positions of sensors [9, 12] or
even by focusing on different types of emanations that can be captured by a single sensor as we will
show in this paper. This is in sharp contrast to the power side—channel where there is only a single
aggregated view of net current inflow. The presense of multiple views make the EM side-channel(s)
much more powerful than the power side—channel.

2.2 Types of EM Emanations

There are two broad categories of EM emanations:

1. Direct Emanations: These result from intentional current flows. Many of these consist of
short bursts of current with sharp rising edges which result in emanations observable over a wide
frequency band. Often, components at the higher frequencies prove more useful to the attacker due
to overwhelming noise and interference prevalent in the lower frequency bands. In a complex circuits,
isolating direct emanations can be difficult and may require use of tiny field probes positioned very
close the signal source and/or special filters so as to minimize interference from other signal sources;
getting good results may necessisate having to decapsulate the chip packaging [9, 12].

2. Unintentional Emanations: Increased miniaturization and complexity of modern CMOS de-
vices results in electrical and electromagnetic coupling between components in close proximity. Such
couplings, while inconsequential from the perspective of a circuit designer, provide a rich source of
compromising emanations to the attacker. These emanations manifest themselves as modulations of
carrier signals generated, present or “introduced” within the device. One strong source of carrier

5This fact is well known in DPA literature where expermentally it is observed that algorithmic bits are significanty
correlated to the total current only during the times when they are actively involved in a computation.



signals is the harmonic-rich “square-wave” clock signal® propagated throughout the device. Other
sources include communication related signals. Some of the ways in which modulation occurs include:
a. Amplitude Modulation: Non-linear coupling between a carrier signal and a data signal re-
sults in the generation and emanation of an Amplitude Modulated (AM) signal. The data signal can
be extracted by using a receiver tuned to the carrier frequency and then performing AM demodulation.

b. Angle Modulation: Coupling of circuits also results in Angle Modulated Signals (FM or Phase
modulation). For instance, while signal generation circuits should ideally be completely decoupled
from data processing circuits, this is rarely achieved in practice. For example, if these circuits draw
upon limited energy source, the generated signal, very often, is angle modulated by the data signal.
The data signal is recoverable by angle demodulation of the generated signal.

Exploiting modulated carriers can be easier and more effective that trying to work with direct
emanations. Firstly, some modulated carriers could have substantially better propogation than direct
emanations, permitting effective EM attacks without resorting to invasive techniques and attacks that
can be performed at a distance. E.g, all attacks decribed in this paper do not require any intru-
sive/invasive techiques or fine grained positioning of probes. Secondly, careful field probe positioning
cannot separate two sources of direct emanations in close proximity, whereas such sources may be
easily separable due to their differing interaction with the carriers present in the vicinity:.

2.2.1 Emperical Results

We now present emperical results which illustrate the types of emanations discussed above.

Ezxperiment 1: Direct Emanations: We used a relatively recent smart card that we call smartcard
A (to protect vendor identity”), which we programmed to enter a 13 cycle infinite loop, running on
the externally supplied 3.68MHz clock. A handmade near-field probe (a small metal plate attached
to a co-axial cable) was placed close to the plastic at the back of smart card, near the chip. The
signal was amplified using a wideband amplifier (0.1-500Mhz) and 500K sample points (representing
approx 284 iterations of the loop) were collected with an 8-bit, 500Mhz digital scope. In the time
domain, this baseband (band centered at 0Mhz) direct emanations signal, looked like a differentiated
form of the external clock and provided no visual indication of a loop execution. The situation can
be best analysed in the frequency domain. The signal received by the probe consists of the signal of
interest, i.e., a periodic signal corresponding to a loop iteration at a frequency 283Khz (3.68Mhz/13),
and other signals from the chip and its vicinity such as the clock (periodic with freq 3.68Mhz) and
other aperiodic noise. Capturing the received signal with a limited resolution (8-bit) scope further
introduces quantization noise. Figure 1 plots the FFT of the captured baseband signal (where the
Y-axis is the magnitude® and the X-axis is the frequency in KHz). The large spikes below 100 MHz are
the high energy harmonics of the clock signal and tiny spikes sprinkled between them are other types
of direct and unintentional emanations which are of interest. Very little signal is noticeable above

6Theoretically a perfectly symmetric, perfectly square signal consists of the fundamental frequency and all the odd
harmonics with progressively diminishing strengths. In practice, the clock signal is always imperfect.

"Smartard A is 6805-based, uses 0.6 micron triple metal technology with an optional variable internal clock as one
defence against DPA.

8In all our figures, signal or FFT magnitudes should be treated as relative quantities, since we don’t track the absolute
quantities involved as the signals typically undergo analog amplification/processing steps before being captured by our
scopes with 8-bit or 12-bit resolution. We typically set the scope sensitivity so that the received signal covers most of
the available 8-12 bit dynamic range.
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Figure 1: FFT of baseband signal from Experiment 1 with Smartcard A
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125 MHz, essentially because the signal strenghts here are much lower than in the 0-100Mhz band
and these signals have been overwhelmed by quantization noise. In the linear scale, the fact that the
card is executing a 13-cycle loop is not apparent. On a log (base 10) scale, zooming into the region
from 0 to 20Mhz, in Figure 2 one can indeed see the signal of interest at 283Khz and its harmonics,
interspersed between the clock signal and its harmonics. Note that the use of a large time window
(284 iterations of the loop) helps in detecting these periodic signals since the aperiodic noise from the
chipcard, environment and quantization gets reduced due to averaging. Since direct emanations of
interest are more than an order of magnitude smaller than other interfering signals, exploiting them
in the presence of quantization noise will require the use of smaller, better and carefully positioned
probes (possibly after decapulating the chip) to emphasize these signals and to reduce interference
from other signals. In addition a specially designed comb filter or some other method could be used to
suppress the contribution from the clock signal. Since the results of using this approach have already
been publicized [9, 12], we focus mainly on a different approach that we employed based on exploiting
unintentional emanations.

Ezxperiment 2: Unintentional AM emanations: Next we took the same setup as in Experiment 1, but
now the output of the probe was sent to an AM receiver, tuned to the 41’st clock harmonic at 150.88
Mhz with a band of 50Mhz. The demodulated output from the receiver was sampled with a 12-bit
100Mhz scope ? and 100K sample points representing approximately 284 iterations were collected.
Figure 3 (where the Y-axis is the magnitue and the X-axis is the frequency in KHz) plots the FET of
this signal. Now, even in this linear scale, the signal of interest, i.e., the 283KHz signal corresponding
to the loop and its harmonics is clearly visible among the signal corresponding to the clock harmonics
and the loop structure was also visible in the time-domain. Notice that these greatly improved results
were obtained using the same sensor setting as in Experment 1, and with the same number of loop
iterations. Note that we are also operating in a part of the spectrum which did seem to even have
much signal according to Figure 1; the signals in this band were overwhelmed by the quantization
noise introduced when we attempted to capture the baseband signal.

Ezxperiment 3: Unintentional Far—Field AM Emanations: We examined emanations from an Intel—
based server containing a commercial, PCI bus based SSL accelerator S'°. We programmed the server
to repeatedly invoke S to perform a 2048 bit exponentiation with a single—nibble exponent. Severl
AM modulate carriers, including those at multiples of the 33Mhz PCI clock frequency and other
weaker intermodulated carriers were found. In the near field, sevaral AM-demodulated carriers leaked
information about the internal structure of the exponentiation even from a single sample, thus enabling
a variety of attacks. Some of the stronger information bearing signals, e.g., carriers at multiples of the
33MHz PCI clock propagate to distances upto forty feet but the quality of the received information
degrades as a function of the distance (due to inverse-square law) and the bandwidth (due to the
thermal noise floor) being used. Figure 5 plots a signal (amplitude vs. time in ms) captured by a
log—periodic antenna 15 feet away using the 299MHz carrier and 1MHz bandwidth. The invocations
of S is clearly visible as a region from 7.55ms to 7.91ms where the amplitude goes below -1000. At this
resolution, the macro structures within the exponentiation are already visible. At higher resolutions,
there is enough information to enable template attacks [2].

Ezxperiment J: Unintentional Angle Modulated emanations: Next we turned on the variable internal
clock DPA protection mechanism in Smartcard A and kept everything else, including the loop and the

90ne advantage of using low sampling rate is that higher precision sampling equipment is available
108 is rated to perform 200, 1024-bit CRT based RSA private key ops/s.



x 10

18

16

14

12

10

[

[

||‘ ‘..H\||‘.||1HQ.H||L||||I|1

lhl‘I|||||‘]hll]lll‘l|||||||I||||I“.||I|..| I‘ |I.| ol ||.||||| ||I|. e L] Lot
1 2.5 3 35

2 4 4.5 5

X 104

Figure 3: FFT of demodulated signal (150.88 Mhz carrier, 50Mz band) in Experiment 2 with Smartcard
A



x 10

20

151

10

625 630 635 640 645 650 655 660

Figure 4: Two FFTs showing differce in loop frequency for LSB=0 and LSB=1 for smartcard A

10



1500

1000

500

-500

-1000

-1500

-2000

7.4 7.5 7.6 7.7 7.8 7.9
x 10

Figure 5: EM Signal from SSL Accelerator S

11



sensor position the same as Experiment 1. One of the instructions in the 13-cycle loop was to load a
user supplied byte B from RAM to accumulator. We found a carrier where by AM-demodulation one
could clearly see the card executing a loop. We experimented with different values of the byte B and
made the following surprising observation: The average frequency of the 13-byte loop was dependent
on the least significant bit (LSB) of B but not on other bits. This is shown in Figure 4, where is
the magnitude of FFT of the EM output for two different cases (with the X axis being frequency in
KHz). The first case (shown by a broken line) shows the loop frequency with the LSB of B being
1 and in the second case (shown by a solid line) the loop frequency executes with LSB of B being
0. When the LSB is 1 the loop runs slower. This is due to some coupling between the LSB of the
data line and the circuitry generating the internal clock. Although the clock timing itself varies very
often, when there is a 1 bit on the line, we found that this intrinsic variation gets biased towards
slowing down the clock for a couple of subsequent cycles. We speculate that this is becuause the clock
circuitry draws energy from the same source as some other circuitry affected by LSB. Thus, angle
demodulation, e.g., FM demodulation, turns out to be a good avenue for attacking smartcard A using
LSB based hypothesis, effectively transforming a countermeasure into a liability. Another advantage
of such angle demodulation based attacks is that the internal clock signal is very strong and observable
at a distance.

2.3 Information Leakage across EM Spectrum

In this section we provide experimental evidence to reinforce a central theme of this paper, i.e., the
output of even a single wideband EM sensor logically consists of multiple EM signals each carrying
qualitatively different compromising information. In addition, certain leakages can be substantially
superior in some EM signals as compared to the power consumption signal.

Whereas the presence and locations of certain types of EM signals (e.g., angle modulated carriers,
intermodulated carriers etc) are very device dependent, our experiments show that universally, AM
carriers at harmonics of the clock frequency are a rich and easily accessible source of compromising
information. For smart cards, since the fundamental freqency is so low, the intermediate harmonics are
usually the best. Lower harmonics suffer from excessive noise and interference and higher harmonics
tend to have extremely low signal strength!!.

In this section, we examine the leakage of information from four types of signals obtained from
a smartcard, which we call smartcard B (to protect vendor identity'?), while it performed DES in
software with no power analysis countermeasures, except for the internal noise generators being on.
The smartcard ran on the 3.68Mhz external clock. Three of these signals were obtained by AM
demodulating the output of a near field probe placed as in Experiment 1, at three different intermediate
carrier frequencies (50Mhz bands around 188Mhz, 224.5 and 262Mhz). The fourth signal was the power
consumption signal. All signals were collected by a 12-bit, 100Mhz digital scope.

It is well known that plotting the results of a differential side channel attack launched against a bit
value used in a computation is a good way to assess the leakage of the bit [11]. This is not surprising
since this plot is essentially the difference between the average of all signals in which the bit is 1 and
the average of all signals in which the bit is 0, plotted against time. At times in the computation where
this bit is not involved or at points in the computation where this bit is involved but that information
does not leak in the side-channel, the value of the difference would be small and not noticeable. At

' This is because clock edges are not very sharp in practice.
12Smartcard B is a 6805-based, 0.7micron, double metal technology card with inbuilt noise generators.
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Figure 6: DEMA attack on DES on smartcard B using the 224.5 Mhz carrier

points where the bit is used in the computation and this information leaks in the signal, this difference
is likely to be large or noticeable.

Figures 6, 7, 8, and 9 show the results of a differential side-channel attack on an S-box output bit
in the first cycle of the DES implementation, using the four different signals. Figures 8, 6, and 7 are
for the EM signals and Figure 9 is for the power signal. All figures are aligned in time, the X-axis
shows elasped time in 10ns units (due to 100Mhz sampling) and the Y-axis shows the difference in the
averages of signals with bit=0 and bit=1 for 2000 invocations of DES with random inputs. Even at
this resolution it is clear that the leakage results are qualitatively different from each other. There are
some gross similarities between the EM leakages in Figures 6 and 7 and between the power leakage in
Figure 9 and the EM leakage in Figure 8.

These leakages can be viewed by plotting them all together. Figures 10, 11, 12 show some of the
regions in such a plot. Each leakage is plotted in a different line-style, with the power leakage being
a solid line and the 3 EM leakages plotted in different broken-line styles (188Mhz with a dotted line,
224.5Mhz with a dashed line 262Mhz with alternate dot and dashes). It is clear from these figures that
even though the signals fall into two gross classes at the macro level, there are significant differences

13



150 T T T T T T T

100

50

=100 .

=150 .

_200 | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 7: DEMA attack on DES on smartcard B using the 262Mhz carrier

14



120 T T T T T T T

100

80

60

40

-60

-80 ! ! ! ! ! ! !
0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 8: DEMA attack on DES on smartcard B using the the 188Mhz carrier

15



80 T T T T T T T

60

40

20

-60

|
[0}
o

T

|

-100 ! ! ! ! ! ! !
0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 9: DPA attack on DES on smartcard B

16



50 |- ! Il W VRN -

_sol Loy i

—150 —

L L L L L L L L L L
1020 1030 1040 1050 1060 1070 1080 1090 1100 1110

Figure 10: Comparison of DEMA /DPA Leakages at region 1020-1110

even between signals within a class at a cycle level (see Figure 10). Moreover, there are leakages which
appear in EM signals (and sometimes excessively so), which do not appear in the power signal (see
Figure 11). Such leakages are due to a what we will later term as a “bad” instruction. There are also
leakages which are large in power, but low in some (but not all) EM signals (see Figure 12).

2.4 Propagation and Capture of EM signals

EM signals propagate via radiation and conduction, often by a complex combination of both to even-
tually emerge from the device. This naturally suggests the usage of two classes of sensors to capture
the signals that emerge. Radiated signals are best captured by strategically placing near field probes
or antennas around the device.

For best results the probes/antennas should be as close as possible or at least in the “near-field”,
i.e., no more that a wavelength away'?, although a few of the emanations can also be captured from
larger distances.

Conductive emanations consist of faint currents found on all conductive surfaces or lines attached
to the device. Sometimes, these currents ride on top of stronger, intentional currents flowing within
the same conductors. Capturing these emanations requires current probes similar to those used for
power analysis and subsequent signal processing to extract them from the stronger signals. In fact, if
the researchers experimenting with power analysis attacks were to re-analyze the raw signals from their
current probes, they will discover that apart from the relatively low frequency, high amplitude power
consumption signal, there are faint higher frequency AM modulated carriers representing conductive
emanations as well. For example, Figure 13 shows the current signal during 3 rounds of DES in
smartcard B captured with 12-bit, 100Mhz scope (amplitude on Y axis, X axis is elasped time in 10ns
units). However, the same power line is also a conductor entering the chip and hence also carries faint
currents due to conductive EM emanations. Conductive EM emanations at low frequencies will get
lost amongst the larger currents driving the card, but it is quite easy to obtain several EM emanations
at higher frequencies. Figure 14 shows one such EM signal extracted from the same power line by
AM demodulation of an intermediate frequency carrier during 3 rounds of DES, captured by a 12-bit,
100Mhz scope.

We have found that the most effective near field probes are those made of a small plate of a highly

13For emanations at 300 MHz, the wavelength is 1 meter.

17



-50

-100

-150

—_———— ___‘//// 2\ ///‘\\\_
- = =< TN — e =7 N
— \ T .
S T
by Teo
b 1
Lo //'/
o ,
/
L - /_/
S i
Vo /!
Lo |
| /
! J
- \
\.
\
: /
\ /
\ (/
L N
\0
_/
| | | | | | | |
4482 4484 4486 4488 4490 4492 4494 4496

Figure 11: Comparison of DEMA /DPA Leakages at region 4482-4496
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conducting metal like silver or copper. In the far field, we have used both wideband antennas such as
biconical antennas for lower frequencies and log-periodic for higher frequencies. In some cases, once a
useful carrier is identified, one can also hand-craft narrowband Yagi antennas to improve its reception
from a distance. Although, it is better to shield the equipment from ambient EM emanations, this
shielding does not have to be elaborate; it is far more productive to make sure is no strong source of
the interfering emissions (in the band of interest) located close the the device to be attacked.

The emanations captured by each sensor need to be processed to extract compromising infor-
mation. For direct emanations, filters may suffice. For unintentional emanations, which manifest
themselves as modulations of carrier signals of various frequencies, a wide bandwidth (preferably tun-
able) receiver/demodulator is convenient. Examples of such receivers include the R-1550 Receiver
from Dynamic Sciences [8] and the 8617 Receiver from Watkins—Johnson. Typically, these receivers
have a wide frequency range (upto 1GHz) and bandwidth from 40Hz to 200MHz depending on the
options. If such equipment is not available, one alternative is to use cheaper wideband radio receivers
which have intermediate frequency output (e.g., ICOM 7000 or 8500), or to even construct using com-
monly available low noise electronic equipment such as signal generators, mixers, band pass filters etc a
hetrodyning system which will down-convert the band of interest on to a lower intermediate frequency.

The filtered/demodulated signal from a receiver or the intermediate frequency output of a re-
ceiver /hetrodyning circuit can be captured by equipment identical to that used for power analysis
attacks, such as a digital sampling board and/or oscilloscope, which can have high precision since
sampling rate does not need to be very high. For intermediate frequency output, subsequent process-
ing such as additional filtering and demodulation will have to be done in software.

Obtaining multiple EM signals generally requires multiple receivers and signal capturing equipment
but if very high precision signal capturing equipment is available then one may be able use a smaller
number of receivers and signal capturing equipment by performing signal separation in software after
capturing emanations within a very wide band. Equipment such as spectrum analyzers are also useful
for quickly identifying carriers and potentially useful emanations. A useful rule-of-thumb is to expect
strong carriers at odd harmonics of the clock.

3 EM Attacks With Low Cost Equipment

We now present some simple yet remarkably powerful attacks that use low cost equipment. These
attacks require only one receiver and the capability to capture only one signal at a time. Even with
this restricted setup, one can perform extensive experimentation with a device to identify and assess
a large number of EM signals for their leakage characteristics. This enables the design of attacks
exploiting each type of observed leakages. The simple and intuitive attack strategy is to pick an EM
signal with the most leakage relative to noise.

As the reader may have anticipated, we found several EM signals for each tested device where the
classical side-channel attacks such as Simple Electromagnetic Attacks (SEMA) and Differential Elec-
tromagnetic Attacks (DEMA) [12] could be performed on algorithms like DES. Section 3.1 illustrates
results of such attacks on a chipcard. While these attacks are interesting, by themselves, they do not
justify why EM side-channel(s) should be used in preference to others. A good justification would be
if EM leakages were somehow superior, or better still, if they could be used to break implementations
secure against power and timing attacks. Therefore in Section 3.1 we also show that it is indeed the
case for some intructions that we term “bad instructions” and in Section 3.2 we show how these can
be used to defeat power analysis countermeasures.
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Figure 15: EM Signal showing 16 DES rounds from smartcard B (AM demod 262Mhz carrier, 50Mhz
band

3.1 SEMA, DEMA and Bad Instructions

The terms Simple and Differential Electromagnetic Attacks, abbreviated as SEMA and DEMA, were
introduced by Jean-Jacques Quisquater at numerous rump session talks at Eurocrypt '00, Crypto 00
and CHES ’00. In this section, we describe some of the SEMA and DEMA results we obtained on
certain chipcards. Our SEMA attack on a chipcard will be based on a “bad instruction”, i.e., an
instruction which leaks much more information in an EM signal than in the power signal. Before
describing the attack, we briefly discuss the information present in many compromising EM signals.

3.1.1 Information in Compromising EM Signals

Just as in the power, a compromising EM signal contains information about the computation done
on the chipcard at various levels of granularity. Consider the setup where smartcard B is performing
DES in the setup described in Section 2.3 and the EM signal during the computation captured by
a 12-bit 100Mhz scope after AM demodulating the probe signal at the 262Mhz carrier with 50Mhz
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band. Figures 3.1.1,3.1.1 and Figure 3.1.1, shows the caputured signal (plotted as amplitude vs time
in 10ns units) at different time scales. At a macroscopic level, in Figure 3.1.1 one can see the overall
structure of the computation, i.e, 16 similar sized structures terminated by sharp negative peaks for
each of the 16 rounds of DES. At an intermediate level of resolution, Figure 3.1.1 shows two rounds of
DES. In each round, there are three regions with different densities of negative peaks. These regions
can be contrasted to the regions visible in Figure 13. At a microscopic level, one can see emanations
at the clock cycle level as shown in Figure 3.1.1.

3.1.2 SEMA

In a SEMA attack, an adversary is able to extract compromising information from a single EM sample.
If a computation makes use of conditional branches based on secret information, then on a compromis-
ing EM signal, this can be observed as relative shifts in the distances between major computational
structures. In some cases, these shifts may be sufficient to reveal the branch taken, which in turn
confirms the value of the secret information. This is analogous to what has already been demonstrated
for power samples [11]. Thus conditional statements in the code could provide valuable opportunities
for both SPA and SEMA.

In our opinion, the interesting case is where SEMA attacks are successful in extracting information
whereas SPA attacks fail. This is possible if an EM signal for some instruction leaks more informa-
tion than the power side-channel. The following experiment which shows the existence of such “bad
instructions” confirms this possibility.

Bad Instructions:

In the following set of figures, we consider smartcard B in which the internal noise generators had been
turned off. In such a setting, we observed that an instruction which tests a bit of a byte in the memory
leaks information about the tested bit from even a single signal sample in the EM side-channel but
not in the power side-channel. Each figure plots the amplitudes of two signals with respect to time (in
10ns units).

Figure 18 shows two EM signals in which the bits tested are both 0, In both figures the data was
collected by a 12bit, 100Mhz scope after demodulating at the 262Mhz carrier. This is seen as a low
value in both the signals at the point 18915. Figure 19 shows two EM signals in which one of the
bits tested is 0 and the other is 1. This is seen as a low value in one of the signals and a high value
in the other at the point of interest which in this case is 18780. The corresponding figures for the
power side-channel are shown in Figures 20 (at point 19260) and 21 (at point 18990) respectively.
The power signal levels, at the corresponding points where the EM emanations differed widely, are
very close. This was also verified by taking averages of 1000 power samples. The experiment once
again confirmed that the averaged signal at the point of interest was almost identical for the 0 and 1
bit.

Even with noise enabled, it was possible to classify the bit value correctly with high probabilty by
using only a few samples (20-30). Section 4.2.1 illustrates this with an example. This example also
shows the value of EM side-channels—this bit value had no easily observable leakage in the power
side-channel and even statistical attacks required several thousand samples.

Since the last four figures were obtained by considering individual samples and a skeptical reader
may remain unconvinced, we now present statistical observations over 2000 samples for three cycles of
the same “bad” bit-test instruction as opposed to the approximately 1.5 cycles illustrated in the last
four figures.

Figure 22 shows two signals corrresponding to mean EM signals (each taken over 1000 samples)
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obtained during the execution of a “bad” bit-test instruction when the tested bit was 0 and 1 respec-
tively. As can be seen, the mean signals differ significantly at a few places, namely those at which the
tested bit influences the EM emanations.

Figure 23 shows two signals corresponding to the standard deviation of the EM signals (each taken
over 1000 samples) obtained during the execution of a “bad” bit-test instruction when the tested
bit was 0 and 1 respectively. It turns out that while the means and standard deviations of the EM
signals are sufficient to distinguish the tested bit with non-negligible probability (as was shown in
Section 4.2.1), the corresponding values for the power signals are not.

3.1.3 DEMA

The analogy for differential power analysis (DPA) is DEMA. DEMA results from 3 different EM signals
are presented in Section 2.3.

3.2 Defeating Power Analysis Countermeasures

In [11], a suggested countermeasure to power analysis is to use only those instructions whose power
leakage is not excessive and to refresh sensitive information, such as a key, after each invocation in a
non-linear fashion. This forces the adversary is extract a substantial portion of the key from a single
invocation since incomplete key information does not help in subsequent invocations. Another class of
countermeasures based on splitting all sensitive information into shares was proposed in [1, 6]. The
basic idea here is that uncertainty in the information about each share is exponentially magnified in
proportion to the number of shares. The key to breaking both classes of countermeasures is to identify
“bad” instructions which leak much more information in some EM side-channels than the traditional
side-channels. Such instructions if used in power-analysis resistant implementations would subvert the
very assumptions supporting their resistance. Similarly, excessive leakage in intstructions dealing with
shares would diminish the very uncertainity being magnified by the shares leading to a compromise of
sensitive information.

For all chip cards that we examined, there were several such instructions. In our investigations,
we did not find any instruction that leaked in the power side-channel but did not leak in some EM
side-channel. This can happen if all critical parts of a chipcard are well-shielded but the power signal
is not. We feel that this is unlikely since a designer who shields EM emanations so well is also likely
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Figure 18: Two EM Signals where tested bits are 0 (seen as low values at 18915)
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Figure 23: Standard deviations of signals over 3 cycles for a bad instruction where the computation
differs only in one bit

to protect against power signal leakages. In the absence of shielding, we believe that a power signal
leakage implies leakage in EM emanations due to the physics of the semiconductor devices.

The bit test instruction is a very useful instruction for implementing algorithms, such as DES, which
involve bit level permutations. For example, it can be used for key expansion and P-permutation.
Based on its low leakage characteristics in power, there is no reason for not using such a useful
instruction in power analysis resistant implementations. If this instruction is used for this purpose
on this card with noise disabled, then a SEMA attack would be sufficient to extract the DES key
regardless of which class of countermeasures [11, 1, 6] was used. However, if noise was enabled, then
the countermeasure of [11] may still work while feasible higher order statistical attacks would still
defeat the countermeasures of [1, 6].

3.3 Higher Order EM Attacks on Secret-Sharing

DPA countermeasures based on secret-sharing schemes choose an appropriate value for the number
of shares based on the leakage characteristics and the desired level of resistance against higher order
power analysis [11], in terms of the number of samples required to break the implementation. If a
leakage is superior in an EM signal, then the number of samples for the corresponding higher order
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EM attack will be substantially lower.

To verify this, we implemented a two-way XOR-based secret sharing scheme for bits on the chipcard
where the bit test instruction (described in the previous section) leaks more information on an EM
signal. This sample code split the input bits into pairs of shares and tested the values of the bits of
the shares using the bit test instruction. We confirmed that DPA and DEMA did not work, i.e., no
single point in the power/EM signal correlated with any of the input bits. We then performed a second
order DEMA attack using 500 EM signals. Specifically, we defined a statistical measure on the signal
at two points where the two shares of a bit were being tested. We observed a significant difference in
the measure for the case where a zero bit was shared as opposed to where a one bit was shared. No
such difference was observed with five thousand power samples. We illustrate these results in the next
section which deals with a more general case.

A valid criticism of the above experiment is that we had the benefit of knowing exactly where
the shares were being manipulated and also the bad instructions being used. In real life, it is highly
unlikely that an adversary would have any knowledge of code in the card. Thus the attack will only
be useful in practice if it can deal with unknown code.

3.3.1 Attacks on Unknown Code

Suppose we are given a chipcard containing an unknown k-way secret-sharing based DPA protected
code for a known algorithm. Further assume that “bad” instructions have already been identified and
some of these instructions are used to manipulate shares. These, of course, are necessary conditions
for EM attacks to be more effective than power attacks. Let us also assume that it is also possible
using signal processing to remove execution sequence and variable clock randomization that has been
added as countermeasures to complicate alignment of signals and each signal can be realinged into a
cannonical execution sequence!

The value of k is usually small. For simplicity, assume that k is 2: the attack generalizes for slightly
larger k. Fix a reasonable limit L on the number of EM samples that can be collected. We now show
that if k is small and if with knowledge of the code we could have broken the protected code using L
samples, then this attack can break the unknown protected code with O(L) samples.

In case of a two-way split, a first step is to identify the two locations where the shares of algo-
rithmic quantity are being manipulated using bad instructions in the computation. If code-execution
randomization can be removed using signal processing, then this can, in principle be done for many
algorithms. Knowing the algorithm, one can provide two different inputs such that the value of the
variable is different for these inputs while most of the other variables are the same within the window
of interest. For example, in DES one could choose two inputs which differ only on chosen 1 bit, so
that only the output of a single S-box is affected. This way we can try to discover where the shares of
the output of the S-box are manipulated in the cannonical execution sequence.

Take L EM samples for each of these two different inputs. If the exact locations were known then
there is second order statistic, S, that can be applied to the signal at these two locations to distinguish
between the two different inputs, thus enabling hypothesis testing.

Without location information, one can only assume that the two locations are an integral number,
D, of clock cycles apart. So the strategy is to compute the statistic S for each point on the signal
with respect to a corresponding point D cycles away. This exercise is done for both sets of inputs for
all reasonable values of D. If the shares of the variable are not manipulated at distance D, then the

141n our experience this has been quite feasible, especially since one does not need perfect canonical realignment, only
an alignment which is correct with a reasonable probability.
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Figure 24: Difference in correlation statistics for D = 40, L = 500

values of the statistic S at all points will be similar for the two inputs. However, for the right value of
D, there will be a significant difference in S exactly at the point where the first share is manipulated
and thus the exact location of each share is revealed.

A practical optimization is to choose the two inputs so that multiple variables are different. Then
the above exercise will yield candidate locations for the shares for these variables. Once share locations
are identified, second (or higher) order attacks can be applied as if the code were known.

We illustrate this attack on the test implementation with the bit test instruction mentioned earlier.
In the implementation, the shares of one of the input bits were tested 40 cycles apart. Section 3.1
shows that when a bit is 1, the signal at the bit test instruction is high and when the bit is 0, the
signal is low. For a 2-way bit split using an XOR-scheme, the shares of a 0 bit will be (0, 0) or (1, 1)
with equal probability and the shares of a 1 bit would be (0, 1) or (1, 0) with equal probability. This
suggests that a good statistic S is the correlation coefficient between the corresponding signal points
where the shares of bits are being tested. S will be positive when the bit is 0 and negative when the
bit is 1.

x 10”

Figure 25: Difference in correlation statistics for D = 50, L = 500
We experimented with L = 500, for two different inputs, which differed in exactly three bits.

Figure 24 shows the difference in the statistic S when the distance D is 40, plotted against elasped
time in 10ns units. The three significant negative peaks were confirmed to be at exactly the points
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where the first shares of the three bits (that differ) were being manipulated. No peaks were found when
D differed from 40, e.g, Figure 25 shows the case for D = 50. No peaks were seen even for D = 40 for
five thousand power signals, showing that higher order DPA does not work with five thousand signals.
Our findings also show that this EM attack even works with L = 200.

4 Adversarial Model, Attacks and Leakage Assessment

This section develops and uses an adversarial model to formally address issues relating to leakage of
information via multiple side-channel signals using several sensors. In particular, we address questions
such as: Given a limit on signal collection capabilities, which signals should an adversary choose?
Can the information obtained by combining leakages from several (or even all possible) signals from
available sensors be quantified regardless of the signal processing capabilities and computing power
of an adversary? For reasons explained in the Introduction, this model does not deal with specific
algorithms and implementations. Instead, it focuses solely on the elementary leakages of information
about relevant states in each cycle of each elementary operation of CMOS devices via sensors to
different adversaries including unbounded ones.

4.1 Adversarial Model

In CMOS devices, compromising side-channel signals during each clock cycle depend solely'® on the
relevant state at the beginning of the cycle and some random thermal noise (see Section 2). It is
therefore natural to formulate questions about the information leakage in terms of the relevant state.
For example, an adversary may be interested in the LSB of the data bus during a LOAD instruction.
This has a natural formulation as a binary hypothesis testing problem for the adversary'®. Such a
formulation also makes sense as binary hypothesis testing has traditionally been central to the notions
of side-channel attack resistance and leakage immunity defined and used earlier [1, 3.

The adversarial model consists of two phases. The first phase, known as the the emanation profiling
phase, is a training phase for the adversary. He is given a training device identical to the target device,
an elementary operation, two distinct probability distributions By and B; on the relevant states from
which the operation can be invoked and a set of sensors for monitoring side-channel signals. The
adversary can invoke the elementary operation, on the training device, starting from any relevant
state. It is expected that adversary uses this phase to prepare an attack. In the second phase, known
as the hypothesis testing phase, the adversary is given the target device and the same set of sensors.

He is allowed to make a bounded number of invocations to the same elementary operation on the
target device starting from a relevant state that is drawn independently for each invocation according
to exactly one of the two distributions By or By. The choice of distribution is unknown to the adversary
and his task is to use the signals on the sensors to select the correct hypothesis (Hy for By and H; for
By) about the distribution used. The utility of the side-channel can then be measured in terms of the
success probability the adversary can achieve as a function of the number of invocations allowed.

15Tn practice, this is a very good first approximation. Minor deviations due to residual second order effects can also
be addressed as they are transient.

16Tn general, the adversary faces an M-ary hypothesis testing problem on functions of relevant state, for which results
are straightforward generalizations of binary hypothesis testing.
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4.2 Sophisticated Adversarial Strategies

Hypothesis testing is a well researched area in fields such as Information Theory, Statistics and Signal
Detection Theory. Techniques from these areas provide several sophisticated strategies that even an
adversary with limited resources can use. We now describe one such technique which is optimal in
theory, but may require some assumptions and approximations to implement in practice.

In the emanation profiling phase, the adversary builds a statistical profile of the signals available
from sensors for each hypothesis Hy and H;. For each hypothesis, the adversary performs K indepen-
dent experiments in which the relevant state is drawn according to distributions By and B;. In each

experiment, he collects a vector O of n signals (i.e., O =[Oy, ...,0,]") from the sensors. '7.

As a result, for each hypothesis, he obtains a collection, O; = [O;1,...,04]", i = 1,..., K, of
signal vectors. He then computes the average sensor signal denoted by S = {Si,...,S,}, where
S; = Zfil O,j/ K. Subtracting the average sensor signal S from the observation vectors Oy, ..., Ok,
produces K noise signal vectors N1, ..., Ng. The next step is to derive the statistical characterization
of the noise signal under this hypothesis using Ny, ..., N as samples. It is well known that if the value

of K is large enough, a complete statistical characterization of the noise signals in form of a probability
density function pn(-) can be obtained at least in theory [5]. The results of the emanation profiling
phase are the signal characterizations, Sy and Sy, and the noise probability density characterizations,
pNo(+) and pni(+) for the two hypotheses.

In the hypothesis testing phase. the adversary acquires L sets of sensor signals O;,i = 1,..., L.
It is well-known that in order to minimize the probability of error in hypothesis testing, the adver-
sary should conduct the mazimum likelihood test. The likelihood ratio A(Oq,...,0p) is given by
T2, pna(O: — S1) /pno(O; — Sp). The adversary decides in favor of Hy if A(Oy,...,0r) > 1, and
decide in favor of Hy otherwise.

While the approach thus far is optimal, it may be impractical as an exact characterization of the
noise probability density pn(-) may be infeasible. Such a characterization has to capture the nature
of each of the noise signals and the dependencies between them. This could further be complicated
by the fact that, in addition to thermal noise, the noise signals could also display additional structure
due to the interplay between properties of the device and those of the distributions. For example, if
the hypothesis was on the LSB of a register while the device produced widely different signals only
when the MSB was different, the noise signals will display a bimodal effect attributable to the MSB.
Noise characterization, however is a well studied problem, and there exist a rich set of techniques
which allow one to obtain near optimal results by making the right assumptions about the noise. Such
assumptions greatly simplify the task by permitting the use of only partial characterizations of noise.

4.2.1 The Gaussian Assumption

One widely applicable assumption is the Gaussian assumption which states that the noise vector N has
a multivariate Gaussian distribution with zero mean and a covariance matrix X y. Such an assumption
approximately holds for a large number of devices and hypotheses encountered in practice. Use of
such multivariate statistics provides far better results, such as greatly reduced error probabilities
for hypothesis testing, as compared to current side channel attack techniques. Such modeling also
permits comparison of different multiple signal selection strategies. This analysis often results in
counterintuitive multi-signal selection strategies: e.g., sometimes it is better to use signals with low

17Practical issues regarding the composition of these signals and the value of n will be described later.
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signal-to-noise ratio and low noise correlation than signals with high signal-to-noise ratio but high
noise correlation.

Figure 26 illustrates the noise distribution at a single point in the execution of the “bad” instruction
shown in Figures 22 and 23. As can be seen the noise distribution is well approximated by a Gaussian
distribution. It should be noted that sometimes a better approximation to the noise density is be
obtained by a mixture of Gaussian densities. In other cases, analysis based on such an assumption is
still useful as it provides valuable insights and often, improvements by more refined models may not be
significant. We also mention that there is a significant body of techniques dealing with non-Gaussian
noise, whose description is beyond the scope of this paper.
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Figure 26: Noise distribution of an EM signal at a single point (point 5 in 3 cycles for a bad instruction)
showing an approximately Gaussian distribution

A multivariate Gaussian distribution pn(-) has the following form:

1 |
n)=———exp(—=n"Yyn), neR" 1
pn(n) 207" [5n] p( 5 R (1)

where [3,| denotes the determinant of ¥y and E]’Vl denotes the inverse of ¥Xy. For simplicity, we
assume that the noise densities for the two hypotheses, pno(n) and pni(n) are the same and denoted
by pn(n). With these assumptions, the hypothesis test based on the likelihood ratio for a single
observation'® simplifies to: The adversary decides in favor of H; if (S; — S)’¥5'O > 7, and in
favor of Hy otherwise, where 7 = $(STX'S; — STE'So) (see [14]). Note that under the Gaussian
assumption, only the covariance matrix ¥y needs to be determined for maximum likelihood testing.
The following well-known result from the Detection Theory is now applicable [14].

Fact 1 For equally likely binary hypotheses, the probability of error in maximum likelihood test is

given by
1 A
P, = —erfc(— 2
‘ 26YC<2\/§) @)

where A? = (S; — So)TS 4 (S1 — Sg) and erfe(z) = 1 — erf(x). Note that A% has a nice interpretation
as the optimal signal-to-noise ratio that an adversary can achieve under the Gaussian assumption.

18Generalizations to multiple observations are straightforward.
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Example 1 To show the power of maximum-likelihood testing, consider a chipcard with a “bad” in-
struction, such as the one described in Section 3. EM signals and their statistics for such an instruction
are shown in Figures 22 and 23 respectively in Section 3.1.2. It is clear from the Figure 22 that the
maximum difference in the mean signals occurs at point 5. A simple approach to binary hypothesis
testing would be to compare a given observation to the mean signals at this point and decide in favor
of the mean signal which is closer to the observation. In an experiment consisting of 2000 such obser-
vations, this approach results in a probability of error of 49.7% which is marginally better than just
guessing.

Clearly, the probability of error can be reduced by considering all the points in the observation. A
simple approach again is to compute the Euclidean distance between the observation and the mean
signals and decide in favor of the closer signal. In an experiment consisting of 2000 such observations,
this approach results in a probability of error of 48.8% which is somewhat better than using just one
point. However, for the maximum likelihood testing, the probability of error for the same observations
turns out to be 44.7%. This is in excellent agreement with the probability of error of 45.5% predicted
by (2). This agreement validates our Gaussian assumption for this particular instruction and the
chipcard.

It should be kept in mind that we have achieved this bias just by looking at one bit in one
invocation of a “bad” instruction. It can be shown that the error probability for maximum likelihood
testing decreases exponentially in the number of invocations. This implies that the error probability
can be made arbitrarily small with only a modest increase in the number of invocations, say, 20-30.

Since erfc(-) decreases exponentially with A, the goal of a resource-limited adversary would be to
choose signals in such a manner, as to maximize the output signal-to-noise ratio A?. As shown below,
this goal differs from the naive approach of choosing the signals with best signal-to-noise ratios and
then feeding them into a signal processing unit to test a hypothesis.

Example 2 Consider the case where an adversary can collect two signals [O1, O]T at a single point
in time, such that under the hypothesis Hy, Op = Ny, for k = 1,2, and under the hypothesis Hj,
Ok = Sk + Nj. Assume that N = (Ny, N2)T has zero mean multivariate Gaussian distribution with

Note that O; and O, have signal-to-noise ratios of S? and S5 respectively. After some algebraic
manipulations, we get

o (S14+52)? (51— 9;)?

A= 2(1+p) - 2(1—-p) ®)

Now, consider the case of an adversary who discovers two AM modulated carrier frequencies which
are close and carry compromising information, both of which have very high and equally good signal-
to-noise ratios (S; = S3) and another AM modulated carrier in a very different band with a lower
signal-to-noise ratio. An intuitive approach would be to pick the two carriers with high signal-to-noise
ratio. In this case S; = S5 and we get, A? = 257/(1+ p). Since both signals originate from carriers of
similar frequencies, the noise that they carry will have a high correlation coefficient p, which reduces
A? at the output. On the other hand, if the adversary collects one signal from a good carrier and the
other from the worse quality carrier in the different band, then the noise correlation is likely to be
lower or even (. In this case:

S1 + Sy)? S1 — S5)?
ar = ST Sl g 4y (@)
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It is clear that the combination of a high and a low signal-to-noise ratio signals would be a better
strategy as long as S3/S% > (1 — p)/(1 + p). For example, if p > 1/3, then choosing carriers from
different frequency bands with even half the signal-to-noise ratio results in better hypothesis testing.

Results obtained by using the Gaussian assumption are useful in analyzing several situations. For
instance, suppose we have only analyzed the signal-to-noise ratios of two channels and not the noise
correlations between them. Suppose an adversary collects a signal from each of these channels by
invoking an operation. We can still compute a lower bound on his error probability by assuming that
p = 0, since his error probability will only increase as the correlation coefficient p increases. In general,
even for non-Gaussian noise distributions, a lower bound on the error probability can be obtained by
assuming that multiple sets of sensor signals are statistically independent.

4.3 Leakage Assessment Methodology for Chipcards

Maximum likelihood testing is the optimal way to perform hypothesis testing. Thus, we use it to craft
a methodology to assess information leakage from elementary operations. Our methodology takes into
account signals extractable from all the given sensors across the entire EM spectrum. Results of such
an assessment will enable one to bound the success probability of the optimal adversary for any given
hypothesis.

Assume, that for a single invocation, the adversary captures the emanations across the entire
electromagnetic spectrum from all sensors in an observation vector O. Let {2 denote the space of all
possible observation vectors O. Since the likelihood ratio, A(O) is a function of the random vector O,
the best achievable success probability, P;, is given by:

P, = Z Ita0)>13Pn1 (O — S1) + Ia0)<13PNo(O — So) (5)
0€cQ
where [4 denotes the indicator function of the set A.
When the adversary has access to multiple invocations, an easier way of estimating the probability
of success/error involves a technique based on moment generating functions. We begin by defining the
logarithm of the moment generating function of the likelihood ratio:

p(s) =In( D" pia (0 = S1)pkg' (0 - So)) (6)

0eQ
The following is a well-known result from Information Theory:

Fact 2 Assume we have several statistically independent observation vectors'® Oy, O,,..., Q. For

this case, the best possible exponent in the probability of error is given by the Chernoff Information:
. def
C = — min u(s) = — p(sm) (7)

0<s<1

Note that u(-) is a smooth, infinitely differentiable, convex function and therefore it is possible to
approximate s,, by interpolating in the domain of interest and finding the minima. Furthermore,
under certain mild conditions on the parameters, the error probability can be approximated by:

P~ ! exp(Li(5m)) (8)

o V 87TLM”(Sm)Sm(1 - Sm)

9For simplicity, this paper deals with independent elementary operation invocations. Techniques also exist for adaptive
invocations.
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Note that in order to evaluate (5) or (8), we need to estimate pNo(-) and pn1(+). In general, this can
be a difficult task. However by exploiting certain characteristics of the CMOS devices, estimation of
pNo(+) and pni(+) can be made more tractable.

4.4 Practical Considerations

We will now outline some of the practical issues associated with estimating pno(-) and pni(-) for
any hypothesis. The key here is to estimate the noise distribution for each cycle of each elementary
operation and for each relevant state R that the operation can be invoked with. This results in the
signal characterization, Sg, and the noise distribution, pngr(-) which is sufficient (see Theorem 1) for
evaluating pno(+) and pN1(+).

There are two crucial assumptions that facilitate estimating pygr(+): first, on chipcards examined by
us the typical clock cycle is 270 nanoseconds. For such devices, most of the compromising emanations
are well below 1 GHz which can be captured by sampling the signals at a Nyquist rate of 2 GHz. This
sampling rate results in a vector of 540 points per cycle per sensor. Alternatively, one can also capture
all compromising emanations by sampling judiciously chosen and slightly overlapping bands of the
EM spectrum. The choice of selected bands is dictated by considerations such as signal strength and
limitations of the available equipment. Note that the slight overlapping of EM bands would result in
a corresponding increase in the number of samples per clock cycle, however it remains in the range of
600-800 samples per sensor.

The second assumption, borne out in practice, is that for a fixed relevant state, the noise distribution
pNr(-) can be approximated by a Gaussian distribution. In Section 4.2.1, we provide experimental
evidence to validate this assumption for CMOS devices. This fact greatly simplifies the estimation of
pNr(+) as only about one thousand samples are needed to roughly characterize pngr(-). Moreover, the
noise density can be stored compactly in terms of the parameters of the Gaussian distribution.

These two assumptions imply that in order to estimate pNgr(-) for a fixed relevant state R, we
need to repeatedly invoke (say 1000 times) an operation on the device starting in the state R, and
collect samples of the emanations as described above. Subsequently, the signal characterization Sg
can be obtained by averaging the collected samples. The noise characterization is obtained by first
subtracting Si from each of the samples and then using the Gaussian assumption to estimate the
parameters of the noise distribution.

The assessment can now be used to bound the success of any hypothesis testing attack in our
adversarial model. For any two given distributions By and B on the relevant states, the corresponding
signal and noise characterizations, Sy, S1, pno(+), and pN1(+), are a weighted sum of the signal and noise
assessments of the constituent relevant states Sg and pnmr(:). The error probability of maximum-
likelihood testing for a single invocation or its exponent for L invocations can then be bounded using
(5) and (7) respectively.

We now give a rough estimate of the effort required to obtain the leakage assessment of an el-
ementary operation. The biggest constraint in this process is the time required to collect samples
from approximately one thousand invocations for each relevant state of the elementary operation. For
an r-bit machine, the relevant states of interest are approximately 2?"; thus the leakage assessment
requires time to perform approximately 1000 x 22" invocations. Assuming that the noise is Gaussian
and that each sensor produces an observation vector of length 800, for n sensors the covariance matrix
Y x has (800 xn)? entries. It follows that the computation burden of estimating the noise distribution
would be proportional to (800 * n)?. Such an approach is certainly feasible for an evaluation agency,
from both a physical and computational viewpoint, as long as the size of the relevant state, r, is small.
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In our experiments, we found such assessment possible for a variety of 8-bit chipcards.

4.5 Completeness Theorem for Elementary Leakages

Finally, we conclude this paper with a theorem to justify the completeness of our assessment process
for gauging side-channel vulnerabilities not just at a cycle level but vulnerabilities of entire implemen-
tations.

Our model and vulnerability assessment deals with the leakage of information about the relevant
state of elementary operations at the cycle level. Thus it can directly be used to assess cycle by
cycle leakage of relevant state information from the side-channels for an implementation, where the
cycles are treated independently. This is the case for the classical differential side-channel attacks also
known as first-order attacks. However, any implementation which consists of multiple operations will
have very strong dependencies between the relevant states that occur across multiple cycles spread
throughout the computation. These dependencies are the basis of higher-order differential side-channel
attacks like the ones we describe in the paper. Thus, as specified in [1], assessing vulnerabilities for
such implementations can be modeled as a hypothesis testing exercise to distinguish between two
possible joint distributions of the relevant states in the computation, using the joint signal distributions
introduced in the side-channel.

On the surface, it may seem that the proposed assessment of vulnerabilities, which takes into
account only the cycle by cycle information available from sensor signals about the relevant state, may
not be comprehensive. In this section, we prove a completeness theorem (Theorem 1) that shows that
this is not the case, i.e., collecting cycle by cycle information about the relevant states is sufficient for
the assessment of vulnerabilities of entire implementations.

Theorem 1 (Completeness of Elementary Leakages) Let H be a hypothesis on the relevant
state distribution of an entire implementation. Let O be any observation vector for the implementation
and T'(O) be the cycle-by-cycle sufficient statistics obtained using O and our assessment. Then,

I(H;0) = 1(H;T(0))
That is, all information for hypothesis testing of implementations is in the elementary leakages.

Our proof makes heavy use of information theoretic arguments, and we refer the reader to Cover
and Thomas [4] for the background material used here from Information Theory.

Let R = [Ry,...,Rg]? denote relevant states during an attack that lasts K cycles. Assume that
R is distributed according to a density in the family of probability density functions {ps(-)} indexed
by h €. The set ) consists of different hypotheses under test. Let O =[Oy, ..., Og]? be the vector
of observations during the attack. As discussed earlier, due to the CMOS circuitry, observations in
each clock cycle depend only on the relevant state in that clock cycle. Mathematically, this can be
expressed by saying that the conditional distribution of O; depends only on R; and is conditionally
independent of the hypothesis h, that is,

Pr(O;|R) = Pr(O;|R;), and 9)
Using (9) and (10), it is easy to check that given R, the observations O and the hypothesis h are

statistically independent:
Pr(O, h|R) = Pr(O|R)Pr(h|R) (11)
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Let T(O;) be a sufficient statistic for R; derived from O, that is,
I(R;;0;) = I[(R;; T(0y)) for all distributions on R;. (12)

Here I(X;Y") denotes the mutual information between X and Y [4]. Let T'(O) denote the cycle-by-
cycle sufficient statistics given by T'(O) = [T(Oy), ..., T(Og)]*. The following theorem asserts that as
far as the determination of hypothesis A is concerned, the information contained in the cycle-by-cycle
sufficient statistics is the same as the information contained in the whole observation vector O.

Theorem 2 For the setup described above, regardless of the statistical distribution of hypothesis h,
the mutual information between h and O is equal to the mutual information between h and T(O):

I(h; O) = I(k; T(O)) (13)
Proof. Recall that T'(O;) is a sufficient statistics for R; derived from O;, that is,
I(R;;0;) = I(R;; T(0,)) for all distributions on R,. (14)

Since the conditional distribution of O; only depends on R, by using the chain rule of mutual entropies,
we can show that I(R;O) = Z]K:l I(R;;0;) and I(R; T(0)) = Z]K:l I(R;; T(0O;)). As a result

I(R;0) =I1(R;T(0)) for all distributions on R. (15)
By the chain rule of mutual entropies,
I(R,h;0) =1(h;O) + I(R;Olh) (16)
=1(R;0)+ I(h; O|R) (17)
The conditional independence of O and h given R (see (11)), implies that I(h; O|R) = 0, and,
I(h;0) =1(R;0) — I(R;O|h). (18)

Since T'(Q) is a function of O, the conditional independence of O and h given R also implies the
conditional independence of T(0) and H given R. Using this fact and the chain rule of mutual
entropies we can deduce that

I(h;T(0)) = [(R; T(0)) — I(R; T(O)|h). (19)
An examination of (13), (15), (18), and (19) shows that it suffices to prove
I(R; Olh) = I(R; T(O)|h) (20)

Intuitively, the above equality holds since the value of h only determines the distribution of R, and
(15) holds regardless of the distribution of R. In the rest of this proof, we will formally show that (20)
holds.

We start by expanding I(R,O) for the case when R is distributed according to p,(-) for some
w e

I(R,0) == p(0)logp(O) + > p(R,0)logp(O[R)

OR

= = > (D p(ORIp.(R) ) Tog (D~ p(OIR)P.(R) ) + S p(OIR)p(R) log p(OIR)
0O R R OR

= H*(O) — H“(O|R) for all he 2 (21)

39



Here H“(-) denotes the entropy when the distribution of R is given by p,,(R). Using a similar argument,
we can deduce that

I(R,T(0))=H*(T(O))— H*(T(0O)|R) for all w e Q
Since I(R,0) = I(R,T(0O)) for all distribution of R, it follows that
H®(O) — H*(O|R) = H*(T(0)) — H*(T(O)|R)  forallweQ (22)
The following calculation shows that in fact, H*(O|R) = H(O|R,h = w) for all w € Q.

H(OR,h=w)=—Y_ p(O,R|h=w)logp(O|R, h = w)
OR

- Zp R|h = w)p(O|R) log p(O|R)
_ _pr p(OR)logp(O|R)

(C’?IR)
(23)

A similar calculation shows that H*(T(O)|R) = H(T(O)|R,h = w), H*(O) = H(O|h = w),
HY(T(0)) = H(T(O)|h = w) for all we Q. We can now finish the proof as follows

[(R: O|h) = H(O|h) — H(O[R, h)

- S - @) (H(Olh = ) ~ HOR.h = w))

- :ﬂpm = w)(H4(0) - H(O[R))

- :ﬂpm — ) (H(T(0)) ~ H(T(O)R)) (24)
- p(h =w)(H(T(O)|h = w) - H(T(O)|R, h =w))

_ L;IG(?F(O)]h) — H(T(O)|R, h)

=I(R;T(O)|h)

where (24) follows from (22).

5 Countermeasures

Due to the presence of several unexpected EM leakages, a comprehensive EM vulnerability assessment
has to be an integral part of any effort to develop countermeasures against EM attacks on specific
implementations. Such countermeasures fall into two broad categories: signal strength reduction and
signal information reduction. Techniques for signal strength reduction include circuit redesign to
reduce egregious unintentional emanations and the use of shielding and physically secured zones to
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reduce the strength of compromising signals available to an adversary relative to ambient thermal
noise. Techniques for signal information reduction rely on the use of randomization and/or frequent
key refreshing within the computation [10, 11, 1, 6] so as to substantially reduce the effectiveness of
statistical attacks using the available signals.
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