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Abstract

While many pattern recognition algorithms have been developed in the last forty

years, classifying images/videos in practical applications still faces the challenges

of self/mutual occlusions, clustered backgrounds, illumination variations, etc. In

order to improve the recognition performance, many systems are designed by fusing

multiple complementary features for various classification tasks. This thesis address-

es the independent assumption issue in the fusion process and proposes two novel

frameworks for dependency modeling.

Under some mild assumptions, the first approach uses a linear combination of

posterior probabilities to model the feature dependency. Based on the linear com-

bination property, this thesis proposes a Linear Classifier Dependency Modeling

(LCDM) method for classifier level fusion. Under the linear dependency modeling

framework, this thesis shows that more information about the class label is avail-

able in feature level, so LCDM is generalized to feature level and the Linear Feature

Dependency Model (LFDM) is proposed.

Since it is almost impossible to verify whether the assumptions in existing meth-

ods are valid in practice applications, fusion method with less demanding assump-

tion should give better performance. In the second approach, this thesis develops

an Analytic Dependency Model (ADM) for score level fusion without the assump-

tions in existing fusion algorithms. With the proposed ADM, this thesis gives an

equivalent condition to the independent assumption from probabilistic properties

of marginal distributions. Since the ADM may contain infinite number of undeter-

ii



mined coefficients, this thesis further proposes the Reduced Analytic Dependency

Model (RADM) based on the convergent properties of analytic functions.

While the proposed fusion methods overcome some limitations in existing ap-

proaches, the fusion performance can be further improved by combining more dis-

criminative features. Among feature extraction algorithms, supervised manifold

learning has been successfully applied to many image classification problems. How-

ever, for video applications, existing manifold learning methods do not take full ad-

vantage of the global constraint of temporal labels. To overcome this limitation, this

thesis proposes a new Supervised Spatio-Temporal Neighborhood Topology Learning

(SSTNTL) method for video classification.

The proposed methods have been extensively evaluated on publicly available

databases such as PASCAL VOC 2007, Columbia Consumer Video, Hollywood Hu-

man Action, etc., and convincing experimental results have been achieved. In short,

the major contributions of this thesis are summarized as follows.

• A linear dependency modeling framework is developed for classifier level and

feature level fusion.

• A Reduced Analytic Dependency Model (RADM) is derived for score level

fusion with less demanding assumption.

• A Supervised Spatio-Temporal Neighborhood Topology Learning (SSTNTL)

method is proposed for video classification.
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Chapter 1

Introduction

In this chapter, the research background is first introduced in Section 1.1. Then,

the motivations and contributions of this thesis are reported in Sections 1.2–1.3.

Finally, Section 1.4 gives an brief overview of this thesis.

1.1 Background

Information fusion is an active research topic in computer vision and pattern recog-

nition, since detection/recognition performance can be improved by making use of

complementary information from multiple features/sensors. The importance of in-

formation fusion is also shown by a wide range of successful applications such as

biometrics authentication, object detection, image classification, event recognition

from videos, etc. During the past twenty years, many fusion algorithms [1] [2] [3] [4]

[5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] have been

developed in the computer vision and pattern recognition community. These fusion

methods can be categorized into two approaches, i.e. score level fusion (late fusion)

and feature level fusion (early fusion).

The framework of score level fusion approach is shown in Fig. 1.1. Given images

or videos as input, feature descriptors, e.g. SIFT [23], HOG [24], Laplacianfaces [25],

1



Images/Videos Input： 

Output: 

Feature Extraction 
Operator 1 

Fusion Model Learning 

Fusion Results 

Feature Extraction 
Operator M ⋯ 

Feature 1 Feature M 

Classifier 1 ⋯ Classifier M 

Score 1 Score M 

Figure 1.1: Score Level Fusion Framework for visual recognition

can be employed to extract complementary feature vectors for information fusion.

After feature extraction, classifiers are trained on each feature representation to ap-

proximate the posterior probabilities. Then, the classification scores are combined

to obtain final decisions as the fusion result. For example, Sum rule [2] computes

the summation of the scores from the same object to obtain the final decision val-

ue. Although score level fusion methods can combine multiple classification scores

efficiently, the potential loss of correlation information in the mixed feature space is

a disadvantage of this fusion approach.

In contrast to score level fusion, as shown in Fig. 1.2, the feature level fusion

scheme combines the feature representations directly without going through the clas-

sifier learning process for each feature. And the combination output can be a fusion

representation or decision value. For example, the concatenation of selected normal-

ized features [9] gives a fused vector representation, while Multiple Kernel Learning

(MKL) methods [14] [18] [19] return a fused confidence score. Comparing with the

2



Images/Videos Input： 

Output: 

Feature Extraction 
Operator 1 

Fusion Model Learning 

Fusion Results 

Feature Extraction 
Operator M ⋯ 

Feature 1 Feature M 

Figure 1.2: Feature Level Fusion Framework for visual recognition

score level fusion approach, fusion in feature level contains more information than

that in classifier level according to the Data Processing Inequality (DPI) [26]. How-

ever, feature level fusion may not perform as well as expected due to the following

two reasons. First, it is almost impossible to accurately estimate the joint distribu-

tion of multiple features, since feature dimensions are normally very high. Second,

it is difficult to combine features from different modalities into a common represen-

tation, as the feature modalities can be different, e.g. feature representation can be

a vector or a set of points.

1.2 Motivations of This Project

Many computer vision and pattern recognition applications face the challenges of

self/mutual occlusions, clustered backgrounds, illumination variations, etc. In or-

der to improve the recognition performance, many systems are designed by fusing

information from multiple features which provide complementary cues for better

prediction. While many combination rules [2] [8] [12] have been studied and devel-

3



oped in the last two decades, it is a general assumption that features are distributed

conditionally independent with each other given class label. With this assumption,

the joint distribution of the multiple features can be expressed as the product of

probabilities of each feature. The conditionally independent assumption could sim-

plify the problem, but it may not be valid in many practical applications. Therefore,

this thesis proposes to model the dependency between multiple scores/features for

better visual recognition.

Instead of utilizing the conditionally independent assumption, information fusion

can be performed by estimating the joint distribution of multiple classifiers/features.

However, it needs numerous data to estimate the joint density [27] accurately, when

the dimension of classifiers/features is large. To deal with this problem, normal

assumption was employed in [7] [13] to develop the fusion models. While most

fusion methods were derived under certain assumptions, it is almost impossible to

verify whether these assumptions are valid in practice. Thus, this thesis develops

a fusion method with less demanding assumption which gives better recognition

performance.

As shown in Fig. 1.1 and Fig. 1.2, feature extraction is a very important compo-

nent in the fusion system. With more discriminative features, the fusion performance

can be further improved. Among feature extraction algorithms, supervised manifold

learning methods [28] [29] [30] [31] have been successfully applied to many image

classification problems. Although these methods show that label information is im-

portant, they hardly take the temporal cue into account. For video applications,

the local1 embedding method [32] exploits the temporal information to develop the

manifold learning algorithm, but it does not take full advantage of the global con-

straint of temporal labels, which is also useful for classifying videos. Consequently,

this thesis proposes a method which incorporates the class label information as well

1It should be noticed that the local structure in the manifold learning methods refers to the

small neighborhood of a data point in a manifold, while the local features as mentioned in the

following sections refers to local descriptors of interest points detected in images or videos.

4



as the global information in temporal labels to learn the manifold structure.

1.3 Contributions of This Thesis

In this thesis, a novel framework for dependency modeling is developed, and two

methods, namely Linear Classifier Dependency Modeling (LCDM) and Linear Fea-

ture Dependency Modeling (LFDM) are proposed for classifier level and feature level

fusion, respectively. Inspired by the Bayesian model with independent assumption,

it is proved that linear combination of the posterior probabilities of each classifier can

model dependency under mild assumptions. Based on the linear combination prop-

erty, LCDM is developed, and LFDM is derived by generalizing LCDM to feature

level. The optimization problems in LCDM and LFDM are formulated as standard

linear programming problems, which therefore, have analytic solutions. Compar-

ing the proposed fusion methods in classifier level and feature level, it is shown that

LFDM outperforms LCDM in two ways. First, it is proved that feature level contains

more information about the label than that in classifier level under the proposed

linear dependency modeling framework. Second, by analyzing the sensitivity to the

density estimation errors in these two methods, it is shown that the upper bound

of the error factor in LFDM is much smaller than that in LCDM. These works have

been published in [33] [34].

Using analytic functions on posterior probabilities of each feature, this thesis

develops another novel framework for score level dependency modeling without the

assumptions in previous methods. It is shown that Product rule [2] (with indepen-

dent assumption) and LCDM (without independent assumption) can be unified by

the proposed framework. With the analytic dependency model (ADM), an equation

system is derived from the properties of marginal distributions. And an equivalen-

t condition to the independent assumption is presented in this thesis based on the

structure of the solution to the derived equation system. Since the ADM may contain

infinite number of undetermined coefficients, a reduced form of the ADM (RADM),
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which can model dependency, is proposed from the convergent properties of analytic

functions. After that, the RADM coefficients are learned by a new unconstrained

quadratic programming problem, which minimizes the empirical classification er-

rors and approximates the dependency modeling constraint. These works have been

published in [35] and submitted to the International Journal of Computer Vision

(IJCV) [36].

The advantages of the proposed fusion methods, LCDM, LFDM and RADM,

are summarized as follows. All these methods can model dependency explicitly by

making use of probabilistic properties. In addition, they are derived without normal

assumption and will not suffer from the difficulty in joint distribution estimation

with high-dimensionality problem. Moreover, RADM gives superior advantage over

LCDM by removing the assumption that posterior probabilities will not deviate very

much from the priors.

Since the fusion performance can be further improved by combining highly dis-

criminative features, this thesis explores the manifold learning approach for video

applications and proposes a novel method to learn the manifold structure from the

aspect of neighborhood topology. By analyzing the topology for video recognition,

this thesis combines the spatial distribution and label information to construct the

Supervised Spatial (SS) neighborhood topology. And it is shown that the tempo-

ral adjacent neighborhood is contained in the SS neighbors. In order to take full

advantage of the temporal information, this thesis constructs the novel Temporal

Pose Correspondence (TPC) neighborhood by the global constraint of temporal la-

bels with the help of dynamic time warping (DTW). Then, a new method, namely

Supervised Spatio-Temporal Neighborhood Topology Learning (SSTNTL) is devel-

oped by fusing the SS and TPC neighborhoods for video recognition. The proposed

SSTNTL not only discovers the local structure with label information but also p-

reserves the global constraint of temporal labels in action sequences. These works

have been published in [37].
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1.4 Thesis Overview

The rest of this thesis is organized as follows:

Chapter 2 reviews the probabilistic and non-probabilistic fusion methods. The

databases used for evaluation in this thesis are introduced.

Chapter 3 presents the proposed Supervised Spatio-Temporal Neighborhood

Topology Learning (SSTNTL) for feature extraction in video applications. The pro-

posed method is developed by analyzing the topological bases, which is an important

concept in manifold. According to the topological analysis for action recognition in

videos, the spatial distribution with label information and global constraint of tem-

poral labels are combined to construct the final neighborhood topology. Then, the

proposed SSTNTL is evaluated on five publicly available databases.

Chapter 4 reports the proposed linear dependency model for score level and

feature level fusion. Inspired by the Bayesian model with independent assumption,

it is proved that linear combination of the posterior probabilities of each classifier

can model dependency under mild assumptions. Based on the linear combination

property, two methods, namely Linear Classifier Dependency Modeling (LCDM)

and Linear Feature Dependency Modeling (LFDM) are developed for classifier level

and feature level fusion, respectively. Experimental results and their analysis are

presented at the end of this chapter.

Chapter 5 presents the proposed Reduced Analytic Dependency Model for score

level fusion. Unifying Product rule [2] (with independent assumption) and LCDM

(without independent assumption), the Analytic Dependency Model (ADM) is pro-

posed. Since the ADM may contain infinite number of undetermined coefficients,

a reduced form is derived from the convergent properties of analytic functions. At

last, results on databases for various recognition tasks are given.

Chapter 6 concludes this thesis and discusses the future directions.
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Chapter 2

Related Works and Databases

Existing fusion methods can be categorized into probabilistic and non-probabilistic

approaches. A brief review on both techniques is given in Section 2.1 and Sec-

tion 2.2, respectively. And the databases used for evaluating the proposed methods

are introduced in Section 2.3.

2.1 Probabilistic Fusion Methods

2.1.1 Fusion Models with Independent Assumption

In [2], a theoretical framework was developed for combining classifiers. Accord-

ing to Bayesian theory, under the assumption that classifier scores are distributed

independently, the posterior probability is given by the following equation,

Pr(ωl|~x1, · · · , ~xM) =
Pr(ωl)

∏M
m=1 Pr(~xm|ωl)

Pr(~x1, · · · , ~xM)
=

P0

Pr(ωl)M−1

M∏
m=1

Pr(ωl|~xm) (2.1.1)

where ωl denotes the label, M is the number of features, ~xm is the m-th feature,

and P0 =
∏M

m=1 Pr(~xm)

Pr(~x1,··· ,~xM )
. Product rule [2] was then derived by (2.1.1). Moreover, if the

discriminatory information is highly ambiguous due to high levels of noise, it may

be suitable to assume that the posterior probability of each feature vector will not
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deviate dramatically from the prior probability [2]. In this situation, the posterior

probability of a feature vector ~xm can be expressed as

Pr(ωl|~xm) = Pr(ωl)(1 + δlm) (2.1.2)

where δlm is a small number. Substituting Pr(ωl|~xm) by (2.1.2) and expanding the

product term in (2.1.1), Sum rule [2] was induced as the following equation,

Pr(ωl|~x1, · · · , ~xM) = P0[(1−M)Pr(ωl) +
M∑
m=1

Pr(ωl|~xm)] (2.1.3)

Based on the Product rule and Sum rule, Kittler et al. [2] justified that the commonly

used classifier combination rules, i.e. Max, Min, Median and Majority Vote, can

be derived. It was shown that Sum rule outperforms other classifier combination

schemes in their experiments.

Besides the combination rules developed under the Bayesian framework [2], Nan-

dakumar et al. [12] proposed to find the optimal combination of the match scores

based on the likelihood ratio test. In their approach, the distribution of each genuine

or impostor match score is estimated by the finite Gaussian mixture model [38], and

the joint distribution is computed by taking advantage of the Product rule (2.1.1)

under the conditionally independent assumption. Apart from the likelihood ratio

based fusion method [12], Terrades et al. [13] tackle the classifier combination prob-

lem using a non-Bayesian probabilistic framework. Under the assumptions that

classifiers can be combined linearly and the scores follow independent normal (IN)

distribution, the IN combination rule was derived [13].

2.1.2 Fusion Models without Independent Assumption

Without conditionally independent assumption, the posterior probability of classi-

fiers can be computed by joint distribution estimation. For example, in [5], Parzen

window density estimation [39] is used to estimate the joint density of a selected set

of scores. When a large number of samples are available and the number of classi-

fiers is small, the density estimated using Parzen window approach is very close to
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the true one [5]. While this may not be the case for many practical applications,

the error in the estimated density could be very large. As a result, the dependency

between matching scores was considered by employing copula models in [7]. With

the copula function under multivariate normal distribution assumption, the joint

density of matching scores can be modeled and used to compute the likelihood ratio

statistics for score fusion. Terrades et al. [13] also made use of normal distribution

assumption, and proposed to fuse classifiers by a linear combination model. When

features are not conditionally independent, the covariance matrix in the normal dis-

tribution is not diagonal. In this case, the dependent normal (DN) combination

problem [13] was formulated into a constrained quadratic programming problem,

which can be solved by nonlinear programming techniques [40].

2.2 Non-Probabilistic Fusion Methods

Besides the probabilistic fusion methods [2] [5] [7] [12] [13], the Optimal Weighting

Method (OWM) [3], LPBoost approaches [4] [14] aimed at determining the correct

weighting for linear combination by minimizing the least square error and 1-norm

soft margin error, respectively. A multi-class variant of the two-class LPBoost [4] is

presented in [14] and denoted as LP-B. This linear combination method determines

the correct weights Blm by learning the following linear programming (LP) problem

min
B,ρ,ξ
− ρ+

1

νJ

J∑
j=1

ξj

s.t. i)
M∑
m=1

Byjmhm,yj(~xj)−
M∑
m=1

Blmhm,l(~xj) ≥ ρ− ξj,∀j, ωl 6= yj

ii) ξj ≥ 0,∀j

iii)
M∑
m=1

Blm = 1,∀l

(2.2.4)

where ~xj and yj denote object j and the corresponding label, ρ represents the margin,

ξj is the slack variable for object j, and hm,l gives the confidence by feature m on

class l.
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In order to describe the nonlinear input-output relationships, the reduced multi-

variate polynomial (RM) was introduced in [6]. Since the number of terms increases

exponentially with the model order in the multivariate polynomial, Toh et al. [6] pro-

posed to approximate the full polynomial by modified lumped multinomial. Then,

the optimal RM model was learned by a weight-decay regularization problem in [6].

Different from score level fusion methods [3] [4] [6] [14], Multiple Kernel Learning

(MKL) methods [14] [18] [19] can learn the classifiers and combination weights simul-

taneously. In the setting of MKL for feature combination, kernel Km is constructed

by feature m, so the multi-feature fusion problem is formulated as a multiple kernel

learning problem.

While the linear or non-linear weighting approaches [3] [4] [6] [14] [18] [19] learn

the score/feature fusion models with the help of labeled training data, the Sig-

nal Strength-based Combination (SSC) [20] approach and robust late fusion (RLF)

method [21] fuse classification scores in an unsupervised manner. SSC was derived

based on the signal strength concept and uncertainty degree for ensemble learning.

With the marginal distribution graph analysis in [20], it was shown that SSC could

increase the margin to support the final decision. On the other hand, Ye et al. [21]

proposed to convert the score vectors from each feature into pairwise score relation

matrix, whose entries represent the comparative relationships of scores between any

two test samples. Under the assumption that the relation matrices can be decom-

posed into a shared rank-two matrix plus sparse errors, the fused score vector was

obtained by fitting to the recovered low-rank score relation matrix. Based on the

low-rank and sparse properties, the noise components could be eliminated. In order

to cooperate with the feature level information, a graph based regularization term

is added in the low-rank and sparse model. And the Graph-regularized Robust Late

Fusion (GRLF) method was proposed in [21].
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Figure 2.1: Visualization of the pixel average feature for digits from 0 to 9

2.3 Databases for Evaluation

2.3.1 Digit Database

The Digit database [41] contains ten digits from 0 to 9, and 200 examples for

each digit. Six types of features (76 Fourier coefficients, 216 profile correlation-

s, 64 Karhunen-Love coefficients, 240 pixel averages in 2×3 windows, 47 Zernike

moments and 6 morphological features) are extracted in [41] and available on the

website1. The pixel average feature for some samples is visualized in Fig. 2.1. We

randomly select 20 samples of each digit for training and retain the rest for testing.

Two kinds of classifiers with different parameters, i.e. k -NN classifiers for k = 1, 3

and SVM2 classifiers for soft margin parameter C = 0.1, 100, are used to evaluate

the fusion methods. Five-fold cross validation (CV) is performed with the training

data to select the best parameters in the fusion models. And the CV outputs are

used to train the combination models. These experiments are repeated ten times on

this database

2.3.2 Oxford 17 Flower Database

Oxford 17 Flower database [43] contains 17 different types of flowers with 80 images

per category. Some example images are shown in Fig. 2.2. Seven different types

of features including shape, color, texture, HSV, HoG, SIFT internal, and SIFT

boundary, are extracted using the method reported in [43] [44]. Distance matrices

of these features and three predefined splits of the database (17 × 40 for training,

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features
2The publicly available library [42] is adopted in this thesis to generate the SVM scores.
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Figure 2.2: Example images from Flower database (Images from the same columns are

from the same classes)

17 × 20 for validation, and 17 × 20 for testing) are available on their website3.

Following [14], kernel SVM classifiers are trained for each of the seven features. The

kernel matrices are defined as exp (−d(~x, ~x′)/η), where d is the distance and η is

the mean of pairwise distances. The parameter introduced in the soft margin SVM

is selected from C ∈ {10−3, · · · , 103} by five-fold CV in the training set. The CV

outputs of the SVMs are used to train the weights for score level fusion.

2.3.3 CMU PIE Face Database

CMU PIE face database [45] contains 68 subjects with 41,368 images captured under

different poses, illuminations and expressions. This thesis uses 105 near frontal-view

face images for each individual, randomly select six for training, four for validation

and the rest for testing. Some selected images are shown in Fig. 2.3. Four types

of features, Eigenfaces [46], Fisherfaces [46], Laplacianfaces [25] and local binary

patterns (LBP) [47] are extracted for each image. Parameters introduced from these

features are determined as suggested in their papers [25] [46] [47]. Linear SVM was

employed to trained the classifiers by the training data. The best SVM parameter

is selected by the validation set from C ∈ {10−3, · · · , 103}. The SVM outputs of

the training data are used to train the weights for classifier fusion methods. This

3http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html

13

http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html


Figure 2.3: Example images from CMU PIE face database

Figure 2.4: Example images from FERET face database

experiment is repeated ten times on this database.

2.3.4 FERET Face Database

In FERET database [48], there are 14,126 images from 1,199 individuals. This the-

sis selects 72 individuals with six near frontal-view face images per person under

different face expressions. Some selected images are shown in Fig. 2.4. In the exper-

iments using this database, six images for each individual are randomly separated

into training, validation and testing sets with equal size, i.e. two images for each

set. The image features and classification scores are extracted as in the CMU PIE

database.

2.3.5 Weizmann Human Action Database

Weizmann database [49] contains 93 videos from nine persons, each performing ten

actions, i.e. “bend”, “jumping jack”, “jump in place on two legs”, “jump forward

on two legs”, “galloping sideways”, “skip”, “run”, “walk”, “wave one hand”, and

“wave two hands”. Example images from the videos are shown in Fig. 2.5. Nine-fold
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Figure 2.5: Example images from videos representing all the ten actions in Weizmann

 

Figure 2.6: Example segmented images from videos in Weizmann database

cross validation protocol is employed to evaluate the proposed method. The average

recognition rate is recorded. Eight-fold CV is performed on the training data, and

the CV outputs are used to train the learning models and select the best parameters.

For manifold learning methods, the information saliency method [50] is employed

to extract regions of interest and detect periodic motion cycles following the proce-

dures in [51] [52]. While several action units can be detected for one video clip, one

cycle per video is used in the experiments (refer to [51] [52] for details). Fig. 2.6

shows some example segmented images from the videos representing the ten actions

in Weizmann database. The extracted images are normalized into 100×100 pixels

and represented by feature vectors with dimension 10000.

For the fusion methods, the bag-of-features approach is adopted for this database

to extract eight types of features for the videos. First, space-time interest points

are detected by [53] for each video. For each interest point, eight local descriptors,

namely 1) intensity (Int), 2) intensity difference (IntDif), 3) histograms of optical
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flow (HoF) without grid, 4) histograms of gradient (HoG) without grid, 5) HoF with

2D grid (HoF2D), 6) HoG with 2D grid (HoG2D), 7) HoF with 3D grid (HoF3D),

and 8) HoG with 3D grid (HoG3D), are generated based on the 9 × 9 × 5 cuboid

centered by the interest point. For the first descriptor, pixel intensities of the local

cuboids are considered as feature vectors, whose dimension is 9 × 9 × 5 = 405.

For the second descriptor, pixel intensities of the local cuboids in two successive

frames are subtracted with each other to generate the feature. So the dimension

is 9 × 9 × 4 = 324. For the third and forth features, histogram features based

on gradient and optical flow orientation are computed on each spatial blocks in

local cuboids like [24], then HoGs and HoFs are concatenated together over time

dimension respectively in the local cuboids. 8 orientations are used to compute the

histogram, so the dimension of these two features is 8×5 = 40. For the fifth and sixth

features, in the spirit to the SIFT descriptor [23], spatial blocks in local cuboids over

time are divided into 2 × 2 arrays, and histograms of 8 orientations are computed

on each sub-block individually. Thus, the dimension for them is 2×2×8×5 = 160.

The last two features proposed in [54] which is similar to the previous two, divide

the local cuboids into 2× 2× 2 3D arrays, so the dimension is 2× 2× 2× 8 = 64.

After different kinds of features have been generated, we follow the general bag-of-

features representation [54] to form the feature vectors for classifier combination and

feature fusion. Training data are used to construct the vocabulary. And the number

of clusters is set as 100 in this database. Linear SVM classifiers are employed as

mentioned in Section 2.3.3.

2.3.6 KTH Human Action Database

There are 25 subjects performing six actions under four scenarios in KTH database

[55]. The six actions include “boxing”, “hand clapping”, “hand waving”, “jogging”,

“running” and “walking”. The four scenarios are outdoors (S1), outdoors with scale

variations (S2), outdoors with different clothes (S3) and indoors (S4). Example
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Figure 2.7: Example images from videos in KTH (All six actions and four scenarios are

presented)

 

Figure 2.8: Example segmented images from videos in KTH database

images from the videos are shown in Fig. 2.7.

For manifold learning methods, regions of interest and motion cycles are extract-

ed similar to the procedures in Weizmann database (refer to [51] [52] for details).

Fig. 2.8 shows some example segmented images from the videos representing the six

actions in KTH database. The extracted images are normalized into 100×100 pixels

and represented by two kinds of image features. The first one converts gray-scale

images into vectors with dimension 10000, while the second one computes the GIST

feature [56] on each extracted image. For the GIST feature, the parameters about

the number of orientation per scale and the number of blocks are selected from {4,8}.

Three training/testing protocols (refer to [57] for details about the relationship be-

tween the performance and evaluation protocol) are used for evaluation and will be

further elaborated in the experiment section later.

For evaluation of the fusion methods, the common setting in [55] is employed to

separate the video set into training (8 persons), validation (8 persons), and testing
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Figure 2.9: Example segmented images from videos in UCF sport database

(9 persons) sets. Eight local features including intensity, intensity difference, HoF,

HoG, HoF2D, HoG2D, HoF3D and HoG3D, are extracted from videos as reported

in Section 2.3.5. Training and validation data are used to construct the vocabulary.

And the number of clusters is set as 600 in this database. Linear SVM classifiers are

employed as mentioned in Section 2.3.3. Eight-fold CV is performed on the training

data, and the CV outputs are used to train the fusion models. The best parameters

are selected by the validation set on this database.

2.3.7 UCF Sports Database

UCF sports database [58] contains ten types of sports actions, including diving

(Div), golf swinging (Gol), kicking (Kic), lifting (Lif), horseriding (Rid), running

(Run), skateboarding (Ska), swinging at the bench (SwB), swinging at the high

bar (SwH), and walking (Wal). There are totally 150 real videos in this database

and each action class has different number of training samples. Bounding boxes

are provided to segment regions of interest. Fig. 2.9 shows the images representing

different actions after the segmentation with the bounding boxes. GIST feature is

computed on each extracted image as for the KTH database. Following the protocol

in [58], the leave-one-sample-out cross validation setting is employed for evaluation.

2.3.8 Hollywood Human Action Database

Hollywood Human Action (HOHA) database [54] consists of eight types of actions,

including Answer Phone (AnP), Get out of Car (GoC), Hand Shake (HS), Hug Per-
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Figure 2.10: Example bounding boxes and images from videos in HOHA database

son (HP), Kiss (Ki), Sit Down (SiD), Sit Up (SiU), and Stand Up (StU). Following

the evaluation protocol in [54], 219 and 211 videos with “clean” annotations are used

for training and testing, respectively. The annotations provided by this database are

used to segment the action unit from videos temporally. For the manifold learning

methods, regions of interest are extracted manually as indicated by the bounding

boxes in Fig. 2.10. And GIST feature is computed on each extracted region as for

the KTH database. For the fusion methods, both the proposed spatio-temporal

manifold representation and the eight local features as mentioned in Section 2.3.5

are used for experiments. Linear SVM classifiers are employed as reported in Section

2.3.3. Five-fold CV is performed on the training data, and the CV outputs are used

to train the fusion models and select the best parameters.

2.3.9 Hand Gesture Action Database

Cambridge-Gesture database [59] consists of 900 image sequences of nine hand

gesture classes under five kinds of illuminations. The nine hand gesture action-

s include Flat-Leftward (FL), Flat-Rightward (FR), Flat-Contract (FC), Spread-

Leftward (SL), Spread-Rightward (SR), Spread-Contract (SC), V-Shape-Leftward

(VL), V-Shape-Rightward (VR), and V-Shape-Contract (VC). Each class and illu-

mination set contains 20 sequences. Example images from this database are shown

in Fig. 2.11. Following the experimental protocol in [59] [60], 20 sequences per class

with plain illumination is randomly partitioned into 10 sequences for training and
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Figure 2.11: Example images from sequences in Cambridge-Gesture database

the other 10 sequences for validation, while testing is performed for the data set-

s with the other four illuminations. GIST feature is computed on each extracted

image as for the KTH database.

2.3.10 VOC 2007 Object Categorization Database

PASCAL VOC 2007 [61] is one of the benchmark databases for visual object recog-

nition in realistic scenes. There are around 10,000 consumer images of 20 different

object categories, which are collected from the photo-sharing website. With the de-

fault split, 5,011 images are used for training, while 4,952 images for testing. Eight

features reported in [62], including RGB, HSV, LAB, dense SIFT, Harris SIFT, dense

HUE and Harris HUE with 3×1 horizontal decomposition of images as well as GIST

descriptor, are available on the website4 and employed in this experiment. Follow-

ing the settings in [62], kernel SVMs are used for this experiment, and the kernel

matrices are defined as exp (−d(~x, ~x′)/η), where d is the distance and η is the mean

of pairwise distances. The SVM parameter is selected from C ∈ {10−3, · · · , 103}.

Five-fold CV is performed on the training data, and the learning models and the

best parameters are determined by the CV results. In order to reduce the impact

4http://lear.inrialpes.fr/pubs/2010/GVS10/
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of wiggles in the recall and precision curve, the fusion methods are evaluated by the

interpolated average precision as reported in [63].

2.3.11 Columbia Consumer Video Database

Columbia Consumer Video (CCV) database [64] is a recently developed benchmark

for consumer video analysis. This database contains 9,317 YouTube videos over

20 semantic categories, in which around half of the videos are used for training

and the other half for testing. In this experiment, three online available features5

are employed, including SIFT visual feature, spatial-temporal interest point (STIP)

visual feature, and Mel-frequency cepstral coefficients (MFCC) audio features re-

ported in [64], to evaluate the fusion methods. The training procedures are the

same as in Section 2.3.10. Following [64], the average precision is calculated by the

the uninterpolated recall and precision curve to evaluate the fusion methods.

5http://www.ee.columbia.edu/ln/dvmm/CCV/
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Chapter 3

Manifold learning for

Spatio-Temporal Feature

Representation

3.1 Introduction

As discussed in Chapter 1, feature extraction is a very important step in the fu-

sion process. Among feature extraction algorithms, manifold learning has been

successfully applied to many visual applications including 3D body configuration

recovery [65], face recognition [25], image based age estimation [66], etc. Many ex-

isting manifold learning methods, e.g. Isometric feature Map (Isomap) [67], Locally

Linear Embedding (LLE) [68] and Laplacian Eigenmap (LE) [69], aim at discover-

ing the intrinsic geometrical structure of a data manifold. These manifold learning

frameworks are designed for general applications, but they do not fully consider the

temporal information for videos applications.

In [70], Spatio-Temporal Isomap (ST-Isomap) is proposed to construct the local

neighbors emphasizing the similarity between the temporal related blocks. Besides

ST-Isomap, the temporal extension to Laplacian Eigenmap (TLE) is proposed in [71]
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and achieves better performance. Both ST-Isomap and TLE are unsupervised meth-

ods. That means class label information does not take into account. In turn, it may

not be efficiently applied to supervised dimensionality reduction problem. Recent-

ly, supervised manifold embedding has been proposed. Existing methods include

Locality Sensitive Discriminant Analysis (LSDA) [29], Local Fisher Discriminant

Analysis (LFDA) [28], Marginal Fisher Analysis (MFA) [30], and Supervised Lo-

cality Preserving Projection (SLPP) [31]. Although these methods show that label

information is important, they hardly take temporal cue into account.

In this context, Jia and Yeung [32] proposed a Local Spatio-Temporal Discrimi-

nant Embedding (LSTDE) method to discover the local spatial and local temporal

discriminant structures. LSTDE is derived by maximizing the inter-class variance

and minimizing the intra-class variance based on the local spatio-temporal informa-

tion. However, LSTDE does not fully consider the global constraints of the temporal

orders in action sequences.

To overcome the limitations mentioned above and follow the supervised spatial

neighborhood topology learning (SNTL) method [72], this thesis proposes a new

method to learn the manifold structure by using supervised spatial and temporal

pose correspondence information from the topological aspect of manifold. As we

know, topology is an important concept in the definition of a manifold [73]. By

analyzing the topological base in existing methods for action recognition, a new

topology is defined by spatial distribution and class label information, which are

used to construct the supervised spatial (SS) neighborhood. However, the construc-

tion of SS neighbors does not take full advantage of the temporal information. Thus,

by further analyzing the global constraint of temporal labels in action sequences, the

temporal pose correspondence (TPC) neighborhood is developed. The supervised

spatial information and global constraint of temporal labels are fused by taking the

union of SS and TPC neighbors. At last, the optimal linear projection functions p-

reserving neighborhood relationship are obtained by solving a generalized eigenvalue

problem. The proposed method namely, Supervised Spatio-Temporal Neighborhood
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Topology Learning (SSTNTL), not only can discover local structures with the help

of label information, but also can comparing the global similarity of action sequences

to separate different actions.

The rest of this chapter is organized as follows. Section 3.2 and Section 3.3

review some related works on video analysis and manifold learning, respectively. In

section 3.4, the proposed method for spatio-temporal feature extraction is presented.

Experimental results and a brief summary of this chapter are reported in Sections 3.5

and 3.6, respectively.

3.2 Review on Manifold Learning for Video Anal-

ysis

Video analysis is an active research topic in computer vision and pattern recognition,

due to a wide range of potential applications, such as intelligent video surveillance,

perceptual interface and content-based video retrieval. While many algorithms and

systems have been developed in the last decade [74] [75] [76], recognizing actions

in videos still remains challenging. In action recognition, a key issue is to extrac-

t useful action information from raw video data. So far various approaches have

been proposed to extract features from video sequences, such as key frame extrac-

tion [77] [78] [79], space-time interest point detection and description [80] [54] [81],

key point trajectory based approaches [82] [83] [84], etc.

In the last few years, there has been increasing interest in analyzing actions

using manifold embedding methods, since action data may lie on a low-dimensional

manifold embedded in the high-dimensional image space [85]. In [65], the gait

manifolds under different viewpoints were learned by LLE and used for viewpoint

estimation, 3D configuration recovery, new instance synthesis, etc. In [86], manifold

representations learned by LE were used for tracking and 3D motion reconstruction.
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Along this direction, manifold learning was used for action recognition in [32]

[71] [85] [87]. In [85] [87], Locality Preserving Projection (LPP) [88] was used to

learn the dynamic shape manifolds for action matching. Since LPP is closely re-

lated to the proposed method, a detailed introduction to LPP was presented in

Section 3.3. In order to take advantage of the temporal information, TLE was pro-

posed in [71] for unsupervised dimensionality reduction of time series. TLE follows

the LE framework and constructs the neighborhood by the adjacent temporal and

repetition temporal information. As demonstrated in [71], TLE ensured the tem-

poral coherence and improved the generalization properties of the embedded low

dimensional spaces. Besides LPP and TLE, LSTDE [32] was proposed to discov-

er the local spatio-temporal discriminant structures for human action recognition.

LSTDE constructs the projections from three aspects: minimizing the Euclidean

distances between close data points of the same action class, maximizing the Eu-

clidean distances between close data points of different classes, and maximizing the

principal angles between video segments of close data points from different classes.

Experimental results [32] demonstrated that LSTDE can improve the recognition

performance over some representative manifold embedding methods.

3.3 Revisiting Locality Preserving Projection and

Its Supervised Version

Locality preserving projection (LPP) [88] is a linear approximation of the nonlinear

Laplacian eigenmap (LE) [69]. Suppose ~x1, ~x2, · · · , ~xN are N samples which lie

on a manifold in R dimension Euclidean space. The problem of LPP is to find

a transformation matrix P which best preserves the neighborhood relationship of

the manifold containing ~x1, ~x2, · · · , ~xN . Suppose ~x1, ~x2, · · · , ~xN are represented by

~z1, ~z2, · · · , ~zN in r (� R) dimension Euclidean space, where ~zn = P T~xn. The

algorithmic procedure of LPP is summarized as follows [88],
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1. Constructing the adjacency graph: Let G be a graph with N nodes.

An edge is connected between nodes i and j, if ~xi ∈ N (~xj) or ~xj ∈ N (~xi), where

N (~xi) denotes a small neighborhood of ~xi. There are two ways to define N (~xi): i)

k-nearest neighbors (k-NN): N (~xi) is made up of data points among the k nearest

neighbors of ~xi and ii) ε-neighborhood: N (~xi) = {~xn|‖~xn − ~xi‖ < ε}.

2. Choosing the weights: There are two variations to choose weights, i.e.

simple minded, wij = 1, or heat kernel, wij = e−‖~xi−~xj‖
2/t, t ∈ R, if and only if nodes

i and j are connected by an edge; wij = 0, otherwise.

3. Eigenmap: Compute the eigenvectors and eigenvalues for the generalized

eigenvalue problem:

XLXT~e = λXDXT~e (3.3.1)

where X = (~x1, ~x2, · · · , ~xN), D is a diagonal matrix with Dii =
∑

j wij and L =

D −W is the Laplacian matrix.

Let column vectors ~e1, ~e2, · · · , ~er be the eigenvectors of (3.3.1), such that λ1 ≤

λ2 ≤ · · · ≤ λr. Thus, the projection matrix and the embedding are given by

P = (~e1, ~e2, · · · , ~er) and ~zn = P T~xn.

On the other hand, a supervised version of LPP (SLPP) is proposed in [31]. SLPP

is based on the framework of LPP. In SLPP, the adjacency graph is constructed by

class label information, i.e. an edge is connected between nodes i and j, if ~xi and

~xj are from the same class. Except for this, the other procedure is the same as that

in LPP.

3.4 Supervised Spatio-Temporal Neighborhood

Topology Learning

The block diagram of the action recognition framework is shown in Fig. 3.1. After

preprocessing raw videos, a sequence of images containing the regions of interest are
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obtained. For non-periodic actions, the whole sequences with segmented region of

interest are denoted as action units and used for further processing. For periodic

actions, one cycle in the action sequence is extracted by period detection method and

denoted as an action unit similar to those of non-periodic actions. Each action unit

is then represented by a set of feature vectors. Denote the normalized feature vectors

by chronological order for action unit A as ~x1, · · · , ~xNA
, where NA is the number of

segmented images in A. After that, each feature representation ~xn is mapped to the

embedded manifold by the proposed spatio-temporal manifold learning method. At

last, a set-based classifier is employed on the sequence ~z1, · · · , ~zNA
, and the action

label is obtained.

As discussed in Section 3.3, the major difference between LPP and SLPP is the

adjacency graph. In this section, it is shown that the adjacency graph is intimately

related to the topological base from mathematical perspective. As we know, topol-

ogy is an important concept in the definition of a manifold, so we will first give a

topological analysis in the context of action recognition. Then, this thesis proposes

to construct the neighborhood topology by the supervised spatial as well as temporal

pose correspondence information. Finally, employing the locality preserving prop-

erty in LPP, the proposed SSTNTL is learned by solving a generalized eigenvalue

problem.

3.4.1 Topological Analysis for Action Recognition

In action recognition, actions are regarded as data points on a manifold. Supposes

there are L classes of actions and data points from all the actions lie on a smooth

and compact manifold. Different actions may be close to each other on the manifold,

because different actions share similar poses. This is illustrated in Fig. 3.2, which

shows two actions, namely “run” and “walk” It can be seen that poses (frames)

indicated with red rectangle in “run” and “walk” actions are similar. As such, the

distance between certain data points from these two actions will be small. This
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Figure 3.1: Manifold learning based action recognition framework

 

Figure 3.2: Similar pose in two different actions

 

(a)

 

(b)

 

(c)

 

(d)

Figure 3.3: (a) Visualization of two action sequences. Visualization of the topological

base and adjacency graphs in (b) LPP, (c) SLPP and (d) the proposed supervised spatial

method.
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means sequences representing these two actions may be close with each other. In

this case, the two actions in Fig. 3.2 can be represented by data points (diamond and

circle represent different actions) as shown in Fig. 3.3(a). Denote the two actions as

Ai and Aj. And let A = Ai ∪ Aj. Usually, the topology defined on A is induced by

the Euclidean topology. Denote this topology as τe. Since topology is too abstract

to understand, the topological base [89] is investigated instead. In mathematics, if

τ = B, where B represents a family of sets generated by the family of sets B, i.e.

B = {U ⊂ X|∀~x ∈ U,∃B ∈ B, s.t.~x ∈ B ⊂ U}, B is called the topological base of

the topological space (A, τ). With this representation, τe can be written as

τe = Be, Be = {A ∩ B(~xn, ε)|~xn ∈ A, ε > 0} (3.4.2)

where B(~xn, ε) is a ball centered at ~xn and with radius ε.

The topology in LPP is constructed with fixed ε in τe, which can be written as

τLPP = BLPP, BLPP = {A ∩ B(~xn, εLPP)|~xn ∈ A} (3.4.3)

where εLPP is the parameter for the ε-neighborhood. For suitable parameter εLPP,

the topological base in LPP can be represented by the ovals in Fig. 3.3(b). Based on

the topological base, the adjacency graph in LPP is constructed by putting a link

between any two points in the same oval, which is also shown in Fig. 3.3(b). From

Fig. 3.3(b), it can be seen that close points from two different actions are connected

together, so projections learned by LPP will map these points into low-dimensional

space close to each other. However, this may not be good for classification purpose.

Besides the Euclidean topology, the topology in SLPP is given by

τSLPP = BSLPP, BSLPP = {Ai, Aj} (3.4.4)

The topological base and adjacency graph in SLPP are shown as ovals and edges in

Fig. 3.3(c). Since SLPP only consider the class information, every two points from

the same class are connected by an edge on the graph in Fig. 3.3(c). Therefore, the

topology in SLPP hardly contains any local information of the data.
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3.4.2 Supervised Spatial Neighborhood Topology Construc-

tion

According to the analysis in the above section, we can see that the topological base

plays an important role in both LPP and SLPP. With the spatial and class label

information of the data, the topological bases BLPP in LPP and BSLPP in SLPP

can be constructed, respectively. However, BLPP cannot separate data points from

the same class, and BSLPP hardly contains any local information. To overcome this

limitation, we take the intersection of BLPP and BSLPP and define the supervised

spatial topological base as

BSS = {BLPP ∩ BSLPP|BLPP ∈ BLPP,BSLPP ∈ BSLPP} (3.4.5)

Since BLPP = A∩B(~xn, εLPP) and BSLPP = Ai or Aj, BSS in (3.4.5) can be rewritten

and the novel topology can be defined as

τSS = BSS,BSS = {Ak ∩ B(~xn, εSS)|~xn ∈ Ak, k = i or j} (3.4.6)

where εSS is the radius of a ball. The topological base BSS with (3.4.6) and the

adjacency graph constructed by BSS are shown in Fig. 3.3(d). With this new topol-

ogy and adjacency graph, A can be separated as two connected components, Ai and

Aj. In addition, close points from the same action are connected by an edge on the

graph. Therefore, the proposed supervised spatial topology τSS not only preserves

local structure of data points from the same class but also separates data points

from different classes.

Besides spatial and label information, the supervised spatial topology τSS con-

tains temporal adjacent information as well. As shown in Fig. 3.4, action sequences

are characterized by poses deforming continuously over time. In mathematics, the

temporal continuity means that for suitable εSS, there exists a positive integer δ,

s.t. ‖~xn+t − ~xn‖ ≤ εSS, when |t| ≤ δ. By the definition of the supervised spatial

topological base, it has

~xn+t ∈ BSS ∈ BSS, when |t| ≤ δ (3.4.7)
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This equation means that the temporal adjacent neighbors are contained in the su-

pervised spatial neighbors, which is indicated by the red ovals in Fig. 3.4. Moreover,

the construction of BSS avoids the non-trivial selection problem of the adjacent

parameter, which is another advantage of the proposed method.

In practice, it is difficult to choose an optimal εSS when using ε neighborhood to

construct the adjacency graph. Therefore, we construct the adjacency graph using

k-NN. Since the number of data points from different classes may not be the same,

we choose a percentage parameter aSS instead of k to construct the neighborhood

of each data point. The algorithmic procedure to construct the supervised spatial

neighborhood NSS(~xn) for each ~xn is stated in Fig. 3.5.

3.4.3 Temporal Pose Correspondence Neighborhood Topol-

ogy Construction

Although the supervised spatial neighborhoodNSS contains temporal adjacent neigh-

bors as mentioned in the above section, the construction of NSS still does not take

full advantage of the temporal information. If we consider different sequences of the

same action “bend” as shown in Fig. 3.6, it can be observed that different sequences

share similar poses deforming similarly over time. However, if the neighborhood

is constructed only by spatial information, the corresponding poses in different se-

quences of the same action may not be close to each other, due to the background

and appearance changes. Thus, the temporal pose correspondence (TPC) between

sequences of the same action may not be discovered by the supervised spatial neigh-

bors. In this context, we propose to construct the neighborhood by the temporal

pose correspondence directly.

Denote two action units of the same class as Ai = {~xi1, · · · , ~xiNi
} and Aj =

{~xj1, · · · , ~xjNj
}. Suppose feature vectors ~xini

in action sequence Ai and ~xjnj
in Aj be

corresponding to underlying action poses ~uini
and ~ujnj

, respectively. In this context,

the pose relationship which may vary in speed can be found out by employing

31



 

... ...      

Figure 3.4: Visualization of the temporal continuity in an action sequence

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3.1. Constructing 𝒩SS 

Input:  
 
  

Training samples �⃗�1,⋯ , �⃗�𝑁; 
Corresponding labels 𝑦1,⋯ ,𝑦𝑁; 
Percentage parameter 𝑎SS; 

Output: Supervised spatial neighborhood 𝒩SS; 

for 𝑙 = 1,⋯ , 𝐿 
        Compute number of samples for class 𝑙, 𝐽𝑙; 
        Calculate 𝑘-NN parameter 𝑘𝑙SS = 𝑎SS𝐽𝑙 
endfor; 
for 𝑛 = 1,⋯ ,𝑁 
        Select the 𝑘𝑦𝑛

SS nearest samples respect to �⃗�𝑛   
        from class 𝑦𝑛 as 𝒩SS(�⃗�𝑛); 
endfor; 
return 𝒩SS(�⃗�1),⋯ ,𝒩SS(�⃗�𝑁). 
 

Figure 3.5: Algorithm 3.1: Construction of the SS neighborhood
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Figure 3.6: Topological visualization of the TPC neighborhood
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Dynamic Time Warping (DTW) [90] on the underlying pose sequences ~ui1, · · · , ~uiNi

and ~uj1, · · · , ~ujNj
. Denote the warping function as

f = [(fi(1), fj(1)), · · · , (fi(T ), fj(T ))] (3.4.8)

where 1 ≤ fi(t) ≤ Ni, 1 ≤ fj(t) ≤ Nj, fi(t − 1) ≤ fi(t), fj(t − 1) ≤ fj(t), and T is

an integer, s.t. T ≥ max{Ni, Nj}. DTW finds the optimal warping function f ∗ by

solving the following optimization problem

min
f

T∑
t=1

ω(t)‖~uifi(t) − ~ujfj(t)‖ (3.4.9)

The distance between corresponding poses ~uif∗i (t) and ~ujf∗j (t) must be small, though

the distance between original feature vectors ~xif∗i (t) and ~xjf∗j (t) may be large due to

background and appearance changes. However, underlying poses ~ui1, · · · , ~uiNi
and

~uj1, · · · , ~ujNj
are unknown, so the pose relationship cannot be obtained by directly

solving optimization problem (3.4.9).

Alternatively, we model the relationship between feature vectors and underlying

poses as follows. Suppose there is a projection for each sequence, which maps the

feature vector subtracted by the background vector to the underlying pose, i.e.

~uini
= Qi(~xini

− ~υi), ~ujnj
= Qj(~xjnj

− ~υj) (3.4.10)

In equation (3.4.10), vectors ~υi, ~υj and projection matrices Qi, Qj model the back-

grounds and appearance changes in each action unit, respectively. Substituting ~uini

and ~ujnj
with (3.4.10) into (3.4.9), the objective function becomes

T∑
t=1

ω(t)‖Qi(~xini
− ~υi)−Qj(~xjnj

− ~υj)‖ (3.4.11)

Since vectors ~υi, ~υj and projection matrices Qi, Qj are unknown variables in the opti-

mization function (3.4.11), we minimize the upper bound of (3.4.11) given by (3.4.12)
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instead.

‖Qi‖
T∑
t=1

ω(t)‖~xifi(t) − ~xjfj(t)‖

+ ‖Qi −Qj‖
T∑
t=1

ω(t)‖~xjfj(t)‖

+ ‖Qj~υj −Qi~υi‖
T∑
t=1

ω(t)

(3.4.12)

Since
∑T

t=1 ω(t) is a constant respect to t and feature vectors ~xj1, · · · , ~xjNj
are nor-

malized, minimizing objective function (3.4.12) is equivalent to solving the following

optimization problem

min
f

T∑
t=1

ω(t)‖~xifi(t) − ~xjfj(t)‖ (3.4.13)

This means that DTW performing on feature sequences ~xi1, · · · , ~xiNi
and ~xj1, · · · , ~xjNj

is equivalent to finding the minimum upper bound of the optimal pose match-

ing (3.4.9).

The optimal warping function f ∗ obtained by solving (3.4.13) with DTW gives

the correspondence between similar poses in different sequences of the same action.

However, the difference between the corresponding frames may be very large due

to the background and appearance changes. Consequently, if corresponding frames

of the same pose in different sequences are in the same neighborhood, the manifold

structure may be destroyed. Thus, neighboring corresponding frames are selected

as the base of the temporal pose correspondence neighborhood topology, i.e.

τTPC = BTPC,BTPC = {C(~xn) ∩ B(~xn, εTPC)|~xn ∈ X} (3.4.14)

where X is the universal set and C(~xn) denotes the set containing poses in different

sequences corresponding to ~xn. The topological base constructed by the temporal

pose correspondence is indicated by the red ovals in Fig. 3.6.

Similar to the construction of the supervised spatial neighborhood, the temporal

pose correspondence neighborhood is constructed by k-NN with a percentage pa-

rameter aTPC instead of k. Denote Jl be the number of sequences for action l and
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Algorithm 3.2. Constructing 𝒩TPC 

Input:  
 
  

Training sequences 𝐴1,⋯ ,𝐴𝐽; 
Corresponding labels 𝑦1,⋯ ,𝑦𝐽; 
Percentage parameter 𝑎TPC; 

Output: Temporal pose correspondence neighborhood 𝒩TPC; 

for 𝑙 = 1,⋯ , 𝐿 
        Find action sequences with label 𝜔𝑙; 
        for 𝑖𝑙 = 1,⋯ , 𝐽𝑙 
                for 𝑗𝑙 = 𝑖 + 1,⋯ , 𝐽𝑙 
                        Obtain warping function 𝑓∗ by solving (3.4.13); 
                        Add new elements to pose corresponding sets by 𝑓∗; 
                endfor; 
        endfor; 
endfor; 
for 𝑛 = 1,⋯ ,𝑁         
        Count the number of elements in 𝒞(�⃗�𝑛), #�𝒞(�⃗�𝑛)�; 
        Set 𝑘𝑛TPC = 𝑎TPC ∗ #�𝒞(�⃗�𝑛)�; 
        Select the 𝑘𝑛TPC nearest samples in 𝒞(�⃗�𝑛) as 𝒩TPC(�⃗�𝑛); 
endfor; 
return 𝒩TPC(�⃗�1),⋯ ,𝒩TPC(�⃗�𝑁). 
 

Figure 3.7: Algorithm 3.2: Construction of the TPC neighborhood

J = J1 + · · · + JL, where L is the number of classes. The algorithmic procedure to

construct the temporal pose correspondence neighborhood NTPC(~xn) for each ~xn is

stated in Fig. 3.7.

3.4.4 Supervised Spatial and Temporal Pose Correspondence

Neighborhood Topology Learning

As mentioned in Section 3.4.2 and Section 3.4.3, the topological base BSS contains

supervised spatial information, while BTPC consists of temporal pose correspon-

dence. In order to ensure that the topological base embodies both information,

we take the union of BSS and BTPC, and the fused topology namely, supervised
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spatio-temporal neighborhood topology is defined as

τST = BST,BST = {BST|BST ∈ BSS or BST ∈ BTPC} (3.4.15)

Based on (3.4.15), the fused neighborhood of each ~xn is given by

NST(~xn) = NSS(~xn) ∪NTPC(~xn) (3.4.16)

Suppose manifold MST is defined with the neighborhood topology τST. In [69],

it is shown that the optimal mapping f preserving locality on manifold MST is given

by solving the following optimization problem

arg min
f, s.t. ‖f‖MST

=1

∫
MST

‖∇f‖2 (3.4.17)

In order to avoid the out-of-sample problem, the mapping f is restricted to be

linear. In [88], it is shown that the optimal linear projections preserving locality can

be obtained by solving the following optimization problem,

arg min
~e, s.t. ~eTXDXT~e=1

~eTXLXT~e (3.4.18)

where L and D are the Laplacian and diagonal matrices as defined in Section 3.3.

Since the Laplacian L and diagonal matrix D are sparse with special structure,

XLXT and XDXT can be computed by the following equations

XLXT =
(
X1 · · ·XL

)
L1 0 0

0
. . . 0

0 0 LL



XT

1

...

XT
L

 =
L∑
l=1

XlLlXT
l (3.4.19)

XDXT =
(
X1 · · ·XL

)
D1 0 0

0
. . . 0

0 0 DL



XT

1

...

XT
L

 =
L∑
l=1

XlDlXT
l (3.4.20)

At last, the algorithmic procedure of the proposed SSTNTL method is presented

in Fig. 3.8.
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Algorithm 3.3. SSTNTL 
Input:  
 
  

Training sequences 𝐴1,⋯ ,𝐴𝐽; 
Corresponding labels 𝑦1,⋯ ,𝑦𝐽; 
Parameters 𝑎SS,𝑎TPC, 𝑟; 

Output: Projection matrix 𝑃 = (𝑒1,⋯ , 𝑒𝑟); 

Construct 𝒩SS by Algorithm 3.1; 
Construct 𝒩TPC by Algorithm 3.2; 
Construct 𝒩ST by (3.4.16); 
Set matrices 𝛴ℒ = 0 and 𝛴𝒟 = 0; 
for 𝑙 = 1,⋯ , 𝐿 
       Compute 𝛴ℒ = 𝛴ℒ + 𝑋𝑙ℒ𝑙𝑋𝑙𝑇 and 𝛴𝒟 = 𝛴𝒟 + 𝑋𝑙𝒟𝑙𝑋𝑙𝑇; 
endfor; 
Solve the eigenvalue problem 𝛴ℒ𝑒 = 𝜆𝛴𝒟𝑒; 
Sort the eigenvectors 𝑒1,⋯ , 𝑒𝑑′ by eigenvalues 𝜆1 ≤ ⋯ ≤ 𝜆𝑟; 
return 𝑃 = (𝑒1,⋯ , 𝑒𝑟). 
 

Figure 3.8: Algorithm 3.3: The algorithmic procedure of SSTNTL

3.5 Experiments

In this section, we evaluate the proposed SSTNTL on five publicly available action

databases: Weizmann [49], KTH [55], UCF [58], Hollywood human action [54] and

Cambridge-Gesture [59] database. In the following sections, we first give a brief

introduction to the experimental settings and the classifier used for the manifold

learning methods in Section 3.5.1. Then, the results on these five databases are

reported in Sections 3.5.2-3.5.6, respectively. At last, we compare SSTNTL with

and without TPC neighbors in Section 3.5.7.

3.5.1 Settings and Classifier

For the video databases used in the experiments, we follow the procedures as de-

scribed in Fig. 3.1 to preprocess the videos and represent the extracted images

for each database as discussed in Section 2.3. After obtaining the image features,

Principal Component Analysis (PCA) [39] is used for dimensionality reduction to
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avoid the singular matrix problem and improve the computational efficiency. The

dimension of PCA is determined by keeping around 90% energy.

As shown in Fig. 3.8, parameters aSS, aTPC, r need to be determined in SST-

NTL. Since it is difficult and time-consuming to search the best combination of

the three parameters simultaneously, we determine the parameters in a two-stage

scheme. First, setting r = 60, aSS and aTPC are selected from {0.02, 0.04, · · · , 0.2}

and {0.1, 0.2, · · · , 0.9} respectively. Second, the best dimension r is selected from

two to the determined PCA dimension with step size two for fixed aSS and aTPC.

On the other hand, the parameter selection procedure in other methods is similar

to that in SSTNTL. The neighborhood parameter in LPP and LSDA is selected

from the same set as aSS in SSTNTL. Since LSTDE is time-consuming with large

neighborhood parameter, the neighborhood parameter in LSTDE is selected from

{0.01, 0.02, 0.03} instead. In order to avoid extra parameter selection by the heat

kernel weighting, the weight matrix is calculated by the simple minded method as

mentioned in Section 3.3.

After feature extraction, we use a nearest neighbor framework in the classification

stage. Let Aq be a query action sequence. The class label of Aq is given by

yq = yargmin
j
d(PTZq ,PTZj) (3.5.21)

where d measures the distance between embedded feature sequences Zq and Zj.

Since median Hausdorff distance gives more robust results as mentioned in [85], we

define d as equation (3.5.22) in the following experiments.

d(Zq, Zj) =median
nj

min
nq

‖~zqnq − ~zjnj
‖+ median

nq

min
nj

‖~zqnq − ~zjnj
‖ (3.5.22)

3.5.2 Results on Weizmann Human Action Database

The recognition accuracies of SSTNTL with different values of aSS and aTPC, and

fixed r = 60 on this database are shown in Fig. 3.9. The darker element of the matrix

in Fig. 3.9 represents higher recognition rate. The columns are the recognition rates
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𝑎TPC 

Figure 3.9: Recognition accuracy (%) of SSTNTL with different values of aSS and aTPC,

and fixed r = 60 on Weizmann database

with changing aSS for specific aTPC, while rows are recognition rates with changing

aTPC for specific aSS. From Fig. 3.9, we can see that the highest accuracy of 100%

is achieved in this database, when aSS = 0.06 and aTPC = 0.9. From the last

row in Fig. 3.9, we observe that the recognition rates do not change when aSS =

0.2 for different aTPC. This may be due to the reason that the supervised spatial

neighborhood NSS already contains the temporal pose correspondence neighborhood

NTPC, when aSS = 0.2. Moreover, the recognition accuracy changes rapidly from

92% to 98% when aSS = 0.02 and aTPC changes slightly from 0.2 to 0.3. On the

other hand, the accuracy has little change when aTPC changes significantly from 0.3

to 0.9. These results show that the accuracy may not be a continuous function of

the parameters. And, a stable and better performance can be achieved with larger

aTPC.

Fig. 3.10 shows the recognition accuracies of different methods with different

dimensions. From Fig. 3.10, we can see that the recognition rates of SSTNTL are

higher than those of all the other methods in every dimension. On the other hand,

when the dimension is less than 20, SSTNTL, LPP and SLPP outperform LSDA

and LSTDE a lot. This result suggests that the neighborhood topology learning

39



Figure 3.10: Recognition accuracy with different embedded dimensions for the best neigh-

borhood parameters on Weizmann database

methods with clear manifold interpretation are much better than others, when the

number of selected dimensions is small.

We compare the best recognition performances of different manifold embedding

methods on this database in the second column of Table 3.1. SSTNTL achieves the

highest recognition accuracy of 100%, and outperform other embedding methods by

6.7%. On the other hand, we compare SSTNTL with state-of-the-art algorithms1 in

Table 3.2. Our method outperforms space-time interest point based methods [80]

[81] [91] as well as sparse representation approach [92]. Since Weizmann database

is relatively simple, boosted exemplar learning (BEL) [79], local trinary patterns

(LTP) [93] and the proposed method give the perfect performance of 100% recog-

nition accuracy. While BEL classifies actions based on exemplars and LTP extends

the local binary patterns, these two methods do not consider the global constrain-

t of temporal labels. Thus, the proposed method outperforms them on the more

challenging databases as shown in Table 3.3, Table 3.4 and Table 3.7.

1Please be noticed that the results of state-of-the-art methods are extracted from their papers

under the same setting.
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Database Weizmann KTH KTH UCF HOHA

(Feature) (Gray) (Gray) (GIST) (GIST) (GIST)

SSTNTL 100.0 79.6 94.4 91.3 44.5

LPP [88] 92.2 72.2 89.4 88.6 29.2

SLPP [31] 84.4 70.8 88.4 86.6 27.0

LSDA [29] 93.3 75.0 83.3 84.6 29.4

LSTDE [32] 93.3 75.9 80.6 82.6 26.5

Table 3.1: Recognition accuracies (%) of manifold embedding methods on different

databases

Method Accuracy

SSTNTL 100.0

LTP [93] 100.0

BEL [79] 100.0

Sparse Representation [92] 98.9

Effective Codebook [91] 95.4

BoW [80] 90.0

3D Gradients [81] 84.3

Table 3.2: Recognition accuracy (%) comparison with state-of-the-art action recognition

systems on Weizmann database

3.5.3 Results on KTH Human Action Database

Three training/testing protocols (refer to [57] for details about the relationship be-

tween the performance and evaluation protocol) are used for evaluation and the

results are reported as follows.

Following the split setting in [55], the KTH database is divided into training

(eight persons), validation (eight persons) and testing (nine persons) sets. Eight-

fold cross-validation is performed on the training and validation sets to find optimal

parameters and model. We first compare SSTNTL with other manifold embedding
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Method (train/test setting: split) Accuracy

SSTNTL 94.4

Product Manifold [60] 96.0

Neighbor Hierarchy [94] 94.5

Dense Trajectory [84] 94.2

BoD+MKGPC [95] 94.1

Effective Codebook [91] 92.6

Harris 3D + HoF [96] 92.1

Random Forest [97] 91.8

HoG + HoF [54] 91.8

3D Gradients [81] 91.4

LTP [93] 90.1

Table 3.3: Recognition accuracy (%) comparison with state-of-the-art action recognition

systems on KTH database with split setting

methods using gray-scale and GIST features in the third and fourth columns of

Table 3.1, respectively. From Table 3.1, we can see that SSTNTL outperforms other

methods using both image features, while the performances with GIST are better

than those with gray-scale feature. Then, We compare the proposed method with

state-of-the-art algorithms under the split setting in Table 3.3. From Table 3.3, we

can see that the proposed method outperforms most of the existing methods and is

comparable with the hierarchical approach [94]. While Product Manifold (PM) [60]

achieves the highest accuracy, the result is obtained by performing PM on action

sequences with manually spatio-temporal alignment.

For the second protocol, we evaluate the proposed method under leave-one-

person-out (LOO) setting using all the four scenarios. The results are reported

in Table 3.4. As shown in Table 3.4, the proposed method achieves the second high-

est accuracy of 96.3%. PM is better than the proposed method by 0.7%. However,

the result with PM is obtained by performing spatio-temporal alignment manually.
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Method (train/test setting: LOO) Accuracy

SSTNTL 96.3

Product Manifold [60] 97.0

MoSIFT [57] 96.3

TCCA [59] 95.3

BEL [79] 95.3

Tracklet [83] 94.5

BoW [80] 83.3

Table 3.4: Recognition accuracy (%) comparison with state-of-the-art action recognition

systems on KTH database with LOO setting

Method S1 S2 S3 S4 Mean

SSTNTL 98.0 88.7 96.0 100.0 95.7

Tracklet [83] 98.0 92.7 92.0 96.7 94.8

AFMKL [98] 96.7 91.3 93.3 96.7 94.5

HSTM [99] 95.6 87.4 90.7 94.7 92.1

Table 3.5: Recognition accuracy (%) comparison with state-of-the-art action recognition

systems on KTH database under each scenario

While the proposed method detects the regions of interest automatically, the result

is also comparable.

At last, we compare SSTNTL with existing methods under each scenario with

leave-one-person-out setting. The results are shown in Table 3.5. SSTNTL outper-

forms others under scenarios of outdoor, outdoor with clothes variation and indoor.

Especially, the proposed method achieves 100% accuracy for the indoor scenario.

This convinces that the proposed method is very effective under controlled setting.

On the other hand, Tracklet [83] and AFMKL [98] are better than the proposed

method under scenario two of outdoor with scale variation. The reason can be ex-

plained as follows. The features used in SSTNTL are obtained by motion detection.

43



Method Accuracy

SSTNTL 91.3

AFMKL [98] 91.3

Dense Trajectory [84] 88.2

Neighbor Hierarchy [94] 87.3

Dense HoF [96] 85.6

Sparse Representation [92] 83.8

LTP [93] 79.2

Table 3.6: Recognition accuracy (%) comparison with state-of-the-art action recognition

systems on UCF database

Since motion detection under scenario two with scale variations is more challenged

than that under the other three scenarios, the detected moving regions in scenario

two must be less robust. Thus, local feature based methods, Tracklet and AFMKL,

without motion detection outperform the proposed method under scenario two.

3.5.4 Results on UCF Sports Database

The last but one column in Table 3.1 shows the recognition rates of different manifold

embedding methods on UCF Sports Database. The same conclusion can be drawn

that SSTNTL outperforms other manifold embedding methods on this database.

In Table 3.6, we further compare the proposed method with state-of-the-art action

recognition systems. From Table 3.6, we can see that SSTNTL gives the high-

est accuracy 91.3% together with the augmented features (context and appearance

distribution features) multiple kernel learning (AFMKL) method [98]. And the pro-

posed method outperforms dense trajectory [84], space-time interest point (STIP)

based methods [94] [96], sparse representation [92], and local trinary patterns (LT-

P) [93]. This is because the scene representations may be discriminative for some

sport actions. And the proposed method not only captures the temporal variation,
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(a) SSTNTL (b) AFMKL [98]

Figure 3.11: Confusion matrices on UCF sport database

but also makes use of the discriminative representations of image frames. Fig. 3.11

shows the confusion matrices of SSTNTL and AFMKL, which both achieves the

best recognition accuracy. From Fig. 3.11(a), we can see that the proposed method

achieves 100% accuracy for six in ten actions, including diving, lifting, riding horse,

skateboarding, swinging at the bench and at the high bar. Comparing the confusion

matrices in Fig. 3.11(a) and Fig. 3.11(b), the performance of the proposed method

is better than or equal to that of AFMKL in classifying seven out of ten actions.

3.5.5 Results on HOHA Database

The average (Avg) values of the per-class precisions of the manifold embedding

methods on HOHA database are recorded in the last column of Table 3.1. From

Table 3.1, we can see that the average precision of SSTNTL is 15% higher than those

of other manifold embedding methods on this database. This convinces the effec-

tiveness of SSTNTL in the more challenging database, comparing to other manifold

embedding methods.

In Table 3.7, we compare the proposed method with state-of-the-art action recog-

nition systems in per-class precisions and their average. From Table 3.7, we can see

that the average precision of SSTNTL is higher than the baseline method [54] by

combining Histogram of Oriented Gradients (HoG) and Optical Flow (HoF), as well
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Method AnP GoC HS HP Ki SiD SiU StU Avg

SSTNTL 40.0 62.5 44.4 38.1 44.2 30.2 44.4 52.4 44.5

BoD + MKGPC [95] 43.4 46.8 44.1 46.9 57.3 46.2 38.4 57.1 47.5

HoG + HoF [54] 32.1 41.5 32.3 40.6 53.3 38.6 18.2 50.5 38.4

LTP [93] 35.1 32.0 33.8 28.3 57.6 36.2 13.1 58.3 36.8

Tracklet [83] 33.0 27.0 20.1 34.5 53.7 27.4 19.0 60.0 34.3

3D Gradients [81] 18.6 22.6 11.8 19.8 47.0 32.5 7.0 38.0 24.7

Table 3.7: Recognition precision (%) comparison with state-of-the-art action recognition

systems on Hollywood database

as recently proposed descriptors [81] [93] [83]. And the proposed method outper-

forms others for classifying actions including Get out of Car, Hand Shake and Sit

Up. The performance of the proposed method is comparable with, but lower than

the multiple kernel Gaussian process classifier (MKGPC) [95]. This is attributed

to the combination of bag-of-detector (BoD) scene descriptors, HoG, HoF and 3D

Gradients for MKGPC, while the proposed method is based on one kind of feature.

3.5.6 Results on Hand Gesture Action Database

Recognition accuracies in different illumination sets on this database are presented in

Table 3.8. Compared with the manifold embedding methods, SSTNTL outperforms

others under the four different illumination sets. This convinces that SSTNTL is

better than LPP and SLPP with other topologies, as well as the local discriminative

algorithms even with temporal information.

In order to further compare the generalization ability of the manifold embedding

methods, the 2D visualizations of the training and testing data with illumination

set three are shown in Fig. 3.12. For each method, the 2D embedding of the training

data is presented in the upper row, while the one of the testing data is in the lower

row. From Fig. 3.12, we can see that the 2D embedding of the testing data deviates
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Method Set 1 Set 2 Set 3 Set 4 Mean

SSTNTL 89 89 85 91 89

LPP [88] 85 84 75 89 83

SLPP [31] 66 65 53 68 63

LSDA [29] 66 67 58 68 65

LSTDE [32] 68 66 69 80 71

TCCA [59] 81 81 78 86 82

PM [60] 89 86 89 87 88

Table 3.8: Recognition accuracy (%) of different methods on Cambridge-Gesture database

to a different degree from that of the training data by different method.

It is not easy to compare different methods by the 2D embeddings using visualiza-

tion. As mentioned in [100], the median Hausdorff distance defined by (3.5.22) can

be used to quantify the similarity between the 2D embeddings. Denote the training

and testing embeddings as Ztrain = {Ztrain
1 , · · · , Ztrain

L } and Ztest = {Ztest
1 , · · · , Ztest

L },

where Ztrain
l and Ztest

l are the embeddings for action class l. With these notations,

we first measure the shape similarity between the training and testing data as two

data sets. And the first similarity index is given by 1/d(Ztrain, Ztest), where d is a

distance function defined by (3.5.22). With label information, we further calculate

the average difference between the training and testing data of each class. And the

second index is defined by L/
∑L

l=1 d(Ztrain
l , Ztest

l ).

The similarity quantification scores for these two indexes are shown in the second

and third columns in Table 3.9. The similarity measures in Table 3.9 are consis-

tent with each other for different methods. However, different from the results in

Table 3.8, SLPP outperforms LSDA and LSTDE in terms of the two similarity mea-

sures. In this case, we further show the recognition rate with embedded dimension

two and different dimension in the last column of Table 3.9 and Fig. 3.13, respec-

tively. From Table 3.9, we can see that when the embedded dimension is two, the
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(e) LSTDE [32]

Figure 3.12: 2D visualization of different methods with the training and testing data on

Cambridge-Gesture database
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Method Similarity 1 Similarity 2 Accuracy (dim=2)

SSTNTL 0.941 0.698 22.2%

LPP [88] 0.904 0.682 21.1%

SLPP [31] 0.578 0.485 18.3%

LSDA [29] 0.530 0.462 16.7%

LSTDE [32] 0.499 0.462 13.9%

Table 3.9: Two similarity measures of the 2D embeddings for training and testing data

and recognition accuracy with embedded dimension two on Cambridge-Gesture database

recognition rates of the neighborhood topology learning methods are higher than

those of LSDA and LSTDE, so the similarity results in Table 3.9 are reasonable.

On the other hand, Fig. 3.13 indicates that SSTNTL, LPP and SLPP outperform

LSDA and LSTDE, when the dimension is less than 50, which is similar to the re-

sults in Weizmann database. And these results show that the generalization ability

of the topology based manifold learning methods is better than that of the local

discriminability based methods, when the reduced dimension is low. And SSTNTL

gives the best performance in this experiment.

We also compare the proposed method with state-of-the-art gesture action recog-

nition algorithms. The Tensor Canonical Correlation Analysis (TCCA) [59] and

Product Manifold (PM) [60] are used for comparison with the manifold embedding

methods. From Table 3.8, we can see that both PM and SSTNLT get the highest

accuracy of 89% for illumination set one. The product manifold method outper-

forms the others for set three, while SSTNTL outperforms others for illumination

sets two and four. Compared with the mean recognition rates, SSTNTL achieves

the highest mean accuracy of 89% in this database.

At last, the confusion matrices of the best four algorithms are shown in Fig. 3.14.

Comparing the diagonal elements in the confusion matrices, SSTNTL outperforms

LPP on eight actions, TCCA and product manifold method on five actions, respec-

tively. This means SSTNTL outperforms others for classifying more than half of the
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Figure 3.13: Recognition accuracy with the best neighborhood parameter and different

embedded dimensions on Cambridge-Gesture database

(a) SSTNTL (b) LPP [88]

(c) TCCA [59] (d) PM [60]

Figure 3.14: Confusion matrix on Hand Gesture confusion matrices
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Method Weizmann KTH UCF HOHA Gesture

With TPC 100.0 94.4 91.3 44.5 89

Without TPC 95.6 90.3 89.3 32.3 80

Table 3.10: Recognition accuracies (%) of SSTNTL with and without TPC neighborhood

on different databases

gesture actions in this database. Overall speaking, SSTNTL is also performing well

for hand gesture action recognition.

3.5.7 Comparing SSTNTL with and without TPC Neigh-

bors

In the last experiment, we compare SSTNTL with and without temporal pose corre-

spondence (TPC) neighbors constructed by the DTW method. From Table 3.10, we

can see that SSTNTL with TPC neighbors outperforms that without TPC neigh-

bors on different databases. This convince that the neighborhood constructed by

the global constraint of temporal lables help to improve the performance.

In order to further show that the proposed method can discover the correspond-

ing poses, we compare the supervised spatial neighborhood and TPC neighborhood

on KTH database. Fig. 3.15 shows the TPC neighbors which cannot be detected

by the supervised spatial information. From Fig. 3.15, we can see that most of the

detected TPC neighbors are corresponding poses for the referred images on the left

hand side. This gives the reason why SSTNTL with TPC neighbors is better.

3.6 Summary

In this chapter, a novel manifold learning method, namely Supervised Spatio-Temporal

Neighborhood Topology Learning (SSTNTL) is proposed for action classification. S-
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 TPC neighbors TPC neighbors Ref.  Ref.  

Figure 3.15: Example TPC neighbors do not belong to the SS neighborhood

tarting from analyzing the topological characteristics in the context of action recog-

nition, we proposed to construct the neighborhood topology from two aspects. First,

the spatial distribution containing local structures, as well as the label information

separating data points from different class are used to construct the supervised

spatial topology. Second, the temporal pose correspondence neighborhood is con-

structed by discovering the global constraints of temporal labels in action sequences

of the same class. These two neighborhood topologies are fused by taking the union

of them. Based on the fused topology, SSTNTL employs the locality preserving

property in LPP, and solves the generalized eigenvalue problem to obtain the best

projections that not only separate data points from different classes, but also pre-

serve local structures and global constraints of temporal labels.

The proposed algorithm is evaluated on five publicly available action databases.

Experimental results show that SSTNTL outperforms the neighborhood topology

learning methods with other topologies, as well as the local discriminative algo-

rithms even with temporal information. On the other hand, by analyzing the 2D

visualizations of the training and testing data, it is shown that the generalization

ability of the topology learning methods is better than that of the local discrim-

inability based methods, when the reduced dimension is low. And SSTNTL shows

the best generalization ability. In addition, compared with state-of-the-art action

recognition algorithms, SSTNTL gives convincing performance for both human and

gesture action recognition.
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Chapter 4

Linear Dependency Modeling

4.1 Introduction

Instead of extracting a high discriminative feature, fusion has been proposed to im-

prove the recognition performance [11] [14]. One popular approach to make use of all

features is to train a classifier for each of them, and then combine the classification

scores to draw a conclusion. While many classifier combination techniques [2] [8] [12]

have been studied and developed in the last decade, it is a general assumption that

classification scores are conditionally independent distributed. With this assump-

tion, the joint probability of all the scores can be expressed as the product of the

marginal probabilities. The conditionally independent assumption could simplify

the problem, but may not be valid in many practical applications.

In [5], instead of taking the advantage of conditionally independent assumption,

the classifier fusion method is proposed by estimating the joint distribution of multi-

ple classifiers and performance is improved. However, when the number of classifiers

is large, it needs numerous data to accurately estimate the joint distribution [27]. On

the other hand, Terrades et al. [13] proposed to combine classifiers in a non-Bayesian

framework by linear combination. Under dependent normal assumption (DN), they

formulated the classifier combination problem into a constraint quadratic optimiza-
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tion problem. Nevertheless, if normal assumption is not valid, the combination will

not be optimal. Apart from these methods, LPBoost [4] and its multi-class vari-

ants [14] aim at determining the correct weighting for linear classifier combination

to improve the classification performance. In [101], multi-class LPBoost is extended

to online setting, so that it does not need to solve the linear programming (LP)

problem from scratch for every new sample added to the system. These boosting

based combination methods can model dependency implicitly as well.

All the above-mentioned methods perform the fusion based on classification s-

cores and implicitly assume that the feature dependency can be reflected by the

score dependency. However, the Data Processing Inequality (DPI) [26] indicates

that feature level contains more information than that in classifier level, so feature

level dependence modeling should be performed directly. The key problem is that

the dimension of feature is normally high and it is very hard to estimate the joint

distribution accurately in feature level. Multiple Kernel Learning (MKL) [102] can

be considered as a feature level fusion method and finds the optimal combination

of kernels of different features. To solve the complexity problem, fast methods [103]

[104] are proposed. Recently, variants of MKL have been developed and used for

object recognition [62] [105] [106]. MKL can be considered as implicit dependency

modeling technique based on the feature kernels, but dependency information may

lose when original features are converted into kernel matrices.

In this chapter, a novel framework for dependency modeling is developed, and

two methods, namely Linear Classifier Dependency Modeling (LCDM) and Linear

Feature Dependency Modeling (LFDM) are proposed for classifier level and fea-

ture level fusion, respectively. Inspired by the Bayesian model with independent

assumption, we prove that linear combination of the posterior probabilities of each

classifier can model dependency under mild assumptions. Under the framework of

linear dependency modeling, it can be shown that more information about class la-

bel is available in feature level, so we generalize LCDM to feature level and propose

LFDM. Finally, the optimal models for LCDM and LFDM are obtained by solving
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a standard linear programming problem, which maximizes the margins between the

genuine and imposter posterior probabilities.

The rest of this chapter is organized as follows. Section 4.2 will report the

proposed method. Experimental results and a brief summary of this chapter are

given in Sections 4.3 and Sections 4.4, respectively.

4.2 Linear Dependency Modeling

With conditionally independent assumption, the posterior probability can be com-

puted as in (2.1.1) or (2.1.3). However, as discussed in Section 4.1, this assumption

may not be true in many practical applications. Thus, in this chapter, we remove the

independent assumption and study the dependent case. In this section, we propose

a new linear dependency modeling method to model dependency. We first derive

the model in classifier level and then proceed to feature level. Finally, we present

a learning method to learn the optimal linear dependency model under marginal

criterion.

4.2.1 Linear Dependency Modeling in Classifier Level

Let us consider the case that there exists m′, s.t. Pr(ωl|~xm′) = 0 and Pr(ωl|~xm) = 1

for 1 ≤ m ≤M , m 6= m′. In this case, there are M − 1 classifiers giving strong

confidences on assigning the class label as ωl, and one classifier concludes other

label. When M � 1, we can ignore the m′ classifier giving Pr(ωl|~xm′) = 0, and

the posterior probability Pr(ωl|~x1, · · · , ~xM) is expected to be large. However, with

conditionally independent assumption, from (2.1.1), the posterior probability by all

classifiers becomes zeros. This means, in this case, the posterior probability only

depends on one single classifier which satisfies Pr(ωl|~xm′) = 0 and the other classifiers

will not have any contribution on it.
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In order to avoid the posterior probability to be zero and dominated only by

one classifier, we add a term to Pr(ωl|~xm′). This action also affect the posterior

probability of some classifiers. So, for all classifiers, we add terms to model the

dependency between them. Moreover, the classifier scores with dependency terms

cannot deviate much from the original ones. Otherwise the original decision by each

single classifier will take little effect on the final decision. Therefore, the values of the

dependency terms must be small. Under the assumption that posterior probability

of each classifier will not deviate dramatically from the prior as in Sum rule [2], δlm,

m = 1, · · · ,M given by (2.1.2) are small values. In this context, we define the small

dependency term for feature m and class ωl as the multiplication of dependency

weight αlm, prior probability Pr(ωl) and small value δlm. In order to ensure that

the dependency term αlmPr(ωl)δlm is still not too large and bounded by the fixed

values of prior probability Pr(ωl) and small number δlm, we restrict |αlm| ≤ 1, so

that |αlmPr(ωl)δlm| ≤ |Pr(ωl)δlm|.

Adding dependency term αlmPr(ωl)δlm to each Pr(ωl|~xm), the posterior proba-

bility becomes

Pr(ωl|~x1, · · · , ~xM) =
P0

Pr(ωl)M−1

M∏
m=1

(Pr(ωl|~xm) + αlmPr(ωl)δlm) (4.2.1)

In the above equation (4.2.1), αlm, m = 1, · · · ,M are the weights to model the

dependency between classifiers. If all the classifiers are independent with each other,

αlm = 0 for m = 1, · · · ,M and the posterior probability with dependency terms

given by (4.2.1) becomes the Product model as in (2.1.1) with the independent

assumption. On the other hand, when classifiers are dependent, αlm 6= 0 and the

posterior formulation (4.2.1) models dependency.

The product formulation (4.2.1) contains high order terms of the dependency

weights, which make it difficult to determine the optimal model. Thus, we further

expand the product formulation as follows. With the definition of the small number
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δlm in (2.1.2), the dependency model (4.2.1) becomes

Pr(ωl|~x1, · · · , ~xM) = P0 ∗ Pr(ωl)
M∏
m=1

(1 + βlmδlm) (4.2.2)

where βlm = αlm + 1, 0 ≤ βlm ≤ 2. Since the terms δl1, · · · , δlM defined by (2.1.2)

are assumed to be small, the second and higher order terms of them can be neglect-

ed. If we expand the product term in the right hand side of (4.2.2), the posterior

probability becomes

Pr(ωl|~x1, · · · , ~xM) = P0 ∗ Pr(ωl)(1 +
M∑
m=1

βlmδlm) (4.2.3)

Substituting δlm by (2.1.2) into (4.2.3), we obtain

Pr(ωl|~x1, · · · , ~xM) = P0 ∗ (
M∑
m=1

βlm[Pr(ωl|~xm)− Pr(ωl)] + Pr(ωl)) (4.2.4)

This gives the linear dependency model easier to be determined.

After that, the summation of weights
∑M

m=1 βlm should be normalized with re-

spect to class label l. So
∑M

m=1 βlm is a constant Q, i.e.
∑M

m=1 βlm = Q. Constant

Q is set to be M due to the following two reasons.

First, the general dependency model given by (4.2.4) includes the independent

case. When the independent assumption holds, βlm = 1 for all m, which results in

Q =
∑M

m=1 βlm = M .

Second, constraint
∑M

m=1 βlm = M gives a balance between under-learning and

over-learning, which is elaborated as follows. With constraint 0 ≤ βlm ≤ 2 for the

dependency model, Q can be chosen from 0 to 2M . When Q = 0, all dependency

weights βlm become zero. In this case, the classifier scores Pr(ωl|~xm) do not have any

contribution to the posterior probability Pr(ωl|~x1, · · · , ~xM). And the classification

only depends on the prior probability Pr(ωl), which is not reasonable. Thus, the

range for constant Q should be 0 < Q ≤ 2M . When Q is too large, e.g. Q = 2M , the

coefficients βlm are all equal to two and need not to be determined by the training

data. Thus, the model may suffer from under-learning problem. On the other hand,

if Q is too small, e.g. 0 < Q ≤ 2, there may have only one non-zero coefficient with
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value Q. Under this situation, if there is a strong classifier which is “perfect” for the

training data, all the coefficients are zero except the one for the “perfect” classifier.

While multiple classifiers/features provide complementary information for the class

label and the “perfect” classifier may not be suitable for the testing data, the model

suffers from over-learning problem. Thus, Q cannot be too large nor too small. And

the constraint
∑M

m=1 βlm = M with a moderate constant M helps to reduce the

problem of under-learning and over-learning.

Finally, the Linear Classifier Dependency Model (LCDM) is summarized as e-

quation (4.2.4) with constraints 0 ≤ βlm ≤ 2 and
∑M

m=1 βlm = M . When classifiers

are independent with each other, βlm = 1 for m = 1, · · · ,M and LCDM becomes the

Sum rule as in (2.1.3). On the other hand, when classifiers are dependent, βlm 6= 1

and the LCDM method models dependency.

4.2.2 Linear Dependency Modeling in Feature Level

Given the feature vectors ~x1, · · · , ~xM , where ~xm = (xm1, · · · , xmNm) and Nm is

the dimension of feature m. Pr(ωl|~xm) can be computed by estimating the joint

distribution Pr(xm1, · · · , xmNm |ωl). Since ~x1, · · · , ~xM are normally high dimensional

vectors, it needs numerous samples to estimate the joint density accurately [27]. In

general, the probability is hard to be determined accurately.

In classifier combination methods [2] [13], the posterior probabilities Pr(ωl|~xm)

are viewed as scores calculated from certain classifiers, such as support vector ma-

chines (SVM). In this scenario, classifiers are trained individually for a single feature

under certain criteria. However, there is no guarantee that they are optimal after

fusion.

In the scenario that feature vectors are given, Pr(ωl|xmn) can be computed by

one-dimensional probability estimation. Let us denote S = (s11, · · · , sLM) and

F = (f111, · · · , fLMNM
), where slm = Pr(ωl|~xm) and flmn = Pr(ωl|xmn). In the
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classification problems, information from S in classifier level or F in feature level is

used to infer the class label ωl. From the aspect of information quantity of S and

F about the class labels, we have the following proposition. (Please refer to the

appendices for the proof of this proposition.)

Proposition 1.

Under the framework of linear dependency modeling by (4.2.4), I(S,Y) ≤ I(F ,Y),

where S and F are the random vectors of the classification scores and features respec-

tively, Y is the label viewed as a random variable, and I(·, ·) represents the mutual

information.

The above proposition indicates the relationship between classifier level and feature

level fusion from the information quantity aspect. And this proposition implies that

feature level contains more information about the class label than that in classifier

level.

Based on the above analysis, we propose to model the dependency in feature

level. Let us consider the posterior probability by all features Pr(ωl|~x1, · · · , ~xM)

again. Given the feature vectors ~x1, · · · , ~xM , it can be rewritten as

Pr(ωl|~x1, · · · , ~xM) = Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
) (4.2.5)

With the representation (4.2.5), each element in the feature vector can be viewed

as a single classifier. Similar to the analysis in Section 4.2.1, the dependency term

for each xmn can be written as αlmnPr(ωl)δlmn, where αlmn satisfies |αlmn| ≤ 1 and

each δlmn is a small number, s.t.

Pr(ωl|xmn) = Pr(ωl)(1 + δlmn) (4.2.6)

Then, the posterior probability analogous to (4.2.1) is given by

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
)

=
P ′0

Pr(ωl)M−1

M∏
m=1

Nm∏
n=1

(Pr(ωl|xmn) + αlmnPr(ωl)δlmn)
(4.2.7)
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where P ′0 =
∏M

m=1

∏Nm
n=1 Pr(xmn)

Pr(~x1,··· ,~xM )
. With (4.2.6), the above equation can be rewritten as

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
)

= P ′0 ∗ Pr(ωl)
M∏
m=1

Nm∏
n=1

(1 + γlmnδlmn)
(4.2.8)

where γlmn = αlmn + 1. As δlmn defined in (4.2.6) measures the difference between

posterior Pr(ωl|xmn) and prior Pr(ωl), δlmn is assumed to be small. By expanding

the product in (4.2.8) and neglecting the terms of second and higher orders, it has

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
)

= P ′0 ∗ Pr(ωl)(1 +
M∑
m=1

Nm∑
n=1

γlmnδlmn)
(4.2.9)

Substituting δlmn by (4.2.6) into (4.2.9), the posterior probability with dependency

modeling in feature level is given as

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
)

= P ′0 ∗ (
M∑
m=1

Nm∑
n=1

γlmn[Pr(ωl|xmn)− Pr(ωl)] + Pr(ωl))
(4.2.10)

At last, applying the analysis for the LCDM constraints in Section 4.2.1 to feature

level, we have two constraints,
∑M

m=1

∑Nm

n=1 γlmn =
∑M

m=1Nm and 0 ≤ γlmn ≤ 2, for

the proposed Linear Feature Dependency Model (LFDM).

4.2.3 Learning Optimal Linear Dependency Model

The optimal LCDM and LFDM can be learned by different criteria to optimize the

classification performance. In this section, we consider the marginal criterion, and

give detailed derivations on how to learn the optimal LFDM. Similar derivations

can be applied to LCDM.

Let the training samples and corresponding labels be ~xj = (xj11, · · · , xjMNM
)

and yj, j = 1, · · · , J , respectively. If all the training samples are correctly classified,

Pr(yj|~xj) > maxωl 6=yj Pr(ωl|~xj). Under this condition, the difference between the
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genuine and imposter probabilities Pr(yj|~xj)−maxωl 6=yj Pr(ωl|~xj) is large. In turn,

the performance will be good. Considering the marginal criterion, and inspired by

LPBoost [4] and its multiclass generalization [14], the objective function for learning

the best model is defined as

min
γ,ρ,ξ
− ρ+

1

νJ

J∑
j=1

∑
ωl 6=yj

ξjl

s.t. i) Pr(yj|~xj)− Pr(ωl|~xj) ≥ ρ− ξjl,∀j, ωl 6= yj

ii) Pr(ωl|~xj) ≥ 0,∀j, ωl

iii) ξjl ≥ 0,∀j, ωl 6= yj

(4.2.11)

where ν is a positive parameter, s.t. ν ∈ (0, 1). Let us denote Pr(ωl|xjmn)− Pr(ωl)

in (4.2.10) as pjlmn andK =
∑M

m=1Nm. Suppose the prior probabilities are the same,

i.e. Pr(ωl) = 1
L
,∀ωl, where L is the number of classes. Adding the normalization

and range constraints to γlmn as mentioned in Section 4.2.2, substituting (4.2.10)

into (4.2.11), and ignoring P ′0 as a constant respective to class label, the optimization

problem (4.2.11) becomes

min
γ,ρ,ξ
− ρ+

1

νJ

J∑
j=1

∑
ωl 6=yj

ξjl

s.t. i)
M∑
m=1

Nm∑
n=1

γyjmnpjyjmn −
M∑
m=1

Nm∑
n=1

γlmnpjlmn ≥ ρ− ξjl,∀j, ωl 6= yj

ii)
M∑
m=1

Nm∑
n=1

γlmnpjlmn +
1

L
≥ 0,∀j, ωl

iii) ξjl ≥ 0, ∀j, ωl 6= yj

iv)
M∑
m=1

Nm∑
n=1

γlmn = K, ∀l

v) 0 ≤ γlmn ≤ 2,∀l,m, n

(4.2.12)

Optimization problem (4.2.12) is theoretically sound and purely derived from (4.2.11)

mathematically. However, according to the following proposition, optimization prob-

lem (4.2.12) may not have feasible solution in practice. (Please refer to the appen-

dices for the proof of this proposition.)
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Proposition 2.

If there exist j0 and l0, s.t. Pr(ωl0|xj0mn) < Pr(ωl0)(1− 1
K

),∀m,n, then constraints

ii) and iv) in (4.2.12) cannot be hold at the same time.

When the fusion is performed in feature level, K will be a very large number, i.e.

1
K

is very small. In this situation, The condition in the above proposition is likely

to be satisfied. Thus, optimization problem (4.2.12) will not have feasible solution,

and one of the two constraints should be removed.

Constraint ii) in (4.2.11) is to ensure that the posterior probability is non-

negative. From (4.2.11) to (4.2.12), the posterior probability is substituted with

(4.2.10). Let us check the derivation from (4.2.8) to (4.2.10). We can see that equa-

tion (4.2.10) is the first order approximation to the posterior probability. Since the

summation of the neglected terms of second and higher orders may be positive or

negative, constraint ii) in (4.2.12) cannot guarantee that the posterior probability

is non-negative. On the other hand, since γlmn is less than or equal to 2 and δlmn

is a small number, e.g. |δlmn| ≤ 1
2
, the posterior probability in product formula-

tion is always non-negative according to (4.2.8). Thus, we remove the constraint ii)

in (4.2.12). Consequently, the final optimization problem becomes

min
γ,ρ,ξ
− ρ+

1

νJ

J∑
j=1

∑
ωl 6=yj

ξjl

s.t. i)
M∑
m=1

Nm∑
n=1

γyjmnpjyjmn −
M∑
m=1

Nm∑
n=1

γlmnpjlmn ≥ ρ− ξjl, ∀j, ωl 6= yj

ii) ξjl ≥ 0,∀j, ωl 6= yj

iii)
M∑
m=1

Nm∑
n=1

γlmn = K, ∀l

iv) 0 ≤ γlmn ≤ 2,∀l,m, n

(4.2.13)

The optimal LFDM is learned by (4.2.13). Similarly, the optimal LCDM can

be obtained by applying (4.2.4) into (4.2.11) and following the same derivation

procedures from (4.2.11) to (4.2.13). The optimization problem for LCDM is given
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as

min
β,ρ,ξ
− ρ+

1

νJ

J∑
j=1

∑
ωl 6=yj

ξjl

s.t. i)
M∑
m=1

βyjmhjyjm −
M∑
m=1

βlmhjlm ≥ ρ− ξjl,∀j, ωl 6= yj

ii) ξjl ≥ 0,∀j, ωl 6= yj

iii)
M∑
m=1

βlm = M,∀l

iv) 0 ≤ βlm ≤ 2,∀l,m, n

(4.2.14)

where hjlm = Pr(ωl|~xjm)−Pr(ωl). The optimization problems (4.2.14) and (4.2.13)

for LCDM and LFDM are standard linear programming problems. Thus, the solu-

tions can be determined by any off the shelf techniques, e.g. [40]. Since our exper-

iments are performed in the Matlab environment, a Matlab build-in function with

the interior point method is employed.

4.2.4 Sensitivity to Density Estimation Error

In order to compare the proposed LCDM and LFDM for dependency modeling in

classifier level and feature level respectively, we study the error sensitivity properties

of these two methods.

In the LCDM model, we implicitly assume that the posterior probability Pr(ωl|~xm)

is known or computed correctly. However, this may not be the case, because the

number of samples is limited in training stage. Let us denote the estimated proba-

bility as P̂r(ωl|~xm). The density estimation error for the true density is given by

elm = P̂r(ωl|~xm)− Pr(ωl|~xm) (4.2.15)

In practice, the estimated probabilities are used instead of the true ones. Conse-

quently, according to (4.2.4), the LCDM model is changed to

P̂r(ωl|~x1, · · · , ~xM) = P0 ∗ [Pr(ωl)(1−M) +
M∑
m=1

βlmP̂r(ωl|~xm)] (4.2.16)
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Substituting P̂r(ωl|~xm) with (4.2.15) into (4.2.16), it has

P̂r(ωl|~x1, · · · , ~xM) = P0 ∗ [Pr(ωl)(1−M) + (1 + Ec)
M∑
m=1

βlmPr(ωl|~xm)] (4.2.17)

where Ec is the error factor in LCDM and given by the following equation

Ec =

∑M
m=1 βlmelm∑M

m=1 βlmPr(ωl|~xm)
(4.2.18)

Similarly, in the LFDM model, the error factor is given by

Ef =

∑M
m=1

∑Nm

n=1 γlmnεlmn∑M
m=1

∑Nm

n=1 γlmnPr(ωl|xmn)
(4.2.19)

where εlmn = P̂r(ωl|xmn)− Pr(ωl|xmn).

Since it is hard to compare the error factors Ec in LCDM and Ef in LFDM

directly, we investigate the upper bounds instead. Denote Uc and Uf as the upper

bounds of Ec and Ef respectively. We have the following equations

Ec ≤
∑M

m=1 βlm|elm|∑M
m=1 β

l
mPr(ωl|~xm)

= Uc (4.2.20)

Ef ≤
∑M

m=1

∑Nm

n=1 γlmn|εlmn|∑M
m=1

∑Nm

n=1 γlmnPr(ωl|xmn)
= Uf (4.2.21)

By analyzing the denominators and numerators of Uc in (4.2.20) and Uf in (4.2.21)

respectively, it can be shown that Uf is smaller than Uc, which is elaborated as

follows.

We first consider the denominators of Uc in (4.2.20) and Uf in (4.2.21). According

to (2.1.2) and the normalization constraint, the denominator in (4.2.20) can be

approximated by

M∑
m=1

βlmPr(ωl|~xm) = Pr(ωl)
M∑
m=1

βlm(1 + δlm) ≈ Pr(ωl) ∗M (4.2.22)

Similarly, the denominator in (4.2.21) can be approximated by

M∑
m=1

Nm∑
n=1

γlmnPr(ωl|xmn) ≈ Pr(ωl) ∗
M∑
m=1

Nm (4.2.23)
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Since 1� Nm, we get

M∑
m=1

βlmPr(ωl|~xm)�
M∑
m=1

Nm∑
n=1

γlmnPr(ωl|xmn) (4.2.24)

This equation shows that the denominator in Uc is much smaller than that in Uf .

On the other hand, we compare the numerators of Uc in (4.2.20) and Uf in (4.2.21).

It is reported in [27] that density estimation in high dimensional space is much

difficult than that in one-dimensional space. And, the required sample size increases

dramatically with dimension to achieve the given estimation accuracy. That means

the absolute value of the estimation error in classifier level is much larger than that

in feature level, i.e. |el′m′| � |εlmn|. If |el′n′| > 2Nm|εlmn|, according to the range

and normalization constraint, the numerator in Uc is larger than that in Uf , i.e.

M∑
m=1

βlm|elm| >
M∑
m=1

Nm∑
n=1

γlmn|εlmn| (4.2.25)

With (4.2.24) and (4.2.25), we have Uf � Uc. This means the upper bound of the

error factor in feature level is much smaller than that in classifier level. Thus, LFDM

is better than LCDM in the worst case.

4.2.5 Remarks

In this section, we summarize our proposed methods and indicate their advantages

over exiting methods for dependency modeling.

• LCDM is an “optimal” classifier-level fusion method in the sense of classifier

dependency modeling given in Section 4.2.1. The training procedure of LCDM

is described in Fig. 4.1.

• LFDM is an “optimal” feature-level combination method in the sense of fea-

ture dependency modeling given in Section 4.2.2. The algorithmic procedure of

LFDM is shown in Fig. 4.2.

• Considering hjlm in (4.2.14) and pjlmn in (4.2.13) as classification scores, the

derived formulations (4.2.14) and (4.2.13) look like the objective function of
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Algorithm 1. LCDM 
Input:  
 
  

Training samples 𝒪1,⋯ ,𝒪𝐽; 
Corresponding labels 𝑦1,⋯ ,𝑦𝐽; 
Selected descriptors 𝒟1,⋯ ,𝒟𝑀; 

Output: 
  

Trained classifiers 𝜙11,⋯ ,𝜙𝐿𝑀; 
Classifier dependency weight 𝛽; 

for 𝑚 = 1,⋯ ,𝑀 
        for 𝑗 = 1,⋯ , 𝐽 
                Get feature vector �⃗�𝑗𝑚 = 𝒟𝑚(𝒪𝑗); 
        endfor; 
endfor; 
Train classifiers 𝜙11,⋯ ,𝜙𝐿𝑀 for the M descriptors, giving 
confidence on the L classes; 
for 𝑙 = 1,⋯ , 𝐿 
        for 𝑚 = 1,⋯ ,𝑀 
                for 𝑗 = 1,⋯ , 𝐽 
                        Compute hypothesis ℎ𝑗𝑙𝑚 = 𝜙𝑙𝑚(�⃗�𝑗𝑚) − 1

𝐿
; 

                endfor; 
        endfor; 
endfor; 
Solve the optimization problem (4.2.14) to obtain 𝛽; 
return 𝛽 and 𝜙11,⋯ ,𝜙𝐿𝑀. 
 

Figure 4.1: Algorithm 1: The training procedure of LCDM
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Algorithm 2. LFDM 

Input:  
 
  

Training samples 𝒪1,⋯ ,𝒪𝐽; 
Corresponding labels 𝑦1,⋯ ,𝑦𝐽; 
Selected descriptors 𝒟1,⋯ ,𝒟𝑀; 

Output: 
  

Estimated distributions 𝒫111,⋯ ,𝒫𝐿𝑀𝑁; 
Feature dependency weight vector �⃗�; 

for 𝑚 = 1,⋯ ,𝑀 
        for 𝑗 = 1,⋯ , 𝐽 
                Get feature vector �⃗�𝑗𝑚 = 𝒟𝑚(𝒪𝑗); 
        endfor; 
endfor; 
Estimate the posterior distributions 𝒫111,⋯ ,𝒫𝐿𝑀𝑁; 
for 𝑙 = 1,⋯ , 𝐿 
        for 𝑗 = 1,⋯ , 𝐽  
                for 𝑚 = 1,⋯ ,𝑀  
                        for 𝑛 = 1,⋯ ,𝑁𝑚 
                                Compute 𝑝𝑗𝑙𝑚𝑛 = 𝒫𝑙𝑚𝑛(𝑥𝑗𝑚𝑛) − 1

𝐿
; 

                        endfor; 
                endfor; 
        endfor; 
endfor; 
Solve the optimization problem (4.2.13) to obtain �⃗�; 
return �⃗� and 𝒫111,⋯ ,𝒫𝐿𝑀𝑁. 

 

Figure 4.2: Algorithm 2: The training procedure of LFDM
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LP-B in [14]. Though the goal and the starting points of the LCDM and LFDM

are different from boosting methods, we come up with a similar optimization

problem with extra constraints 0 ≤ βlm ≤ 2 in LCDM and 0 ≤ γlmn ≤ 2 in

LFDM. Boosting methods aim at finding the correct weighting for classifier

combination, while our objective is to model the feature dependency. Without

the range constraint 0 ≤ βlm ≤ 2 or 0 ≤ γlmn ≤ 2, the dependency weight βlm

or γlmn can be a large value, so that the derivation from (4.2.2) to (4.2.3), or

from (4.2.8) to (4.2.10) is invalid. On the other hand, this causes the posterior

probability in product form given as (4.2.2) or (4.2.8) be negative. Thus, the

constraint 0 ≤ βlm ≤ 2 or 0 ≤ γlmn ≤ 2 is very important for dependency model.

This can be observed from the experimental results.

• Compared with the dependency modeling technique [5] by estimating the joint

density, LCDM or LFDM does not need to estimate the joint distribution of the

scores or features. Consequently, our methods do not suffer from the difficulty

in joint distribution estimation with high dimensionality problem.

• Compared with the combination rule under dependent normal (DN) assump-

tion [13], LCDM and LFDM are derived without the distribution assumption.

In many practical applications, data may not follow normal distribution, so our

methods could have better performance in the non-normal cases.

• Compared with the linear combination methods, LPBoost [14] [4] and MK-

L [102] [103] [104], our methods are derived from a probabilistic framework and

can model dependency explicitly.

• Compared with feature level fusion method, MKL [102] [103] [104], LFDM mod-

els the dependency with the feature vectors directly and does not rely on the

kernel matrices. In the situation that some elements in the feature vectors are

noisy, the constructed kernels will be noisy as well. Since the combination by

MKL is based on the noisy kernels, the performance may degrade. However,

the proposed LFDM will not suffer from this problem.
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4.3 Experiments

In this section, we evaluate the proposed Linear Classifier Dependency Modeling (L-

CDM) and Linear Feature Dependency Modeling (LFDM) methods, with synthetic

data as well as four real image/video databases. The real image/video databases are

Oxford 17 Flower [43], Digit [41], Weizmann [49] and KTH [55]. First, we compare

the proposed LCDM with state-of-art classifier combination methods with synthet-

ic data and the Flower database in Sections 4.3.1 and 4.3.2 respectively. Then,

we evaluate the LCDM with different types of classifiers and LFDM with different

probability estimation methods on the Digit database in Section 4.3.3. After that,

we compare the best performances achieved by the LCDM and LFDM on Weizmann

and KTH action databases in Section 4.3.4. Finally, analysis on the dependencies

between classifiers or features and their relationship with the learning results is

presented in Section 4.3.5.

4.3.1 Results on Synthetic Data

Since it is impossible to know the intrinsic distributions in practical application-

s, we use synthetic data to simulate the classifier scores, similar to [13] [107]. In

this experiment, four types of classifier distributions, namely Independent Normal

(IndNormal), Dependent Normal (DepNormal), Independent Non-Normal (IndNon-

Nor), Dependent Normal (DepNonNor) are used to evaluate the LCDM and other

classifier combination methods. For each distribution, 2000 samples (500 positive

and 500 negative for training and testing respectively) of 40 dimensions, which sim-

ulate 40 classifiers, are randomly generated by Matlab built-in function. In order

to avoid the possibility that the results could be influenced by the random num-

ber generation, we run the experiments 200 times. For multi-class methods, LP-B

and the proposed LCDM, we estimate the genuine and imposter posterior probabil-

ities by each classifier as in [108], i.e. Pr(+|sm) and Pr(−|sm), where sm represents

69



H
HHH

HHH
HHH

Test

Method
IndNormal DepNormal IndNonNor DepNonNor

Sum [2] 95.34±0.71 86.44±1.16 74.67±1.50 63.33±0.89

LPBoost [4] 96.81±0.48 95.29±0.85 90.10±1.61 68.95±1.30

LP-B [14] 97.51±0.48 93.17±1.30 89.00±0.08 69.37±1.90

IN [13] 97.67±0.40 92.52±0.98 84.80±1.65 65.46±0.92

DN [13] 97.56±0.42 95.64±0.89 91.41±1.38 69.84±1.35

LCDM 97.66±0.46 93.88±0.93 93.00±0.07 72.14±1.52

Table 4.1: Mean accuracy (%) and standard deviation on synthetic data

the score. The parameter ν1 in the proposed method and LP-B is selected from

{0.05, 0.1, . . . , 0.95}.

Table 4.1 shows the mean recognition rates and standard deviations of the six

combination methods with different data distributions. From Table 4.1, we can

observe that the proposed LCDM outperforms Sum rule and LP-B under all data

distributions. This is because Sum rule is derived under independent assumption

without training and LP-B does not model the dependency explicitly. On the other

hand, IN and DN achieve the best performance with independent and dependent

normal distribution respectively, while the performance of LCDM is comparable

with IN and DN. This is reasonable because the IN and DN combination rules are

derived under normal assumption. For the non-normal distributions, the proposed

LCDM outperforms the other methods.

4.3.2 Results on Oxford 17 Flower Database

Results with synthetic data show that the proposed dependency modeling method,

LCDM is effective. In this section, the classifier combination methods are evaluated

1This parameter is selected from the same set of values in the following databases except

Weizmann and KTH.
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Single feature Classifier Combination

feature accuracy method accuracy

Color 61.14±1.81 Sum [2] 85.39±3.14

Shape 70.16±1.28 IN [13] 85.49±1.72

Texture 62.90±2.44 DN [13] 84.22±1.91

HSV 61.44±0.47 LPBoost [4] 82.65±0.82

HoG 58.94±4.14 LP-β [14] 85.50±3.00

SIFTint 70.40±1.43 LP-B [14] 85.52±2.37

SIFTbdy 59.37±3.40 LCDM 86.27±2.43

Table 4.2: Mean accuracy (%) and standard deviation on Oxford Flower database

on a real database for the task of flower classification. Table 4.2 shows the mean

accuracy and standard deviation for each feature in the left column and for combi-

nation methods in the right column. From Table 4.2, we can see that the proposed

LCDM outperforms all existing methods. Moreover, the recognition accuracies of

the combination methods are much higher than that of a single feature. For exam-

ple, the Sum rule can have the accuracy of 85.39%. This implies the classifiers are

relatively independent to each other, which is due to the reason that the features

are extracted by different properties of the instances, e.g. shape and color. While

the features are not very dependent in this case, it is impossible to obtain total-

ly independent features. Therefore, the proposed LCDM can further improve the

performance by modeling the dependency between the classification scores.

4.3.3 Results on Digit Database

On the Flower database, LCDM gets the highest accuracy with the best kernel SVM

classifier for each feature. In this section, we evaluate the classifier level combination

methods with different classifiers and feature level fusion with different probability

estimation methods on the Digit database.
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1-NN 3-NN SVM C=0.1 SVM C=100

Sum [2] 93.76±0.72 94.76±0.70 94.82±0.60 96.23±0.66

IN [13] 95.06±0.71 93.40±0.84 94.75±0.61 95.63±1.08

DN [13] 94.77±0.55 93.50±0.89 94.82±0.59 94.93±1.09

LPBoost [4] 94.88±0.64 94.18±0.71 89.71±2.31 96.41±0.41

LP-B [14] 94.13±1.09 93.53±0.81 94.95±0.55 96.57±0.35

LCDM 95.18±0.56 94.46±0.71 95.34±0.66 96.79±0.60

Table 4.3: Mean accuracy (%) and standard deviation of classifier level fusion methods on

Multiple Feature Digit database

Since the covariance matrices in the Gaussian based classifier are degenerate for

most features, k nearest neighbor (k -NN) classifiers for k = 1, 3 and SVM classifiers

for C = 0.1, 100 are used to evaluate the classifier combination methods. The results

which are summarized in Table 4.3 show that LCDM gets highest recognition rates

with all classifiers except 3-NN, and the performance of LCDM is very close to

that of Sum combination in 3-NN. This ensures that the LCDM can be used with

different classifiers and improve the recognition performance in most cases.

In the proposed LFDM for feature dependency modeling, the one-dimensional

probability Pr(ωl|xjmn) needs to be estimated. So we evaluate LFDM with different

probability estimation methods, including kernel density estimation (KDE) via dif-

fusion [108] and kernel smoothing density estimation (KSD) [109]. We also choose

different kernels to estimate the probability with KSD, but the results are the same.

On the other hand, for comparison, the classifier combination algorithms are ex-

tended to feature level fusion and denoted as Sum-F, IN-F, DN-F, LPBoost-F, and

LP-B-F. The results are recorded on the right hand side in Table 4.4. It can be seen

that the proposed LFDM outperforms others using different probability estimation

methods. Another observation is that DN-F in feature level gets an obvious improve-

ment compared to the other methods without explicit dependency modeling, while
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KDE [108] KSD [109]

Sum-F [2] 92.91±0.80 93.63±0.59

IN-F [13] 93.47±0.82 94.37±0.86

DN-F [13] 97.00±0.62 96.87±0.89

LPBoost-F [4] 95.79±1.03 95.34±1.28

LP-B-F [14] 94.36±1.13 95.44±1.15

LFDM 97.05±0.60 97.09±0.62

Table 4.4: Mean accuracy (%) and standard deviation of feature level fusion methods on

Multiple Feature Digit database

it is not the case with the classifier combination methods as shown in Table 4.3.

This implies that the dependency information is more useful and important for the

fusion process in feature level.

4.3.4 Results on Human Action Databases

In this section, we give a detailed evaluation of the proposed methods on the two

standard human action databases, Weizmann and KTH. It is important to point

out that the main objective of this experiment is to evaluate the performance of the

classifier level and feature level combination methods given a set of action features,

but not state-of-art human action recognition algorithms. In Weizmann database,

data from eight persons of each validation are used to train classifiers and the best

combinations, as well as estimate the posterior probability. In KTH database, each

classifier and the classifier combination result are trained using the training set, and

selected by the validation. And the posterior probability in LFDM is estimated

on the training and validation sets. The best parameter in MKL is selected from

{10−3, · · · , 103}. On the other hand, for the linear programming based methods, we

choose the best parameter ν from 0.1 to 0.9 with 0.1 incremental step.
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H
HHH

HHH
HHH

Feature

Dataset
Weizmann KTH

Int 74.44 77.31

IntDif 82.22 78.70

HoF 73.33 75.46

HoG 66.67 53.24

HoF2D 67.78 68.96

HoG2D 61.11 58.33

HoF3D 75.56 75.00

HoG3D 64.44 65.74

Table 4.5: Recognition accuracy (%) of each feature on Weizmann and KTH database

The highest recognition accuracy of each feature is recorded in Table 4.5. Similar

patterns on the two databases can be found in Table 4.5. The second feature with

intensity difference over time gives the highest accuracies on both databases. And

the HoF based features are better than the HoG based ones. This means temporal

information is very important for action recognition. After the best classifiers are

obtained, we evaluate the score combination methods based on them. The highest

recognition accuracies are presented on the top rows in Table 4.6. Similar to the

results on the Flower database, all the combination methods outperform the best

single feature. On the other hand, LCDM gives the best performances together with

IN on Weizmann and LP-B on KTH databases.

Similar to the experiments in Section 4.3.3, we use different density estimation

techniques to evaluate the feature level fusion methods. The recognition accuracies

on the two databases are shown in Table 4.7. Since the combination method devel-

oped under the dependent normal assumption [13] requires to solve a constrained

quadratic programming problem numerically which is very time-consuming with

high dimensionality problem on KTH database, the result with DN-F for KTH is

not available. From Table 4.7, we can see that LFDM outperforms the other fusion

74



H
HHH

HHH
HHH

Method

Dataset
Weizmann KTH

Sum [2] 84.44 84.72

IN [13] 85.56 84.26

DN [13] 84.44 83.80

LPBoost [4] 83.33 83.33

LP-B [14] 84.44 85.19

LCDM 85.56 85.19

MKL [103] [104] 81.11 82.41

Sum-F [2] 57.78 78.70

IN-F [13] 68.89 77.31

DN-F [13] 77.78 –

LPBoost-F [4] 68.89 75.93

LP-B-F [14] 70.00 76.56

LFDM 86.67 88.43

Table 4.6: Recognition accuracy (%) of the best performance on Weizmann and KTH

database

methods much more, compared to the results on the Digit database. This convinces

that LFDM works well when the distribution varies.

The highest accuracies of all the fusion methods mentioned above as well as

MKL2 are summarized in Table 4.6. From Table 4.6, we can see that the proposed

LFDM obtains the highest accuracy of 86.67% and 88.43% on Weizmann and KTH

databases respectively. These results convince that LFDM can model the dependen-

cy in feature level very well. Since feature level contains more information about the

label than that in classifier level, if dependency of features can be well modeled, the

fusion process performed in feature level outperforms that in classifier level. On the

2The results with SILP MKL [103] and simple MKL [104] are the same.
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Weizmann KTH

KDE [108] KSD [109] KDE [108] KSD [109]

Sum-F [2] 57.78 48.89 78.70 50.00

IN-F [13] 68.89 67.78 69.91 77.31

DN-F [13] 77.78 76.67 – –

LPBoost-F [4] 67.78 68.89 75.93 75.00

LP-B-F [14] 70.00 65.56 76.56 75.46

LFDM 86.67 86.67 87.96 88.43

Table 4.7: Recognition accuracies (%) of feature level fusion methods with different density

estimation techniques on Weizmann and KTH database

other hand, comparing DN-F and LFDM on Weizmann database and digit database

in the previous section, respectively, the performance of LFDM is much better than

that of DN-F on the action database, while their performances are very close on the

digit database. This also validates that LFDM works well under different distribu-

tions.

We also perform additional experiments for verification on Weizmann and KTH

databases with the best two classifier level methods and feature level fusion methods,

respectively. The ROC curves are recorded and plotted in Fig. 4.3(a) and Fig. 4.3(b).

Same conclusion is drawn that the proposed LFDM gives the largest areas under the

ROC curves on these two databases. On the other hand, although the accuracies of

LCDM and IN on Weizmann, as well as LCDM and LP-B on KTH are the same,

LCDM outperforms the two methods in ROC measurement.

In the last experiment, we evaluate the sensitivity of parameter ν in the linear

programming based methods. Fig. 4.3(c) and Fig. 4.3(d) show the recognition ac-

curacies of these methods with different values of ν. It can be observed that the

feature level fusion methods are less sensitive to parameter changed on these two

databases. The reason is as follows. Parameter ν is related to the tradeoff between
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(a) (b)

(c) (d)

Figure 4.3: (a) and (b) are the ROC curves of the best two classifier level methods and

feature level fusion methods on Weizmann and KTH database respectively. (c) and (d)

are the recognition accuracy of the linear programming based methods in classifier level

and feature level with different ν on Weizmann and KTH database respectively.
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minimizing the classification error and maximizing the margin between genuine and

imposter samples [4]. Since the feasible solution set in feature level is much larg-

er than that in classifier level, the classification error is more likely to be zero in

feature level, and the tradeoff between classification error and margin becomes less

important. Besides, Fig. 4.3(c) and Fig. 4.3(d) also show that the proposed LFDM

is insensitive to parameter and obtains much better results, compared with other

feature level fusion methods. This is another advantage of the proposed model.

4.3.5 Analysis of Dependency and Learning Results

In this section, we would like to analyze the dependencies between classifiers or fea-

tures and their relationship with the learning results for the real databases. From the

theories of probability and statistics, some methods such as mutual information [26],

product-moment correlation coefficient [110] and distance correlation [111], have

been proposed to measure the dependency between two random variables. Never-

theless, computation of the mutual information suffers from the non-trivial problem

of joint density estimation while the correlation coefficient only measures the linear

dependencies. Analogous to correlation coefficient, distance correlation [111] quanti-

fies dependency by measuring the difference between the joint characteristic function

and the product of the marginal characteristic functions. Since distance correlation

can be easily computed without the non-trivial estimation of the joint distribution

of features and is able to measure both linear and non-linear dependencies [111], we

employ it to measure the dependencies between classifiers or features for the four

real databases in this experiment.

With the sampling sets (Z1j, Z2j), j = 1, · · · , J for random vectors Z1 and Z2,

let us define the distance statistics as,

dmij = ‖Zmi − Zmj‖, d̄mi· =
1

J

J∑
j=1

dmij, d̄m·j =
1

J

J∑
i=1

dmij,

d̄m·· =
1

J2

J∑
i=1

J∑
j=1

dmij, Dmij = dmij − d̄mi· − d̄m·j + d̄m··

(4.3.26)
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for m = 1 or 2. With the distance statistics for each random vector Z1 and Z2 given

by (4.3.26), the distance covariance is empirically given by

V2(Z1,Z2) =
1

J2

J∑
i=1

J∑
j=1

D1ijD2ij (4.3.27)

At last, the non-negative distance correlation R(Z1,Z2) [111] is computed by

R2(Z1,Z2) =


V2(Z1,Z2)√
V2(Z1)V2(Z2)

, V2(Z1)V2(Z2) > 0

0, V2(Z1)V2(Z2) = 0

(4.3.28)

where distance covariances V2(Z1) = V2(Z1,Z1) and V2(Z2) = V2(Z2,Z2). Non-

negativeR(Z1,Z2) in (4.3.28) satisfies 0 ≤ R ≤ 1, R = 0 only if two random vectors

are independent, and larger R indicates a larger degree of dependency between

random vectors Z1 and Z2.

The distance correlation given by (4.3.28) is only for two random vectors, so

we extend it to the case with multiple random vectors by averaging the correlations

between any two different pairs of vectors. The measures of dependencies in classifier

level and feature level are given by the following equations respectively.

Dc =
2

M(M − 1)

M∑
m1=1

M∑
m2=m1+1

R(Sm1 ,Sm2) (4.3.29)

Df =
2

M(M − 1)

M∑
m1=1

M∑
m2=m1+1

R(Fm1 ,Fm2) (4.3.30)

where random vectors Sm and Fm are given by Sm = (s1m, · · · , sLm) and Fm =

(f1m1, · · · , f1mNm) as in Section 4.2.2. Table 4.8 shows the dependency scores com-

puted by (4.3.29) and (4.3.30) for the four real databases. For the Flower database,

since original features have not been provided on their web site, we do not calculate

the distance correlation in feature level. On the other hand, the dependency score

in Digit database is the average of results from the four different classifiers recorded

in Table 4.9.

Comparing the classifier dependencies (Dc) in Table 4.8, we can see that the

Flower database has the smallest dependency. This is in line with the recognition
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Flower Digit Weizmann KTH

Dc 0.2253 0.4485 0.4740 0.4926

Df – 0.5360 0.9373 0.9108

Table 4.8: Dependency indicators in classifier level and feature level for real databases

1-NN 3-NN SVM C=0.1 SVM C=100

Dc 0.2253 0.4485 0.4740 0.4926

Table 4.9: Dependency indicators with different classifiers in Digit database

performance in Section 4.3.2 that the independent methods, Sum and IN give con-

vincing results in this database. However, the dependency score 0.2253 indicates a

certain degree of dependency. Thus, LCDM gives the best recognition performance

by learning the dependency automatically in this database.

Moreover, it can be seen from Table 4.8 that both Weizmann and KTH action

databases have large feature dependency scores (Df ). This is reasonable as the

action features are extracted from the same set of interest points with different

descriptors. On the other hand, large dependency scores in action databases indicate

that rich dependency information is available for dependency modeling. Therefore,

LFDM significantly outperforms other feature level fusion methods in the action

databases.

Finally, we compare the dependencies in classifier level and feature level, re-

spectively. From Table 4.8 and Table 4.9, we can see that features in Weizmann

and KTH action databases have a higher degree of dependency than that in Digit

database, while it is not the case with the dependencies in classifier level. Moreover,

Table 4.9 shows that dependencies with different classifiers differ from each other,

although the same set of features is used in the Digit database. These observations

show that classifier statistics cannot truly reflect the dependency characteristics in

feature level. In other words, the dependency information is distorted in classifi-

80



er level. Therefore, LFDM which models dependency in feature level, outperforms

LCDM, a classifier level dependency modeling method.

4.4 Summary

In this chapter, a new framework for dependency modeling between features by lin-

ear combination is designed and proposed for the tasks of recognition. Two methods,

namely Linear Classifier Dependency Modeling (LCDM) and Linear Feature Depen-

dency Modeling (LFDM) are developed based on the proposed framework. LCDM

and LFDM are learned by solving the linear programming problems, which maxi-

mize the margins between the genuine and imposter posterior probabilities. LCDM

and LFDM are designed for classifier and feature combination, respectively, without

normal assumption.

Experimental results demonstrate that IN and DN [13] give the lowest error rates

when the distributions are independent normal and dependent normal, respective-

ly. However, normal assumption may not be valid in many practical applications,

so the proposed LCDM and LFDM outperform existing classifier-level and feature-

level fusion methods under non-normal distributions and on four real databases,

respectively. Considering the classifier combination methods, the simple Sum rule

is preferable, since it gets acceptable performance but take no additional time for

training. In addition, analysis on dependencies between classifiers/features shows

that statistics of classifier scores cannot truly reflect the dependency characteristics

in feature level. Consequently, LFDM, which models dependency in feature explic-

itly, outperforms all existing classifier-level and feature-level fusion methods on the

action databases.
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Chapter 5

Reduced Analytic Dependency

Modeling

5.1 Introduction

This chapter focuses on the assumption issue in the score level fusion methods.

Under linear classifier combination assumption, optimal weighting method [3], LP-

Boost [4] and its multi-class variants [14] determine the correct weighting for efficient

classifier combination. Since linear methods are limited to linear separable systems,

Toh et al. [6] developed a reduced multivariate polynomial model (RM) to describe

the nonlinear input-output relationships for classifier fusion. Besides the linear or

non-linear weighting approaches, He and Cao [20] proposed to efficiently integrate

individual classifiers from the signal strength concept. In order to reduce the noise

components in scores, the sparse technique with rank minimization was employed

in [21]. And the robust late fusion (RLF) method [21] was developed based on the

assumption that multiple score relation matrices can be decomposed into a shared

low-rank matrix plus the sparse errors.

From probabilistic aspect, classifier fusion can be performed by estimating the

joint distribution of multiple classifiers and performance is improved [5]. However,
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when the number of classifiers is large, it needs numerous data to estimate the joint

density accurately [27]. To deal with this problem, copula function with multivariate

normal assumption was used to model the score dependency in [7]. On the other

hand, Terrades et al. [13] proposed to combine classifiers in a non-Bayesian frame-

work by linear combination. Under dependent normal (DN) assumption as in [7],

they formulated the classifier combination problem into a constrained quadratic

programming problem. Nevertheless, if normal assumption is not valid, these two

methods will not be optimal.

Since the fused score represents the posterior probability, the fusion model tak-

ing probabilistic properties into account gives more convincing results as shown in

chapter 4. On the other hand, most fusion methods are derived under certain as-

sumptions, while it is hard to evaluate whether these assumptions are valid in prac-

tical applications. Thus, fusion method with less demanding assumption should give

better performance. For these reasons, we develop a novel framework for dependen-

cy modeling with the analytic function assumption, which is easier to be satisfied.

And a new method, namely Reduced Analytic Dependency Modeling (RADM) is

proposed for score level fusion in this chapter.

Inspired by Product rule [2] (with independent assumption) and LCDM (without

independent assumption), we propose to model dependency by analytic functions on

posterior probabilities of each feature. With the analytic dependency model (ADM),

an equation system is derived from the properties of marginal distributions. And an

equivalent condition to the independent assumption is presented in this thesis based

on the structure of the solution to the derived equation system. Since there may

be infinite number of undetermined coefficients in the ADM, we propose a reduced

form of it, based on the convergent properties of analytic functions. At last, the

RADM learning algorithm is developed by taking advantages of label information

from training data and probabilistic constraint derived from marginal distribution

properties, under regularized least square criterion.
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Figure 5.1: Proposed Reduced Analytic Dependency Modeling (RADM) framework

The rest of this chapter is organized as follows. Section 5.2 reports the proposed

method. Experimental results and we have designed and proposed are given in

Section 5.3 and Section 5.4, respectively.

5.2 Reduced Analytic Dependency Modeling

In this section, we propose a novel Reduced Analytic Dependency Modeling (RAD-

M) method to model dependency for score level fusion. The block diagram of the

proposed method is presented in Fig. 5.1 and briefly explained as follows. Given

classification scores as training data, we propose to model dependency by analytic

functions on them. Since the analytic dependency model (ADM) may contain infi-

nite number of undetermined coefficients, the infinite model is reduced to finite one

based on the convergent properties of analytic functions. With the reduced ADM,

the optimal model is learned by incorporating label information from training data

and probabilistic constraint derived from marginal distribution properties as shown

in Fig. 5.1. Each component in this block diagram will be further elaborated in the

following sections.
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5.2.1 Analytic Dependency Modeling

Let us consider a combination problem that, there are M distinct feature descrip-

tors f1, · · · , fM for any object O. Denote feature representations ~x1, · · · , ~xM as

~xm = fm(O). The objective of dependency modeling is to estimate the posterior

probability Pr(ωl|~x1, · · · , ~xM) for better classification performance. Usually, the di-

mension of the feature representations is very high. And, the modalities of feature

representations can be different, e.g. ~xm can be a vector or a set of points. Thus,

direct dependency modeling in feature level is difficult. In turn, we consider model-

ing dependency by posterior probabilities of each feature, Pr(ωl|~xm). Let us denote

slm = Pr(ωl|~xm) and ~sl = (sl1, · · · , slM)T . Since prior probabilities are not related to

feature representations, Pr(ωl) is a positive constant cl respect to ~x1, · · · , ~xM . With

these notations, denote two functions of the scores, hProduct as in equation (5.2.1)

and hLCDM as in equation (5.2.2).

hProduct(~sl) = c1−Ml

M∏
m=1

slm (5.2.1)

hLCDM(~sl) =
M∑
m=1

almslm + cl(1−M) (5.2.2)

Then, the Product rule given by equation (2.1.1) under independent assumption

and LCDM given by equation (4.2.4) for dependency modeling can be rewritten as

equations (5.2.3) and (5.2.4), respectively.

Pr(ωl|~x1, · · · , ~xM) = P0 · hProduct(~sl) (5.2.3)

Pr(ωl|~x1, · · · , ~xM) ≈ P0 · hLCDM(~sl) (5.2.4)

As indicated in equations (5.2.3) and (5.2.4), the Product rule and LCDM can be

formulated as two different functions hProduct and hLCDM on posterior probabilities

sl1, · · · , slM . This implies, if we choose a function different from hProduct with in-

dependent assumption, e.g. hLCDM, the dependency can be modeled. On the other

hand, LCDM was proposed under the assumption that posterior probabilities of each
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classifier will not deviate dramatically from the priors as mentioned in [34]. How-

ever, without these assumptions, the function hl for class ωl on sl1, · · · , slM should

be different from hProduct and hLCDM. Generally speaking, hl can be any function

which models dependency between feature representations by posterior probabilities

sl1, · · · , slM , i.e.

Pr(ωl|~x1, · · · , ~xM) = P0 · hl(sl1, · · · , slM) (5.2.5)

In order to write out the general function hl explicitly, we propose to determine

it by converged power series which is also known as analytic function. According to

the definition of multivariate power series or analytic functions [112], hl is given by

the following equation,

hl(~sl; ~αl) =
∞∑
|~θ|=0

αl~θ~s
~θ
l (5.2.6)

where ~θ = (n1, · · · , nM)T , n1, · · · , nM are non-negative integers, |~θ| = n1 + · · ·+nM ,

~s
~θ
l =

∏M
m=1 s

nm
lm and ~αl = (αl~0, · · · , αl~θ, · · · )T is weighting coefficient vector in which

~0 = (0, · · · , 0)T .

With the analytic dependency model (ADM) given by equation (5.2.6), we fur-

ther investigate how it can model dependency from probabilistic aspect. Let us

consider the scores obtained by the first feature, i.e. m = 1, and rewrite the ADM

function (5.2.6) according to the order of sl1 as,

hl(~sl; ~αl) =
∞∑
r=0

gl1r(s̃l1; ~αl1r)s
r
l1 (5.2.7)

where s̃l1 = (sl2, · · · , slM)T and gl1r is an analytic function of s̃l1 with coefficient

vector ~αl1r. On the other hand, posterior probabilities can be given by the Bayes’

rule [110] as follow,

Pr(ωl|~x1) =
Pr(~x1|ωl)Pr(ωl)

Pr(~x1)

Pr(ωl|~x1, · · · , ~xM) =
Pr(~x1, · · · , ~xM |ωl)Pr(ωl)

Pr(~x1, · · · , ~xM)

(5.2.8)
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Since conditional probability Pr(~x1|ωl) in equation (5.2.8) can be viewed as the

marginal probability of the joint density Pr(~x1, · · · , ~xM |ωl) over random measure-

ments except ~x1 [110], we get

Pr(~x1|ωl) =

∫
Pr(~x1, · · · , ~xM |ωl)d~x2 · · · d~xM (5.2.9)

With equations (5.2.5) (5.2.7) (5.2.8) and P0 =
∏M

m=1 Pr(~xm)

Pr(~x1,··· ,~xM )
as mentioned in Sec-

tion 2.1, the conditional joint density can be written as

Pr(~x1, · · · , ~xM |ωl) =

∏M
m=1 Pr(~xm)

Pr(ωl)

∞∑
r=0

gl1r(s̃l1; ~αl1r)s
r
l1 (5.2.10)

With notations sl1 = Pr(ωl|~x1), substituting the probabilities Pr(~x1|ωl) in (5.2.8)

and Pr(~x1, · · · , ~xM |ωl) in (5.2.10) into equation (5.2.9), we get

sl1 =

∫ M∏
m=2

Pr(~xm)[
∞∑
r=0

gl1r(s̃l1; ~αl1r)s
r
l1]d~x2 · · · d~xM (5.2.11)

According to Abel’s Lemma [112], the series in (5.2.11) is uniformly converged.

Thus, it can be integrated term by term, and equation (5.2.11) becomes

sl1 =
∞∑
r=0

Gl1r(~αl1r)s
r
l1 (5.2.12)

where Gl1r(~αl1r) =
∫ ∏M

m=2 Pr(~xm)gl1rd~x2 · · · d~xM .

Without loss of generality, equation (5.2.12) is true for m = 2, · · · ,M . Com-

paring the left and the right hand sides in (5.2.12), the following equations can be

obtained for m = 1, · · · ,M ,

Glm1(~αlm1) = 1 (5.2.13)

Glm0(~αlm0) = 0, Glm2(~αlm2) = 0, Glm3(~αlm3) = 0, · · · (5.2.14)

According to the definition (5.2.7), glmr(s̃lm; ~αlmr) is an analytic function similar to

hl(~sl; ~αl) in equation (5.2.6) and the score vector s̃lm can be considered as mappings

from feature representations ~x1, · · · , ~xm−1, ~xm+1, · · · , ~xM to their posterior proba-

bilities. Therefore, the integration of
∏

i 6=m Pr(~xi)glmr(s̃lm; ~αlmr) over feature rep-

resentations except ~xm, which is denoted by Glmr(~αlmr), is a linear function on
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coefficient vector ~αlmr. Without calculating the integration, we can observe that

~αlm0 = ~0, ~αlm2 = ~0, ~αlm3 = ~0, · · · is a trivial solution to equation system (5.2.14) for

m = 1, · · · ,M . Substituting this trivial solution into (5.2.7), we have the following

proposition. (Please refer to the appendices for the proof of this proposition.)

Proposition 3.

Conditionally independent condition is equivalent to the situation that the solution

to equation system (5.2.14) is trivial, i.e.

hl(~sl; ~αl) = c1−Ml

M∏
m=1

slm ⇔ ~αlm0 = ~0, ~αlm2 = ~0, ~αlm3 = ~0, · · · (5.2.15)

This proposition gives an equivalent condition to the independent assumption from

the structure of the solution to equation system (5.2.14). Considering the negative

and inverse-negative propositions to the equivalent condition (5.2.15), if the solution

to equation system (5.2.14) is non-trivial, the dependency between scores can be

modeled. For general analytic functions, the weight vectors ~αlm0, ~αlm2, ~αlm3, · · · are

not necessary to be zeros. Consequently, the ADM can model dependency by setting

non-trivial solution to the equation system (5.2.14).

5.2.2 Reduced Model

The ADM may have infinite number of coefficients in which directly estimating the

coefficient vector ~αl is infeasible. In turn, we propose to approximate the ADM based

on the convergent properties of the series defined by equations (5.2.6) and (5.2.7).

Let us consider equation (5.2.6) again. According to the definition of convergence

of series [113], for any positive number ε, there exists a positive integer K, such that

|
∑∞
|~θ|=K+1 αl~θ~s

~θ
l | ≤ ε. If ε tends to zero, the analytic function can be approximated

by the following equation,

hl(~sl; ~αl) ≈ hl(~sl; ~αl;K) =
K∑
|~θ|=0

αl~θ~s
~θ
l (5.2.16)
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Without loss of generality, the series defined similar to equation (5.2.7) is converged

for m = 1, · · · ,M , so hl can be approximated by the first R + 1 terms as follows,

hl(~sl; ~αl) ≈ hl(~sl; ~αl;R) =
R∑
r=0

glmr(s̃lm; ~αlmr)s
r
lm (5.2.17)

where R is a positive integer. Equations (5.2.16) and (5.2.17) indicate that the

highest order of each term and each variable are K and R, respectively. Combining

these two equations, the reduced analytic dependency model (RADM) is given by

hl(~sl; ~αl;K,R) =
K∑
|~θ|=0

αl~θ~s
~θ
l ,

s.t. ~θ = (n1, · · · , nM)T and 0 ≤ nm ≤ R

(5.2.18)

Since the model order should be larger than or equal to the variable order, K ≥ R.

On the other hand, if K > MR, hl(~sl; ~αl;K,R) = hl(~sl; ~αl;MR,R). This means the

RADM degenerates to hl(~sl; ~αl;MR,R) when K > MR. Therefore, the relationship

between the model order K and variable order R in the RADM is restricted as

R ≤ K ≤MR.

Denote the confidence vector ~zl = (~s
~0
l , · · · , ~s

~θ
l , · · · )T , where ~s

~0
l , · · · , ~s

~θ
l , · · · are

the terms in equation (5.2.18). With these notations, the RADM given by equa-

tion (5.2.18) can be written as hl(~sl; ~αl;K,R) = ~αTl ~zl. The algorithmic procedure

to obtain ~zl in the RADM for class ωl is given in Algorithm 5.1.

5.2.3 Model Learning

In this subsection, we present the RADM learning algorithm which minimizes the

empirical classification error and approximates the dependency modeling constraint.

Supervised Model Learning

Given J training samples O1, · · · ,OJ and their corresponding labels y1, · · · , yJ , we

formulate the learning problem in a supervised manner. In order to minimize the
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Algorithm 5.1 Construct confidence vector ~zl in RADM.

Require: Posterior probability scores sl1, · · · , slM and model parameters K,R;

1: Set D = (0, 1, · · · , R)T and ~zl = (1, sl1, s
2
l1, · · · , sRl1)T ;

2: for m = 2, 3, · · · ,M do

3: Set D̃ = (D,~0), where ~0 = (0, · · · , 0)T with the same column dimension of D;

4: for r = 1, 2, · · · , R do

5: Update D̃ = (D̃; (D, r~1)) which is the column concatenation of D̃ and

(D, r~1), where ~1 = (1, · · · , 1)T with the same dimension of D;

6: Update ~zl = (~zl; s
r
lm~zl) which is the column concatenation of ~zl and srlm~zl;

7: Delete the rows in D̃ and corresponding elements in ~zl such that the sum-

mations of the rows in D̃ are larger than K;

8: end for

9: Set D = D̃;

10: end for

11: return ~zl.

classification error, we consider the posterior probabilities as, Pr(ωl|Oj) is equal to

one, if ωl = yj, and zeros, otherwise. On the other hand, with equation (5.2.5),

the posterior probability is computed by P0 ∗ hl(~sl; ~αl), where P0 =
∏M

m=1 Pr(~xm)

Pr(~x1,··· ,~xM )
.

Since estimations of the marginal probability Pr(~xm) for each m and joint density

Pr(~x1, · · · , ~xM) are difficult, direct computation of P0 for j = 1, · · · , J may not be

feasible. While larger joint density implies larger marginal probability, we assume

that Pr(~xj1, · · · , ~xjM) is proportional to Pr(~xjm) for j = 1, · · · , J , which means P0

is a positive constant respect to j. Denote 1/P0 = b. With the label information,

we have the following equation,

hl(~sjl; ~αl) = bδjl, δjl =


1, ωl = yj

0, ωl 6= yj

(5.2.19)

where ~sjl = (sjl1, · · · , sjlM)T , sjlm = Pr(ωl|~xjm) and ~xjm = fm(Oj).
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According to equations (5.2.16) (5.2.17) (5.2.18), the reduced model hl(~sl; ~αl;K,R)

approximates but is not exactly equal to hl(~sjl; ~αl). Denote ~zjl = (~s
~0
jl, · · · , ~s

~θ
jl, · · · )T

in (5.2.18) for j = 1, · · · , J and l = 1, · · · , L. The coefficient vector in the RADM

can be learned by minimizing the normalized least square error between the analytic

model hl(~sjl; ~αl) and the reduced model hl(~sl; ~αl;K,R). With equation (5.2.19), the

error function is defined as follow,

ELS(~α, b) =
1

2LJ

L∑
l=1

J∑
j=1

(~αTl ~zjl − bδjl)2 (5.2.20)

where ~α is the column concatenation of ~α1, · · · , ~αL.

With the positive constraint b > 0, the objective function ELS(~α, b) in equa-

tion (5.2.20) is minimized when ~α and b tend to zeros. However, this solution

cannot separate the training samples from different classes with each other. On the

other hand, equation (5.2.19) implies that the margins of the posteriors between

different classes increase when b increases. Therefore, we propose to minimize the

error function (5.2.20) and maximize the positive variable b at the same time. Then,

the objective function is rewritten as,

E(~α, b; ρ) =
1

2LJ

L∑
l=1

J∑
j=1

(~αTl ~zjl − bδjl)2 − ρb (5.2.21)

where ρ is a positive parameter balancing the least square error ELS(~α, b) and the

positive variable b.

In order to avoid the parameter selection problem introduced by the balancing

parameter ρ, we analyze the structure of the solution which minimizes the objective

function (5.2.21), and have the following proposition. (Please refer to the appendices

for the proof of this proposition.)

Proposition 4.

Denote (~α∗, b∗) = arg min~α,b(ELS(~α, b)− b) and (~α∗ρ, b
∗
ρ) = arg min~α,b(ELS(~α, b)−ρb),

then ~α∗ρ = ρ~α.

This proposition shows that the solution with the balancing parameter ρ can be
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obtained by scaling the solution without ρ. Since the comparative relationships of

the posterior probabilities remain the same with different scalings, the classifica-

tion performance would not change by selecting different balancing parameters ρ.

Therefore, we refine the error function (5.2.21) as

E(~α, b) =
1

2LJ

L∑
l=1

J∑
j=1

(~αTl ~zjl − bδjl)2 − b (5.2.22)

Probabilistic Constraint

According to the analysis in Section 5.2.1, the ADM models dependency by setting

non-trivial solution to equations (5.2.13) and (5.2.14). While the reduced model

learned by minimizing the error function (5.2.22) may not satisfy these two equation-

s, the probabilistic constraint derived from marginal distribution properties needs

to be considered in the fusion model. Although it is difficult to evaluate whether

equations (5.2.13) and (5.2.14) are valid in practice, they are derived from and e-

quivalent to the original equation (5.2.11). Thus, we approximate equation (5.2.11)

empirically with the training data as follows.

As mentioned in Section 5.2.1, considering m = 1, equation (5.2.11) is derived

by substituting equations (5.2.8) (5.2.10) into (5.2.9). Since the right hand side

in equation (5.2.9) is the integration of the joint distribution given label ωl, the

empirical estimation of equation (5.2.11) only relies on the training samples from

class ωl. Thus, according to (5.2.7), equation (5.2.11) can be estimated by,

sj1l1 =
1

JM−1l

∑
yj2=ωl

· · ·
∑

yjM=ωl

hl(sj1l1, · · · , sjM lM ; ~αl) (5.2.23)

where Jl is the number of training samples for class ωl and yj1 = ωl. Substituting

equation (5.2.6) into the right hand side of (5.2.23), we get

sjl1 =
∞∑
|~θ|=0

αl~θs
n1
jl1

M∏
m=2

tlmnm , s.t. tlmnm =
1

Jl

∑
yj=ωl

snm
jlm (5.2.24)

where ~θ = (n1, · · · , nM)T is defined in equation (5.2.6).

92



Without lose of generality, equation (5.2.24) is valid for m = 2, · · · ,M . On

the other hand, the reduced model (5.2.18) approximates but is not exactly equal

to the analytic function in equation (5.2.23) or (5.2.24). Therefore, similar to the

derivation in Section 5.2.3, we approximate equation (5.2.24) by minimizing the

following normalized least square error

EMarg(~α) =
1

2L

L∑
l=1

1

MJl

M∑
m=1

∑
yj=ωl

(~αTl ~qjlm − sjlm)2 (5.2.25)

where ~qjlm is the cumulative confidence vector with elements defined in equation

(5.2.24). The element with corresponding index vector ~θ = (n1, · · · , nM) in ~qjlm

is equal to snm
jlm

∏
i 6=m tlini

. The algorithmic procedure to obtain ~qjlm for yj = ωl is

given by replacing srli with tlir for i 6= m in Algorithm 5.1.

Supervised Learning with Probabilistic Constraint

In Section 5.2.3, we formulate the learning problem in a supervised manner, while

the probabilistic constraint is derived from marginal distribution properties in Sec-

tion 5.2.3. In this section, we learn the optimal coefficient vector ~α in the RADM

by minimizing the weighted combination of the error function (5.2.22) and marginal

distribution constraint (5.2.25). On the other hand, a least square regularized ter-

m is added in the objective function, so that the fusion model suffers less from

over-fitting problem. Therefore, the optimization problem becomes,

min
~α,b

(E(~α, b) + λEMarg(~α) +
1

2
µ~αT ~α) (5.2.26)

where λ and µ are positive parameters balancing the marginal distribution constraint

and regularized term.

In other to solve this optimization problem, we convert the objective function

in (5.2.26) to matrix formulation as follows. Denote the undetermined variable tuples

(~α, b) as α̃, and Zl = (~z1l, · · · , ~zJl), ~δl = (δ1l, · · · , δJl)T . The error function (5.2.22)
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derived by making use of label information can be rewritten as

E(α̃) =
1

2
α̃THα̃− α̃T ũ,

s.t. ũ = (~0; 1),

H =
1

JL


Z1ZT1 −Z1

~δ1
. . .

...

ZLZTL −ZL~δL

−~δT1 ZT1 · · · −~δTLZTL
∑L

l=1
~δTl
~δl


(5.2.27)

On the other hand, let Qlm = (~qj1lm, · · · , ~qjJl lm) and ~slm = (sj1lm, · · · , sjJl lm)T for

yjm = ωl. The probabilistic constraint (5.2.25) derived from marginal distribution

properties becomes

EMarg(α̃) =
1

2
α̃THMargα̃− α̃T ṽ + c0,

s.t. Hl =
1

MJl

M∑
m=1

QlmQTlm,

~vl =
1

MJl

M∑
m=1

Qlm~slm,

HMarg =
1

L


H1

~0

. . .
...

HL
~0

~0T · · · ~0T 0


, ṽ =

1

L


~v1
...

~vL

0



(5.2.28)

where c0 is a constant respect to α̃. In addition, the regularization term is reformu-

lated with α̃ as

~αT ~α = α̃THRegα̃, s.t. HReg =

 I ~0

~0T 0

 (5.2.29)

where I represents the identity matrix. With the equations (5.2.27) (5.2.28) (5.2.29),

we take the first derivative respect to α̃ and obtain the optimal solution to optimiza-

tion problem (5.2.26) as

α̃∗ = (H + λHMarg + µHReg)
−1(ũ+ λṽ) (5.2.30)
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Algorithm 5.2 Learning coefficient vector ~α∗ in RADM.

Require: Scores s11, · · · , sJM , labels y1, · · · , yJ , and positive parameters λ, µ;

1: Construct confidence vector ~zjl by Algorithm 5.1 for j = 1, · · · , J and l =

1, · · · , L;

2: Construct cumulative vector ~qjlm by modifying Algorithm 5.1 as mentioned in

Section 5.2.3 for yj = ωl, l = 1, · · · , L, and m = 1, · · · ,M ;

3: for l = 1, · · · ,M do

4: Compute ZlZTl and Zl~δl in equation (5.2.27);

5: Compute Hl and ~vl in equation (5.2.28);

6: end for

7: Combine Z1ZT1 , · · · ,ZLZTL and Z1
~δ1, · · · ,ZL~δL to obtain H by equa-

tion (5.2.27);

8: Combine H1, · · · , HL and ~v1, · · · , ~vL to obtain HMarg and ~v by equation (5.2.28);

9: Obtain the optimal solution (~α∗, b∗) by equation (5.2.30);

10: return ~α∗.

Recalling the analysis in Section 5.2.3, b is the ratio of the probability functions,

and thus positive. However, it does not need to add this constraint b > 0 to the

optimization problem (5.2.26) due to the following proposition. (Please refer to the

appendices for the proof of this proposition.)

Proposition 5. Let (~α∗, b∗) be the solution to the optimization problem (5.2.26)

given by equation (5.2.30), then it has b∗ > 0.

This proposition shows that the solution (5.2.30) to the unconstrained optimization

problem (5.2.26) satisfies the positive constraint. And thus, it is optimal.

At last, the algorithmic procedure to train the optimal coefficients in the RADM

is summarized in Algorithm 5.2.
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5.3 Experiments

In this section, we compare the proposed RADM with state-of-the-art score level fu-

sion algorithms, including Sum [2], IN [13], LP-B [14], RM [6], SSC [20], GRLF [21],

DN [13] and LCDM, in six different domains of recognition problems, namely 1)

Digit Recognition, 2) Flower Classification, 3) Face Recognition, 4) Human Action

Recognition, 5) Object Categorization and 6) Consumer Video Understanding. The

details are discussed in Sections 5.3.1– 5.3.6. In order to evaluate the probabilistic

constraint (5.2.25) derived from marginal distribution properties, we compare the

proposed method with λ > 0 and λ = 0 in equation (5.2.26) in Section 5.2.3. At last,

the fusion performance with the proposed SSTNTL feature is reported in Section

5.3.8. It is important to point out that the main objective of these experiments is to

evaluate the performance of different score level fusion methods, but not state-of-art

digit, flower, face, human action, object and consumer video recognition algorithms.

5.3.1 Results on Digit Database

Since the probabilities are hard to be determined accurately due to the problem

of limited training samples, we use existing classifier techniques [39], e.g. nearest

neighbor (NN) classifiers or support vector machines, and normalize the classifier

outputs by the double sigmoid method [8] to approximate the probabilities. We

use five-fold CV to select the best parameters, and train the weights for classifier

combination by the CV outputs. Positive parameters1 λ and µ in equation (5.2.26)

or (5.2.30) are selected from {10−4, · · · , 104}, while the variable order R is selected

from one to four and the model order K is selected from one to eight with one step

increment, respectively. In order to give a fair comparison, parameters in other score

level fusion are selected as suggested in their papers [6] [14] [21].

Mean accuracies and standard deviations of the best single feature (BestFea) and

1The parameters are selected from the same sets of values in the following experiments.
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Method 1-NN 3-NN SVM C=0.1 SVM C=100

BestFea 93.69±0.48 84.28±0.69 93.34±0.50 94.73±0.65

Sum [2] 93.76±0.72 94.76±0.70 94.82±0.60 96.23±0.66

IN [13] 95.06±0.71 93.40±0.84 94.75±0.61 95.63±1.08

LP-B [14] 94.13±1.09 93.53±0.81 94.95±0.55 96.57±0.35

RM [6] 95.35±0.65 94.92±0.79 95.93±0.52 96.51±0.73

SSC [20] 94.23±1.11 93.36±1.32 94.64±0.94 95.39±0.77

GRLF [21] 95.71±0.43 95.45±0.67 95.80±0.50 96.28±0.57

DN [13] 94.77±0.55 93.50±0.89 94.82±0.59 94.93±1.09

LCDM 95.18±0.56 94.46±0.71 95.34±0.66 96.79±0.60

RADM 95.72±0.61 95.23±0.59 96.30±0.35 96.98±0.61

Table 5.1: Mean accuracy (%) and standard deviation on Multiple Feature Digit database

different classifier combination methods are reported in Table 5.1. From Table 5.1,

we can see that the proposed RADM obtains the highest recognition rate of 96.98%

with SVM classifier for C = 100 on this database. Moreover, the proposed method

outperforms others with k -NN classifier for k = 1 and SVM classifiers for C =

0.1, 100. While GRLF achieves the highest accuracy with k -NN classifier for k = 3,

the recognition rates of GRLF and RADM are close to each other and the standard

derivation of RADM is smaller. These results indicate that RADM can improve the

performance in most cases using different classifiers.

5.3.2 Results on Oxford 17 Flower Database

Since the results in Section 5.3.1 show that SVM gives better performance, we em-

ploy SVM classifiers on this and the following databases. Table 5.2 shows the accu-

racies under three splits, mean accuracies and standard deviations (Std) of different

methods. From Table 5.2, we can see that recognition accuracies of the classifier

fusion methods are much higher than that of the best single feature. This convinces
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Method Split 1 Split 2 Split 3 Mean±Std

BestFea 71.76 69.71 71.47 70.98±1.11

Sum [2] 87.94 81.76 86.76 85.49±3.28

IN [13] 86.47 83.24 86.18 85.29±1.79

LP-B [14] 86.76 83.53 87.06 85.78±1.96

RM [6] 86.18 83.53 86.76 85.49±1.72

SSC [20] 88.82 83.24 86.18 86.08±2.80

GRLF [21] 88.82 82.65 86.47 85.98±3.12

DN [13] 85.29 82.65 84.71 84.22±1.39

LCDM 87.94 83.82 87.06 86.27±2.17

RADM 88.82 85.29 88.53 87.55±1.96

Table 5.2: Accuracy (%) under three splits, mean accuracy and standard deviation (Std)

on Oxford 17 Flowers database

that performance can be improved by combining different pieces of information. On

the other hand, RADM, SSC and GRLF get the highest accuracy of 88.82% under

the first split, while RADM outperforms the others under the second and third s-

plits. Comparing the mean recognition rates, RADM obtains an improvement of

2.06% and 1.28% over the score fusion methods with independent assumption and

those without independent assumption, respectively. This indicates that modeling

dependency without specific assumptions like those in DN and LCDM helps to fur-

ther improve the recognition performance. Overall speaking, RADM gives the best

performance with highest mean accuracy and comparable standard deviation by

better discovering the relationship between scores.

5.3.3 Results on Face Databases

The mean accuracies and standard deviations on these two databases are reported in

Table 5.3. Because GRLF requires to solve the singular value decomposition (SVD)
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Method CMU PIE FERET

BestFea 88.85±2.93 83.80±12.51

Sum [2] 91.21±3.00 86.34±5.02

IN [13] 93.31±2.70 88.19±2.78

LP-B [14] 92.00±4.70 87.65±3.61

RM [6] 94.14±2.02 90.05±4.07

SSC [20] 90.66±2.87 84.26±5.78

GRLF [21] — 84.03±4.52

DN [13] 93.91±2.29 87.73±3.50

LCDM 93.01±4.07 88.89±3.13

RADM 94.83±1.94 92.13±1.75

Table 5.3: Mean accuracy (%) and standard deviation on CMU PIE and FERET Face

databases

in each iterative step [21], it is very time-consuming to get the optimal model when

the number of class and the number of samples are large. Since there are 68 classes

and around 7,000 testing samples on CMU PIE database for each validation, the

result with GRLF is not available on CMU PIE database. On the other hand,

GRLF only considers the intra-class relationship but does not take the inter-class

relationship into account. Due to the problem of large number of class in face

recognition task, GRLF gives poor performance on FERET database as shown in

Table 5.3.

Comparing RADM with other methods, same conclusion can be drawn that

RADM outperforms others on both two face databases. While results in Table 5.3

only show the rank-one accuracies, CMC curves of the top four methods on CMU

PIE and FERET databases are plotted in Fig. 5.2(a) and Fig. 5.2(b), respectively,

for detailed comparison. It can be seen that RADM outperforms IN and DN on

CMU PIE, IN and LCDM on FERET database, and is slightly better than RM with

different number of ranks. This indicates that RADM with dependency modeling
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(a) CMC curve on CMU PIE

(b) CMC curve on FERET

Figure 5.2: CMC curves of the top four fusion methods on CMU PIE and FERET Face

databases
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Method

Dataset
Weizmann KTH

BestFea 82.22 78.70

Sum [2] 84.44 84.72

IN [13] 85.56 84.26

LP-B [14] 84.44 85.19

RM [6] 84.44 88.89

SSC [20] 84.44 83.33

GRLF [21] 83.33 83.80

DN [13] 84.44 83.80

LCDM 85.56 85.19

RADM 85.56 90.28

Table 5.4: Recognition accuracy (%) on Weizmann and KTH Human Action databases

gives the best performance for face recognition as well.

5.3.4 Results on Human Action Databases

In this section, we compare the classifier fusion methods on Weizmann [49] and

KTH [55] human action databases. Table 5.4 shows the recognition rates of different

methods on Weizmann and KTH human action databases. From Table 5.4, we

can see that RADM, LCDM and IN get the highest recognition rate of 85.56% on

Weizmann database, while RADM outperforms other methods on KTH database.

We further compare the best three algorithms on Weizmann database by the receiver

operating characteristic (ROC) measurement. The ROC curves in Fig. 5.3(a) show

that RADM gives better performance when the false positive rate is larger than

10%. And the areas under curves (AUC) are 0.8524 for RADM, 0.8472 for LCDM

and 0.8424 for IN. This also convinces that the proposed RADM is better than other

classifier fusion methods for human action recognition.

101



Method VOC 2007 CCV

BestFea 42.63±15.09 50.81±16.71

Sum [2] 44.39±15.73 59.81±16.83

IN [13] 45.23±16.00 58.92±14.28

LP-B [14] 49.35±16.04 59.87±14.64

RM [6] 50.48±15.92 61.32±15.33

SSC [20] 44.50±15.60 59.61±15.80

GRLF [21] 46.00±16.17 60.61±14.31

DN [13] 46.59±16.48 58.52±13.71

LCDM 50.44±16.11 61.20±14.64

RADM 52.03±15.68 62.99±14.50

Table 5.5: MAP (%) and standard derivation on PASCAL VOC 2007 and CCV databases

On the other hand, observing the results on KTH database, the recognition rates

of RM and RADM clearly outperforms other methods, while their performances are

close to each other. Since both RM and RADM take higher order terms into accoun-

t comparing with the linear methods, these results indicate that the relationship

between scores can be better modeled when considering terms with order higher

than one. We further compare RADM and RM with changed model order K on

this database. From Fig. 5.3(b), we can see that RADM outperforms RM when the

model order is larger than one. And RADM is less sensitive to model order changed.

This is another advantage of the proposed method.

5.3.5 Results on VOC 2007 Database

The mean average precisions (MAP) and standard derivations over the 20 object

classes of the fusion methods are recorded in the second column of Table 5.5. Our

method outperforms other fusion methods, and gives an remarkable MAP improve-

ment 6.80% over the independent fusion methods, Sum and IN. This implies classi-
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(a) ROC curves on Weizmann (b) Recognition rate on KTH

Figure 5.3: Results on Weizmann and KTH databases

Figure 5.4: Per class average precisions of the top four methods on PASCAL VOC 2007

database

Figure 5.5: Per class average precisions of the top four methods on CCV database

103



fication performance can be greatly improved by modeling the relationship between

scores, if features are dependent. On the other hand, we compare per-class average

precisions (AP) of the top four fusion methods in Fig. 5.4. From Fig. 5.4, we can see

that RADM clearly outperforms the other three fusion methods for categorization

of some visual concepts, e.g. “bird”, “boat” and “bus”. Although LCDM achieves

the highest AP for recognition of “car” and “person”, RADM gives very close per-

formance for classification of these two object classes. These results convince that

RADM is still effective in the more challenging application of object categorization.

5.3.6 Results on Columbia Consumer Video Database

The third column of Table 5.5 presents the mean average precisions (MAP) and

standard derivations over the 20 object classes of the fusion methods. From Ta-

ble 5.5, we can see that the fusion methods with and without independent or other

assumptions achieve close MAP performance around 60%. This indicates that it is

easier to obtain comparable performance by combining information from different

sensors or sources, e.g. video and audio in this experiment. However, RADM still

outperforms the others due to the less demanding assumption. The per-class av-

erage precisions (AP) of the top four fusion methods are shown in Fig. 5.5. Our

method outperforms others for categorization of most of 20 video concepts. These

results show that RADM can better discover the score relationship reflecting feature

dependency with the analytic function assumption, which is easier to be satisfied in

many practical applications.

5.3.7 Comparing RADM with and without Marginal Dis-

tribution Constraint

In this experiment, we evaluate the classification performances of RADM with λ > 0

and λ = 0 in equation (5.2.26). Table 5.6 shows the comparing accuracies or MAPs
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Database RADM with λ = 0 RADM with λ > 0 Improvement

Digit 96.62 96.98 0.36

Flower 86.67 87.55 0.88

CMU PIE 94.59 94.83 0.24

FERET 91.67 92.13 0.46

Weizmann 84.44 85.56 1.12

KTH 90.28 90.28 0.00

VOC 2007 51.62 52.03 0.41

CCV 62.64 62.99 0.35

Table 5.6: Mean accuracy or mean average precision (%) on real databases

Database Digit Flower CMU PIE FERET

RADM with λ = 0 0.66 2.47 2.01 2.14

RADM with λ > 0 0.61 1.96 1.94 1.75

Improvement 0.06 0.51 0.07 0.39

Table 5.7: Standard derivation (%) on real databases

on the previous reported databases. On the other hand, since we have performed

several runs on Digit, Flower, CMU PIE and FERET databases, the standard deriva-

tions on them are recorded in Table 5.7. From Table 5.6 and Table 5.7, we can see

that RADM with λ > 0 achieves higher recognition rates or MAPs on most of the

databases, while gives lower standard derivations under different splits of the data.

This indicates that the probabilistic constraint (5.2.25) derived from marginal dis-

tribution properties not only improves the recognition performance, but also makes

the fusion algorithm less sensitive to the selection of the training data.

The results on KTH database show that RADM with λ > 0 and λ = 0 gives

equal accuracy of 90.28%. We further compare them with different numbers of

model orders in Fig. 5.6. From Fig. 5.6, we can see that the probabilistic constraint

derived from marginal distribution properties help to improve the recognition rate

when the model order is larger than three. This also shows that RADM with the
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Figure 5.6: Recognition rate on KTH database

marginal distribution constraint (5.2.25) is less sensitive to model order changes.

At last, we evaluate the per class AP on PASCAL VOC 2007 and CCV databases

in Fig. 5.7(a) and Fig. 5.7(b), respectively. Since the fused score represents the

posterior probability, these results convince that the fusion model taking advantages

of probabilistic properties gives better performance in different recognition tasks.

5.3.8 Fusion with SSTNTL

In the last experiment, we evaluate the RADM fusion performance by combining

the eight local features mentioned in Section 2.3.5 and the proposed SSTNTL for

action recognition in HOHA database. The fusion performances with and without

SSTNTL feature are reported in Table 5.8. From Table 5.8, we can see that all the

fusion methods achieve improvements to different degrees by adding the SSTNTL

feature. This indicates that fusion performance can be improved by fusing more

discriminative features. Comparing the improvements in Table 5.8, RADM achieves

the highest improvement of the average precision than others, while the improve-

ments of LP-B, RM, LCDM and RADM are remarkably higher than others. This

means some fusion methods can better discover the more discriminative features,
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Figure 5.7: Per class average precision on PASCAL VOC 2007 and CCV databases

Figure 5.8: Per class precision on Hollywood Human Action database
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Method Without SSTNTL With SSTNTL Improvement

Sum [2] 42.58 42.88 0.30

IN [13] 42.74 43.07 0.36

LP-B [14] 42.90 47.17 4.27

RM [6] 43.97 47.53 3.56

SSC [20] 42.21 42.25 0.04

GRLF [21] 43.67 44.84 1.17

DN [13] 42.02 43.19 1.17

LCDM 43.64 48.85 5.21

RADM 44.90 50.52 5.62

Table 5.8: Average Precision (%) on Hollywood Human Action database

Method AnP GoC HS HP Ki SiD SiU StU Avg

Best Local Feature 29.4 43.1 27.1 30.8 30.7 42.6 43.1 41.1 36.0

Local Feature Fusion 38.5 48.5 45.6 35.8 41.8 45.4 49.5 54.1 44.9

SSTNTL 40.0 62.5 44.4 38.1 44.2 30.2 44.4 52.4 44.5

Fusion with SSTNTL 42.3 62.4 54.8 40.6 53.2 45.7 50.0 55.1 50.5

Table 5.9: Per-class precision (%) comparison of RADM with and without SSTNTL feature

on Hollywood Human Action database

but some cannot. The per-class precision comparison of the best four fusion meth-

ods with SSTNTL feature is presented in Fig. 5.8. From Fig. 5.8, we can see that

RADM outperforms other fusion methods in classifying five out of the eight actions.

These results convince that RADM is still effective when fusing more discriminative

features.

At last, the fusion performance with and without SSTNTL using RADM is p-

resented in Table 5.9. From Table 5.9, we can see that the average precision of the

SSTNTL feature is 8.5% higher that of the best local feature, and only 0.4% lower

than that of the fusion of eight local features. These results show that SSTNTL is
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more discriminative comparing with the local features extracted in this experiment.

On the other hand, SSTNTL outperforms local feature fusion significantly by clas-

sifying the action “Get out of Car”, while the per-class precision of the “Sit Down”

by SSTNTL is much lower than that by the local feature fusion. This indicates that

local features and SSTNTL can provide complementary information to each other.

Thus, it can achieve a remarkable improvement by combining them with RAMD as

shown in Table 5.9.

5.4 Summary

In this chapter, a new framework is designed and proposed for dependency mod-

eling by analytic functions on posterior probabilities of each feature. It is shown

that Product rule [2] (with independent assumption) and LCDM [35] (without in-

dependent assumption) can be unified by the proposed analytic dependency model

(ADM). With the ADM, we give an equivalent condition to independent assumption

from the properties of marginal distributions. Since the ADM may contain infinite

number of undetermined coefficients, a reduced form is proposed based on the con-

vergent properties of analytic functions. At last, the optimal Reduced Analytic

Dependency Model (RADM) is learned by label information from training data and

probabilistic constraint derived from marginal distribution properties.

Experimental results show that the proposed RADM outperforms existing score

level fusion methods on Digit, Flower, Face, Human Action, Object Categorization,

and Consumer Video databases. This indicates that the assumption in RADM is

easier to be satisfied, so that RADM can better model dependency and help to

improve the performance in many recognition problems. At last, comparing RADM

with and without the marginal distribution constraint, it is shown that the fusion

model gives extra advantages by taking probabilistic properties into account.
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Chapter 6

Conclusions and Future Works

Visual recognition is a challenging task, especially in the presence of self/mutual

occlusions, clustered backgrounds, illumination variations, etc. In this thesis, de-

pendency modeling is proposed to fuse multiple features and improve the recognition

performance.

Based on the Bayesian model, it is proved that the linear combination of poste-

riors can model dependency under the assumption that posteriors will not deviate

dramatically from the priors. With this property, a new linear dependency modeling

framework has been developed and two methods, namely Linear Classifier Depen-

dency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM) are

proposed for classifier level and feature level fusion, respectively. Experiments show

that LCDM and LFDM with linear dependency modeling give convincing results

compared with state-of-the-art classifier level and feature level fusion methods, re-

spectively. This indicates that dependency modeling can improve the recognition

performance and the proposed linear combination framework can model dependen-

cy. With the analysis on dependencies between classifiers/features, it is shown that

statistics of classification scores cannot truly reflect the characteristics of feature

level dependency. Consequently, LFDM, which models dependency in feature level

explicitly, outperforms existing classifier level and feature level fusion methods on

110



the Weizmann and KTH human action databases. And dependency modeling in

feature level should be performed for information fusion.

In order to remove the assumptions in existing dependency models, a novel

framework has been proposed by analytic functions on posterior probabilities of

each feature. With the analytic dependency model (ADM), an equivalent condi-

tion to independent assumption is given based on the structure of the solution to

the equation system derived from properties of marginal distributions. Since the

ADM may contain infinite number of undetermined coefficients, the Reduced Ana-

lytic Dependency Model (RADM) is proposed based on the convergent properties

of analytic functions. Experimental results show that the proposed RADM outper-

forms existing score level fusion methods on Digit, Flower, Face, Human Action,

Object Categorization, and Consumer Video databases. This indicates recognition

performance can be improved by reducing the fusion assumptions and the analytic

function assumption in the RADM is less demanding. Moreover, comparing RADM

with and without the marginal distribution constraint, it is shown that the fusion

model gives extra advantages by taking probabilistic properties into account.

Combining the data distribution information with class label and global con-

straint of temporal labels, Supervised Spatio-Temporal Neighborhood Topology

Learning (SSTNTL) is proposed for feature extraction in video applications. Ex-

perimental results show that the proposed SSTNTL outperforms existing manifold

learning methods for video classification by taking the global information of tem-

poral orders in action sequences into account. On the other hand, with the seg-

mentation of motion regions of interest, SSTNTL is better than the interest points

or trajectories based methods. This indicates that global frame representation can

be more discriminative than the local descriptors, if the video background is not

so complicated and the motion regions of interest can be detected robustly. In

addition, experiments fusing SSTNTL and interest points based local descriptors

show that the recognition performance can be further improved by adding the more

discriminative SSTNTL feature.
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Although the proposed methods achieve convincing results in the visual recog-

nition applications reported in this thesis, some issues may be further investigated

in the future.

• For the spatio-temporal feature representation, SSTNTL takes advantage of

the global constraint in temporal labels to improve the recognition perfor-

mance. However, motion regions of interest need to be segmented before

learning the spatio-temporal manifold. If the video background is complicated

and the camera is moving unevenly, the segmentation results with automatic

motion detection are not robust. And motion regions of interest need to be

segmented manually to achieve comparable performance. Therefore, it is valu-

able to revise the SSTNTL algorithm, so that it is less sensitive to complex

background with complex camera motion in the future. On the other hand,

the global feature may not be robust to occlusion, so future works may focus

on extending the manifold learning based feature extraction method for the

occlusion problem in videos.

• For the linear dependency model, the feature level fusion method, LFDM,

shows some superiorities to LCDM, but LFDM takes longer time for train-

ing compared to the classifier level combination methods as well as the fast

multiple kernel learning methods. Thus, we will further study the efficient

algorithm for LFDM and investigate the fusion process in feature level in fu-

ture. Besides, it will be interesting to revisit the idea of dependency modeling

for specific applications. And, the recognition performance could be further

improved by incorporating some characteristics in the specific applications.

• For the analytic dependency model, RADM is derived with less demanding

assumption comparing with LCDM. Nevertheless, the assumption in RADM

may not be suitable in feature level, so RADM has not been extended to

feature level like the extension of LCDM to LFDM. Thus, the assumption

issue in feature level fusion need to be further investigated in the future.
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Appendices

Proof of Proposition 1

Features ~x1, · · · , ~xM can be viewed as random vectors. And posterior probabili-

ties Pr(ωl|~xm) and Pr(ωl|xmn) can be considered as real-value continuous functions.

According to measure theory [114], measurable functions on random variables are

random variables, so slm = Pr(ωl|~xm) and flmn = Pr(ωl|xmn) are random variables.

On the other hand, similar to the derivation in Section 4.2.1 and Section 4.2.2,

the relationship between slm and flmn is given by the following equation.

slm = Pm ∗ (
Nm∑
n=1

λlmnflmn +
1

L
(1−

Nm∑
n=1

λlmn)) (A1)

where Pm =
∏Nm

n=1 Pr(xmn)

Pr(xm1,··· ,xmNm )
. Equation (A1) implies that slm is a function on

flm1, · · · , flmNm . This means S is a function on F , i.e. S = g(F), so we get

Pr(Y|S,F) = Pr(Y|g(F),F) = Pr(Y|F) (A2)

where Y is the label viewed as a random variable and Pr(·|·) represents the condi-

tional probability. This equation indicates that label Y is conditionally independent

with scores S given features F . Moreover, the Data Processing Inequality (DPI) [26]

shows that, if random variables Z1 and Z2 are conditionally independent given Z3,

then

I(Z1,Z3) ≥ I(Z1,Z2) or I(Z2,Z3) ≥ I(Z1,Z2) (A3)
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where I(·, ·) represents the mutual information. Let Z1 = Y , Z2 = S and Z3 =

F . Then, the first inequality in (A3) becomes I(Y ,F) ≥ I(Y ,S), which indicates

feature level contains more information about object label than score level does.

Proof of Proposition 2

The optimization problem for LFDM is given by (4.2.12) in Chapter 4. Since pjlmn =

Pr(ωl|xjmn) − Pr(ωl), the inequality condition Pr(ωl0 |xj0mn) < Pr(ωl0)(1 − 1
K

) is

equivalent to

pj0l0mn +
1

KL
< 0 (A4)

Multiplying (A4) with γl0mn and computing the summation over m and n, we get

M∑
m=1

Nm∑
n=1

γl0mnpj0l0mn +
1

KL

M∑
m=1

Nm∑
n=1

γl0mn < 0 (A5)

According to (A5), if constraints iv) in (4.2.12) is valid, i.e.
∑M

m=1

∑Nm

n=1 γl0mn = K,∑M
m=1

∑Nm

n=1 γl0mnpj0l0mn + 1
L
< 0. And if constraints ii) in (4.2.12) is true, equation

(A5) implies
∑M

m=1

∑Nm

n=1 γl0mn < K. Thus, constraints ii) and iv) in (4.2.12) cannot

be be hold at the same time.

Proof of Proposition 3

We first show that conditionally independent condition implies the solution to the

equation system (5.2.14) is trivial, i.e. ~αlm0 = ~0, ~αlm2 = ~0, ~αlm3 = ~0, · · · is a trivial

solution to equation system (5.2.14) for m = 1, · · · ,M . In equation system (5.2.14),

Glmr(~αlmr) =

∫ ∏
i 6=m

Pr(~xi)glmr(s̃lm; ~αlmr)d~x1 · · · d~xm−1d~xm+1 · · · d~xM · · ·

where glmr is an analytic function defined on s̃lm = (sl1, · · · , sl(m−1), sl(m+1), · · · slM)T

with coefficient vector ~αlmr. If feature representations are independent with each
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other given class label ωl, the ADM function hl(~sl; ~αl) becomes

hl(~sl; ~αl) = c1−Ml

M∏
m=1

slm (A6)

Rewriting the ADM function (A6) according to the order of slm, we get

hl(~sl; ~αl) = glm1(s̃lm; ~αlm1)slm (A7)

where glm1(s̃lm; ~αlm1) = c1−Ml

∏
i 6=m sli. Equation (A7) means that glmr(s̃lm; ~αlmr) ≡

0 or equivalently ~αlmr = ~0 for r 6= 1, i.e. the solution to equation system (5.2.14) is

trivial.

On the other hand, given the solution to equation system (5.2.14) is trivial, we

need to show that the ADM function hl(~sl; ~αl) is equal to equation (A6). If ~αlmr = ~0

for r 6= 1, then the ADM function hl(~sl; ~αl) can be rewritten as equation (A7) for

1 ≤ m ≤ M . This implies each term in the power series hl contains all variables

sl1, · · · , slM and the order of each slm cannot be larger than one. In this case, there is

only one non-zero term
∏M

m=1 slm in the analytic function hl. In addition, according

to the normalization equation (5.2.13), the non-zero term
∏M

m=1 slm is normalized

by the prior. And the ADM function becomes equation (A6). This complete the

proof of this proposition.

Proof of Proposition 4

With matrix representation, the error function ELS(~α, b)− ρb can be rewritten as

Eρ(α̃) =
1

2
α̃THα̃− ρα̃T ũ

s.t. ũ = (~0; 1),

H =
1

JL


Z1ZT1 −Z1

~δ1
. . .

...

ZLZTL −ZL~δL

−~δT1 ZT1 · · · −~δTLZTL
∑L

l=1
~δTl
~δl


(A8)
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where Zl = (~z1l, · · · , ~zJl) and ~δl = (δ1l, · · · , δJl)T . We minimize the error func-

tion (A8) by computing the first derivative respect to α̃. And the optimal solution

is obtained by α̃∗ρ = ρH−1ũ. Since α̃∗ denotes the solution when ρ = 1, it has

α̃∗ = H−1ũ and α̃∗ρ = ρα̃∗, which proves this proposition.

Proof of Proposition 5

Let us consider solving the optimization problem (5.2.26) in an alternative way. For

fixed b, we minimize the objective function respect to ~α and denote the solution as

a function of b, i.e.

F (b) = min
~α

(E(~α, b) + λEMarg(~α) +
1

2
µ~αT ~α) (A9)

With the matrix representation, the objective function in equation (A9) can be

rewritten as

1

2

L∑
l=1

[
1

LJ
(~αTl Zl − b~δTl )(ZTl ~αl − b~δl) + µ~αTl ~αl

+λ
1

LMJl

M∑
m=1

(~αTl Qlm − ~sTlm)(QTlm~αl − ~slm)]− b

(A10)

where Zl, ~δl, Qlm and ~slm are defined in Section 5.2.3. Based on the objective

function in equation (A10), the optimization problem in (A9) can be decomposed

into L subproblem respect to ~αl. And the solution which minimizes the objective

function (A10) for each ~αl is given as follow,

~α∗l = H−1l (b~φl + ~ψl),

s.t. Hl =
1

LJ
ZlZTl +

λ

LMJl

M∑
m=1

QlmQTlm + µI,

~φl =
1

LJ
Zl~δl, ~ψl =

λ

LMJl

M∑
m=1

Qlm~slm

(A11)

Substituting the optimal solution (A11) about ~αl into the objective function (A10),

the function of b becomes

F (b) =
1

2
[
L∑
l=1

(
1

LJ
~δTl
~δl − ~φTl H−1l ~φl)]b

2 − (1 + ~φTl H−1l ~ψl)b+ c′0 (A12)
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where c′0 is a constant respect to b. This means, we obtain a quadratic function after

minimizing the objective function respect to ~α.

Since matrix Hl is positive definite for positive regularization parameter µ, the

inverse of Hl is positive definite as well. While the elements in vectors ~φl and ~ψl

are positive, ~φTl H−1l ~ψl is positive. Thus, the first order coefficient in equation (A12)

is negative. On the other hand, according to equation (A10), F (b) + b is non-

negative for any b. This means the second order coefficient in F (b) + b is positive.

Otherwise, F (b)+b is negative for some b. Since the second order coefficient does not

change by adding the first order term b to quadratic function F (b), the second order

coefficient in equation (A12) is positive. Therefore, b∗ corresponding to minimum

value F (b∗) is positive. Moreover, as discussed in Section 3.3.3 in the manuscript,

equation (5.2.30) also gives the solution to optimization problem (5.2.26). Therefore,

b∗ given by equation (5.2.30) is also positive, which prove this proposition.
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[70] O. C. Jenkins and M. J. Matarić, “A spatio-temporal extension to Isomap

nonlinear dimension reduction,” Proc. Int’l Conf. Machine Learning, pp. 441–

448, 2004.

[71] M. Lewandowski, J. M. del Rincon, D. Makris, and J.-C. Nebel, “Temporal

extension of laplacian eigenmaps for unsupervised dimensionality reduction of

time series,” Proc. IEEE Int’l Conf. Pattern Recognition, pp. 161–164, 2010.

[72] A. J. Ma, P. C. Yuen, W. Zou, and J.-H. Lai, “Supervised neighborhood

topology learning for human action recognition,” IEEE Int’l Conf. Computer

Vision Workshops, pp. 476–481, 2009.

[73] M. P. do Carmo, Riemannian geometry. Birkhauser, 1993.

125



[74] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine recog-

nition of human activities: A survey,” IEEE Trans. Circuits and Systems for

Video Technology, vol. 18, no. 11, pp. 1473–1488, 2008.

[75] R. Poppe, “A survey on vision-based human action recognition,” Image and

Vision Computing, vol. 28, no. 6, pp. 976–990, 2010.

[76] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,” ACM

Computing Surveys, vol. 43, no. 3, pp. 16:1–16:43, 2011.

[77] D. Weinland and E. Boyer, “Action recognition using exemplar-based embed-

ding,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–7,

2008.

[78] S. Baysal, M. C. Kurt, and P. Duygulu, “Recognizing human actions using

key poses,” Proc. IEEE Int’l Conf. Pattern Recognition, pp. 1727–1730, 2010.

[79] T. Zhang, J. Liu, C. X. Si Liu, and H. Lu, “Boosted exemplar learning for

action recognition and annotation,” IEEE Trans. Circuits and Systems for

Video Technology, vol. 21, no. 7, pp. 853–866, 2011.

[80] J. C. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised learning of human

action categories using spatial-temporal words,” Int’l J. Computer Vision,

vol. 79, no. 3, pp. 299–318, 2008.
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