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Cross-Domain Person Re-Identification Using
Domain Adaptation Ranking SVMs

Andy J Ma, Jiawei Li, Pong C Yuen, Senior Member, IEEE, and Ping Li

Abstract—This paper addresses a new person re-identification
problem without label information of persons under non-
overlapping target cameras. Given the matched (positive) and
unmatched (negative) image pairs from source domain cameras,
as well as unmatched (negative) and unlabeled image pairs from
target domain cameras, we propose an Adaptive Ranking Sup-
port Vector Machines (AdaRSVM) method for re-identification
under target domain cameras without person labels. To overcome
the problems introduced due to the absence of matched (positive)
image pairs in the target domain, we relax the discriminative
constraint to a necessary condition only relying on the positive
mean in the target domain. To estimate the target positive
mean, we make use of all the available data from source and
target domains as well as constraints in person re-identification.
Inspired by adaptive learning methods, a new discriminative
model with high confidence in target positive mean and low
confidence in target negative image pairs is developed by refining
the distance model learnt from the source domain. Experimental
results show that the proposed AdaRSVM outperforms exist-
ing supervised or unsupervised, learning or non-learning re-
identification methods without using label information in target
cameras. Moreover, our method achieves better re-identification
performance than existing domain adaptation methods derived
under equal conditional probability assumption.

Index Terms—Person Re-Identification, Domain Adaptation,
Target Positive Mean, Adaptive Learning, Ranking SVMs.

I. INTRODUCTION

A. Background

In recent years, person re-identification across a camera
network comprising multiple cameras with non-overlapping
views has become an active research topic due to its impor-
tance in many camera-network-based computer vision appli-
cations. The goal of person re-identification is to re-identify
a person when he/she disappears from the field-of-view of
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(a) PRID (b) VIPeR

Fig. 1. Comparison between person images from different datasets (better
viewed in color): matched image pairs in (a) PRID [27] and (b) VIPeR
[28] dataset. There are three major differences between these two image
sets: 1) different backgrounds; 2) different viewpoint changes; 3) different
illumination conditions.

a camera and appears in another. Matching individuals over
disjoint cameras can be substantially challenging when vari-
ations in illumination condition, background, human pose
and scale are significant among those views. Moreover, the
temporal transition time between cameras varies greatly for
each individual which makes the person re-identification task
even harder.

To address this problem, existing schemes mainly focus
on developing either robust feature representations [1]–[17]
or discriminative learning models [18]–[26]. For the discrim-
inative learning methods, it is generally assumed that the
label information of persons is available for training. With the
person labels, matched (positive) and unmatched (negative)
image pairs are generated to train the discriminative distance
model. While these methods could achieve encouraging re-
identification performance, the assumption that label informa-
tion is available for all the cameras, could only be practically
feasible in a small-scale camera network.

Contrarily, in the case of large-scale camera network, col-
lecting the label information of every training subject from
every camera in the network can be extremely time-consuming
and expensive. Therefore, labels of the training subjects may
not be able to be collected from certain cameras. This renders
existing approaches inapplicable, since the person labels are
not available. Apart from this reason, significant inter-camera
variations as exemplified in Fig. 1 would also lead to dramatic
performance deterioration, when the distance model learnt
from other camera set with label information is directly applied
to the cameras missing person labels.

These setbacks pose the need for new methods to handle the
afore-described person re-identification issue in the large-scale
camera network setting.

B. Motivation

Motivated by domain adaptation approach (see [29] for a
review), we consider data from the camera set with label
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information as the source domain; while data from the camera
set missing label information as the target domain. Here, we
denote the source and target domains as s and t, respectively.
Due to non-trivial inter-camera variations as indicated in
Fig. 1, the source and target joint distributions of the positive
or negative tag y and feature vector z for an image pair
are supposed to be different, i.e. Prs(y, z) ̸= Prt(y, z). In
order to overcome the problem of the mismatch of marginal
distributions, a mapping Φ, s.t. Prs(Φ(z)) ≈ Prt(Φ(z)), can
be learnt via domain adaptation techniques, e.g. [30] [31]. In
general, existing unsupervised domain adaptation schemes as-
sume that, after projection, such Φ also satisfies the equal con-
ditional probability condition, i.e. Prs(y|Φ(z)) ≈ Prt(y|Φ(z)).
Since the conditional probability Prs(y|Φ(z)) or Prt(y|Φ(z))
can be interpreted as classification score, the condition that
Prs(y|Φ(z)) ≈ Prt(y|Φ(z)) implies an equivalence of the
distance models in the source and target domains. In this
case, existing person re-identification algorithms, e.g. [18]–
[22], can be employed to learn the distance model in the source
domain (consisting of projected data with positive and negative
image pairs generated by the label information), which can be
applied to the target domain without significant performance
degradation.

However, it is almost impossible to verify the validity of
the assumption that Prs(y|Φ(z)) ≈ Prt(y|Φ(z)) in practice.
As a result, there is no way to guarantee that the distance
model learnt from the projected data in the source domain is
equivalent to the target one. Thus, we propose to learn the
target distance model using data from both source and target
domains. If a small amount of positive and negative data is
available in the target domain, multi-task learning [32] [33]
or adaptive learning methods [34] [35] can be employed to
learn the distance model for the target cameras without the
assumption that the conditional distributions are equal with
each other in the source and target domains. However, in
large-scale camera networks, it is still time-consuming and
expensive to label even a small amount of person images. Due
to the absence of label information under target cameras, these
domain adaptation techniques [32]–[35] cannot be applied
directly. To ensure the equality of the conditional probabilities
in the source and target domains, this paper will study on
how to estimate the target label information and incorporate
the labeled data from source domain with the estimated target
label information for discriminative learning.

C. Contributions

The contributions of this paper are two-fold.
• We develop a new method to estimate target positive

information based on the labeled data from the source domain,
negative data (unmatched image pairs generated from non-
overlapping target cameras) and unlabeled data from the target
domain. Without positive image pairs generated by the label
information of persons, we propose to relax the discriminative
constraint into a necessary condition to it, which only relies
on the mean of positive pairs. Since source and target domains
must be related, we estimate the target positive mean by the la-
beled data from the source domain. While the estimation based

on the source domain data may deviate from the true target
positive mean, we propose to estimate it in another way that
potential positive data is selected from the unlabeled data in
the target domain by maximizing the positive joint distribution
with properties and constraints in person re-identification. To
further reduce the estimation error, the two estimations of the
target positive mean are combined to determine the optimal
estimation by the training data.

• We propose a novel Adaptive Ranking Support Vector
Machines (AdaRSVM) method to rank the individuals for
person re-identification. Inspired by adaptive learning meth-
ods [34] [35], RankSVM [19] is employed to learn a distance
model by the labeled data from the source domain. After that,
the estimated target positive mean and target negative data
are used to learn the discriminative model for target domain
by adaptively refining the distance model learnt in the source
domain.

Although the motivation of this paper is similar to that in
our conference version [36], the proposed algorithm is almost
different from the previous one. In this paper, we propose a
new method (different from that in [36]) to better estimate the
target positive mean by all the available information from both
source and target domains. Besides, the asymmetric domain
adaptation algorithm in this paper is better than the symmetric
one in the previous method, since it is more important to train
a discriminative model for the target domain (rather than both).
Moreover, more experiments have been performed to evaluate
the proposed method, e.g. we add more datasets for evaluation
and compare with two domain adaptation algorithms and
appearance-based methods in this paper.

D. Organization

The rest of this paper is organized as follows. We will
first give a brief review on existing person re-identification
and domain adaptation methods. Section III will report the
proposed method. Experimental results and conclusion are
given in Section IV and Section V, respectively.

II. RELATED WORKS

Before introducing the proposed method, we give a brief
review on person re-identification and domain adaptation in
this section.

A. Person Re-Identification

In order to ensure that feature representation of the person
image is less sensitive to large inter-camera variations, many
existing re-identification methods focus on extracting robust
features. Popular ones include SIFT [7] [10], texture [4] [5]
[6] [11] [12], color distribution [3] [15], space-time methods
[1] [2] and pictorial structures [8].

Besides feature extraction, discriminative distance learning
methods are proposed to further improve the re-identificaiton
performance. In [19], person re-identification was formulated
as a ranking problem and the RankSVM model is learnt by
assigning higher confidence to the positive image pairs and
vice versa. Denote xi as the feature vector for image i, x+ij for
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j = 1, · · · , n+
i as feature vectors of the images with the same

identity, and x−il for l = 1, · · · , n−
i as feature vectors of the

images with different identities, where n+
i (n−

i ) is the number
of the matched (unmatched) observations. And, the absolute
difference vector for the positive (resp. negative) image pair
of xi and x+

ij (resp. x−il ) is calculated by z+ij = d(xi − x+ij)
(resp. z−il = d(xi − x−il )), where d is an entry-wise function of
absolute values. The weight vector w in RankSVM is obtained
by solving the following optimization problem,

min
w,ξ

1

2
∥w∥2 + C

∑
i,j,l

ξijl

s.t. wT (z+ij − z−il ) ≥ 1− ξijl,

ξijl ≥ 0, ∀i, j, l

(1)

where ξijl is the slack variable and C is a positive parameter.
Similar to RankSVM, Zheng et al. [22] proposed a Relative
Distance Comparison (RDC) method using a second-order
distance learning model. This method is able to exploit higher-
order correlations among different features, compared with
RankSVM. In order to solve the computational complexity
issues in RankSVM and RDC, a Relaxed Pairwise Metric
Learning (RPML) method [21] was proposed by relaxing the
original hard constraints, which leads to a simpler problem
that can be solved more efficiently.

Besides the supervised distance learning methods [19] [21]
[22], Kuo et al. [37] proposed an online-learnt appearance
affinity model to decrease the required number of labeled
samples under some specific assumptions. On the other hand,
an adaptive feature weighting method was proposed in [38]
under the observation that the universal model may not
be good for all individuals. Different from traditional per-
individual identification scheme, Zheng et al. [39] addressed
a watch list (set) based verification problem and proposed to
transfer the information from non-target person data to mine
the discriminative information for the target people in the
watch list.

B. Domain Adaptation

The main objective of domain adaptation approach is to
adapt the classification model learnt from the source domain
to target domain without serious deterioration of recognition
performance. The target domain refers to data from the target
task usually without or with only a small amount of labeled
training data, while there are plenty of labeled training data
in the source domain. In the last decade, many algorithms
(see [29] for a review) have been proposed to solve the joint
distribution mismatch problem, i.e. Prs(y, z) ̸= Prt(y, z).

For unsupervised domain adaptation, the instance re-
weighting or covariate shift approach [40] learns the target
classification model by re-weighting the labeled samples in
the source domain to minimize the approximated empirical
classification error in the target domain. To estimate the sample
weights calculated by Prs(z) dividing Prt(z), many density
ratio estimation methods [41] have been proposed. Besides
instance re-weighting, the feature representation methods [30]
[31] [42] [43] [44] [45] construct feature vectors to reduce the

difference between features in the source and target domains.
Blitzer et al. [42] proposed a structural correspondence learn-
ing algorithm by selecting pivot features for natural language
processing, while other methods [30] [31] [43] [44] [45] try
to learn a mapping Φ, s.t. Prs(Φ(z)) ≈ Prt(Φ(z)). Without
label information in the target domain, these methods assume
that the conditional probabilities are equal to each other in
the source and target domains. And it was shown in [46] that
the empirical classification error can be very small under this
assumption. However, this assumption may not be valid, so
that the recognition performance may deteriorate.

For supervised domain adaptation with target labeled data,
existing methods learn an informative prior using the source
domain data and estimate the target model based on such
prior [34] [35] [47] [48]. Based on the assumption that the
recognition tasks in the source and target domains are related,
multi-task learning methods [32] [33] can be employed to
discover the task relationship and learn the classification mod-
els in the source and target domains simultaneously. Unlike
supervised domain adaptation techniques, unlabeled data in
the target domain are considered together with the labeled data
to learn the target classification model for better performance
in [49]–[53]. However, labeling person images for each camera
is expensive, especially in large-scale camera networks appli-
cations. Thus, existing supervised or semi-supervised domain
adaptation algorithms cannot be employed directly.

III. DOMAIN ADAPTATION RANKING SVMS FOR PERSON
RE-IDENTIFICATION

To present the algorithm more clearly, let target domain
contain images from a pair of (two) cameras a and b. For
multiple target cameras, multiple classification models can be
trained for each camera pair. Since feature extraction is not the
focus of this paper, all general feature representation methods,
e.g. color histogram, can be used to extract feature vectors for
the person images. As indicated in [22], the absolute difference
space shows some advantages over the common difference
space, so we follow [22] to use the absolute difference vectors
for both positive and negative image pairs. Given two feature
vectors xai and xbj representing two images under two cameras
a and b, the absolute difference vector zij is defined by

zij = d(xai − xbj) = (|xai (1)− xbj(1)|, · · · , |xai (R)− xbj(R)|)T
(2)

where x(r) is the r-th element of the input vector x and R is
the dimension of x.

The available training data is introduced as follows. In the
source domain, label information is available, so difference
vectors of positive and negative image pairs can be generated
and denoted as z+sij and z−skl, respectively. For the target
domain, the label information of persons is not available, so
positive image pairs cannot be generated. However, negative
image pairs can be easily generated, because same person
cannot be presented at the same instant under different non-
overlapping cameras. Denote the difference vectors for the
target negative image pairs as z−tij . In addition, unlabeled
image pairs in the target domain are also available and the
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Fig. 2. Proposed domain adaptation framework for person re-identification

unlabeled difference vector is denoted as zutkl. The block
diagram of the proposed method is shown in Fig. 2. With
z+sij , z−skl in the source domain and z−tij , zutkl in the target
domain, we propose a new method to estimate the target
positive mean m̃+

t , which will be discussed in Section III-A.
Then, the labeled data from the source domain are used to train
a source distance model ws by employing RankSVM [19]. At
last, the target distance model wt is learnt by the proposed
adaptive ranking SVMs method, which will be presented in
Section III-B.

A. Estimating Positive Mean in Target Domain

Since different feature elements in a feature vector give
different importance in identifying a person, we follow [19] to
use the weighted summation of the absolute difference vector
to calculate the confident score for the image pairs in the target
domain, i.e. wT

t ztij , where wT
t denotes the transposition of the

target weight vector. If positive image pairs are available, the
scores of positive image pairs must be larger than those of the
negative ones for a discriminative weight vector wt, i.e.

wT
t z+tij > wT

t z−tkl, ∀i, j, k, l (3)

However, positive image pairs are not available in the target
domain, so we cannot obtain the absolute difference vectors
z+tij in practice. One way to solve this problem is to determine
the weight vector wt by assigning smaller values to the
difference vectors z−tkl of negative image pairs using one-
class SVM [54]. Nevertheless, it is possible that the scores of
positive image pairs also decrease when minimizing those of
the negative ones. Thus, it cannot be guaranteed that the learnt
weight vector wt satisfies the discriminative constraint (3). In
order to deal with this problem, we propose to learn the weight
vector wt by imposing a necessary condition to constraint (3).

Taking the summation of constraint (3) over the difference
vectors z+tij of positive image pairs for all i and j, it has

wT
t m+

t > wT
t z−tkl, ∀k, l (4)

where m+
t denote the mean of positive image pairs in the target

domain. Therefore, a necessary condition to constraint (3) is
given by equation (4) such that the score of the positive mean
is larger than those of the negative image pairs.

While there is no positive data in the target domain, the
target positive difference vectors z+tij are difficult to estimate
due to the highly data imbalance problem. According to
equation (4), the target positive mean m+

t can be used to give
a necessary condition to the discriminative constraint (3). On
the other hand, in domain adaptation, the distance between
source and target domain distributions can be measured by the
distance between the empirical means of the two domains [31].
Moreover, in one-class classification problems, the positive
mean is usually used to represent the positive distribution [55].
Thus, we propose to estimate the target positive mean for
domain adaptation in person re-identification. Although it is
still challenging to estimate the target positive mean without
any positive data, we solve this problem by using both the
labeled data in the source domain and the unlabeled data in
the target domain.

1) Estimating Target Positive Mean by Labeled Data in
Source Domain: To estimate the target positive mean, we
propose to make use of the data with label information of
persons in the source domain. With the label information,
the true means of positive and negative image pairs in the
source domain can be calculated and denoted as m+

s and m−
s ,

respectively. Since the source and target domains are related,
the positive and negative distributions in the source domain
must be related to those in the target domain. We suppose
the relationship can be modeled in a way that the difference
between the positive and negative means in the source domain
is close to that in the target domain, i.e.

m+
t − m−

t ≈ m+
s − m−

s (5)

where m+
t and m−

t denote the target genuine positive and
negative means, respectively.

Since not all of the negative data in the target domain are
available, the true negative mean m−

t cannot be calculated. In-
stead, we can estimate the negative mean m̃−

t by the available
negative difference vectors z−tij . With equation (5), the positive
mean in the target domain can be estimated by the following
equation,

m̃+
t1 = m̃−

t + m+
s − m−

s (6)

The upper bound of the estimation error using equation (6) is
given by

∥m+
t − m̃+

t1∥ ≤ ∥m−
t − m̃−

t ∥
+ ∥(m+

t − m−
t )− (m+

s − m−
s )∥

(7)

Since lots of negative image pairs can be obtained from
the non-overlapping target cameras, the estimated mean of
negative pairs is close to the true one. Under the assumption
given by equation (5), the upper bound of the estimation error
for the positive mean in the target domain is small.
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2) Estimating Target Positive Mean by Unlabeled Data in
Target Domain: Utilizing the labeled data in the source do-
main, equation (6) estimates the target positive mean without
using the unlabeled data zutkl in the target domain. On the other
hand, m̃+

t1 may not be a good estimation, if the assumption
given by equation (5) is not valid. Therefore, we propose to
estimate the target positive mean in another way based on the
target domain data in this subsection.

Denote the mean calculated by the difference vectors of all
the image pairs in the target domain as mt. It can be calculated
by the following equation,

mt = (N+
t m+

t +N−
t m−

t )/Nt (8)

where Nt, N+
t and N−

t denote the number of the overall,
positive and negative image pairs, respectively. With equa-
tion (8), the mean of positive image pairs can be estimated
by the following equation,

m̃+
t = (Ntmt −N−

t m̃−
t )/N

+
t (9)

However, N+
t and N−

t are difficult to compute, if target
positive samples are not available. On the other hand, the
estimation error for the target positive mean with equation (9)
can be very large, since the number of negative pairs is
much larger than that of positive pairs, i.e. N−

t ≫ N+
t . The

estimation error for the positive mean with equation (9) is
given by the following equation,

∥m+
t − m̃+

t ∥ =
N−

t

N+
t

∥m−
t − m̃−

t ∥ (10)

Since N−
t ≫ N+

t , the division value of N−
t /N+

t is very large.
Therefore, according to equation (10), the estimation error for
the positive mean is very large, even though the error for the
negative mean is small.

To solve this problem, we propose to calculate the mean
by selecting Q potential positive difference vectors from
the unlabeled data zutkl and maximizing the following joint
distribution,

max
zutkqlq

,q=1,··· ,Q
Pr(zutk1l1 , · · · , zutkQlQ |+) (11)

If zutk1l1
, · · · , zutkQlQ

are independent with each other given the
positive tag, the optimization problem (11) can be rewritten as

max
zutkqlq

,q=1,··· ,Q

Q∏
q=1

Pr(zutkqlq |+) (12)

Denote putkl = Pr(zutkqlq
|+). We estimate the positive condi-

tional probability putkl as follows. According to the definition
given by equation (2), if the norm ∥zutkl∥ of the absolute
difference vector is close to zero, images k and j have a
high probability that they represent the same person, and thus
they form a positive (matched) image pair, i.e. zutkl is likely
to be positive. Therefore, we estimate the positive conditional
probability by1

putkl ∝ e−∥zutkl∥ (13)

1While the norm could be more general, we use the l1 norm in our
experiments, and hence the probability becomes a Laplace distribution.

Algorithm 1 Selecting positive difference vectors
Input: Unlabeled difference vectors zutkl in target domain and

number of selected positive difference vectors Q;
1: Calculate positive posteriors putkl by equation (13);
2: Group unlabeled data to obtain Gk· and G·l by equa-

tion (14);
3: Select zutkqlq

with the highest positive probability putkqlq
from the unlabeled data set;

4: Delete elements in groups Gkq· and Glq· from the unla-
beled data set;

5: Go to step 2 until Q positive difference vectors are
selected;

Output: Selected difference vectors zutk1l1
, · · · , zutkQlQ

.

Under the independent assumption, potential positives
can be selected by the unlabeled data with top Q scores
putk1l1

, · · · , putkQlQ
. However, the independent assumption is

not valid. To explain the reasons, we denote Gk· as the set
of difference vectors related to image k under camera a and
those images under the other camera b, i.e.

Gk· = {zutkl = d(xak − xbl )|∀xbl} (14)

Let us consider two elements zutkl1 and zutkl2 in Gk·. Denote
the number of positives and the number of all elements in Gk·
as N+

k and Nk, respectively. If zutkl1 is positive, the probability
that zutkl2 is positive is equal to (N+

k −1)/(Nk−1). If zutkl1 is
negative, such probability becomes N+

k /(Nk − 1). Therefore,
the independence is not valid for the unlabeled data in the
same group Gk·. And, we propose to add a constraint to the
optimization problem (12) to ensure the independence, i.e.
zutk1l1

, · · · , zutkQlQ
come from different groups Gk· and G·l

2.
Thus, we have the following optimization problem,

max
pu
tkqlq

, s.t. k1 ̸=···̸=kQ,l1 ̸=···̸=lQ

Q∏
q=1

putkqlq (15)

To solve the optimization problem (15), we propose an
efficient greedy method. Once a potential positive difference
vector zutkqlq

is selected, the elements in Gkq· and G·lq are
removed for the constraint in the optimization problem (15).
The algorithmic procedure is given in Algorithm 1. Since it
cannot be guaranteed that the selected unlabeled difference
vectors are really generated by the true positive image pairs,
we calculate the mean of them to reduce the negative impact
for wrongly labeling an unlabeled difference vector as positive,
i.e.

m̃+
t2 =

1

Q
(zutk1l1 + · · ·+ zutkQlQ) (16)

where zutk1l1
, · · · , zutkQlQ

are Q unlabeled difference vectors
selected as positive.

3) Combining Estimated Target Positive Means: In the
previous discussions, labeled data in the source domain and
unlabeled data in the target domain are used to estimate the
target positive mean and result in two estimations m̃+

t1 and

2G·l can be defined similarly to Gk·.
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m̃+
t2, respectively. Let us consider the target positive mean m+

t

as a random vector. We estimate the conditional distribution
of m+

t given m̃+
t1 and m̃+

t2 as follows. By Bayes’ rule [56], the
conditional probability Pr(m+

t |m̃
+
t1, m̃+

t2) can be computed as

Pr(m+
t |m̃

+
t1, m̃+

t2) =
Pr(m̃+

t1, m̃+
t2|m+

t )Pr(m+
t )

Pr(m̃+
t1, m̃+

t2)
(17)

Since m̃+
t1 and m̃+

t2 are estimated by the source domain and
target domain data, respectively, they can be considered to
be independent and conditionally independent given the true
positive mean m+

t , i.e.

Pr(m̃+
t1, m̃+

t2) = Pr(m̃+
t1)Pr(m̃+

t2)

Pr(m̃+
t1, m̃+

t2|m+
t ) = Pr(m̃+

t1|m+
t )Pr(m̃+

t2|m+
t )

(18)

Substituting equation (18) into equation (17), we get

Pr(m+
t |m̃

+
t1, m̃+

t2) =
Pr(m+

t |m̃
+
t1)Pr(m+

t |m̃
+
t2)

Pr(m+
t )

(19)

Without any information about the positive distribution, the
prior probability Pr(m+

t ) can be considered as a constant.
Therefore, the key problem is to compute the conditional
probabilities Pr(m+

t |m̃
+
t1) and Pr(m+

t |m̃
+
t2).

To estimate Pr(m+
t |m̃

+
t1), it is reasonable to assume that the

probability of the target positive mean is higher if its distance
is closer to m̃+

t1. On the other hand, when the assumption given
by equation (5) is satisfied, m̃+

t1 is close to the true target
positive mean according to equation (7). Otherwise, m̃+

t1 may
not be a good estimation. To measure the uncertainty about
the validity of the assumption (5), we define Pr(m+

t |m̃
+
t1) by

Gaussian distribution as follows,

Pr(m+
t |m̃

+
t1) ∝ e−∥m+

t −m̃+
t1∥

2
2/(2σ

2
1) (20)

where ∥·∥2 denotes l2 norm and σ2
1 is the variance in Gaussian

distribution to measure the uncertainty. Similarly, Pr(m+
t |m̃

+
t2)

can be defined by

Pr(m+
t |m̃

+
t2) ∝ e−∥m+

t −m̃+
t2∥

2
2/(2σ

2
2) (21)

where σ2
2 is the variance to measure the uncertainty of the

positive mean estimated by the potential positive difference
vectors selected by Algorithm 1.

With equations (19) (20) (21), the likelihood function of the
target positive mean is given by

ln(Pr(m+
t |m̃

+
t1, m̃+

t2)) ∝ −∥m+
t − m̃+

t1∥22
2σ2

1

− ∥m+
t − m̃+

t2∥22
2σ2

2
(22)

To compute the maximum value of the likelihood function, we
take the first derivative of the right hand side in equation (22)
and set it as zero. Then, the optimal estimation of the target
positive mean m̃+

t is derived as

m̃+
t = αm̃+

t1 + (1− α)m̃+
t2 (23)

where α = σ2
2/(σ

2
1+σ2

2). Since σ2
1 ≥ 0 and σ2

2 ≥ 0, the range
of α is 0 ≤ α ≤ 1. And, α is determined by the training data,
which will be discussed in the following section.

B. Adaptive Ranking SVMs

With positive and negative image pairs in the source domain,
RankSVM [19] is employed to learn a source domain distance
model ws. Inspired by the adaptive learning methods [34] [35]
for asymmetric domain adaptation, the weight vector wt for
the target domain can be defined as follows,

wt = θws + w (24)

where θ is the coefficient to measure the importance of the
classifier ws trained from the source domain data and w is the
perturbation weight vector adapted for the target domain.

Substituting m+
t and wt by equations (23) and (24), respec-

tively, the inequality (4) becomes

(θws + w)T (αm̃+
t1 + (1− α)m̃+

t2) > (θws + w)T z−tkl,∀k, l
(25)

Similar to RankSVM [19], the order relationship given by
inequality (25) needs to be preserved for discriminability.
Thus, we propose to learn the optimal α, θ and w by solving
the following optimization problem,

min
w,θ,α

1

2
(∥w∥22 + µθ2) + C

∑
k,l

ξkl

s.t. (θws + w)T (αm̃+
t1 + (1− α)m̃+

t2 − z−tkl) ≥ 1− ξkl,

ξkl ≥ 0, 0 ≤ α ≤ 1, ∀k, l

(26)

where µ is a positive parameter to balance the regularization
terms for w and θ.

The optimization problem (26) can be solved by rewriting
it as

min
α

F (α), s.t. 0 ≤ α ≤ 1 (27)

F (α) = min
w,θ

1

2
(∥w∥22 + µθ2) + C

∑
k,l

ξkl

s.t. (θws + w)T (αm̃+
t1 + (1− α)m̃+

t2 − z−tkl) ≥ 1− ξkl,

ξkl ≥ 0, ∀k, l

(28)

With this reformulation, we can linearly search α from 0 to 1
with the minimal cost. Fixing α, the optimization problem (26)
can be solved efficiently by converting it to the standard
RankSVM formulation as in equation (1).

Denote the column concatenation of w and
√
µθ as v, i.e.

v =

(
w√
µθ

)
(29)

On the other hand, we construct the feature map as

fkl =
(

αm̃+
t1 + (1− α)m̃+

t2 − z−tkl
wT
s (αm̃+

t1 + (1− α)m̃+
t2 − z−tkl)/

√
µ

)
(30)

With the notations in (29) and (30), it has the following
equations,

∥v∥22 = ∥w∥22 + µθ2

vT fkl = (θws + w)T (αm̃+
t1 + (1− α)m̃+

t2 − z−tkl)
(31)
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Algorithm 2 Training AdaRSVM

Input: Difference vectors z+sij and z−skl in source domain, z−tij
and zutkl in target domain, parameters C and µ;

1: Compute m+
s by z+sij , m−

s by z−skl, and m̃−
t by z−tij ;

2: Estimate the target positive mean m̃+
t1 by source domain

data with equation (6);
3: Select potential positive difference vectors from the unla-

beled target data zutkl by Algorithm 1;
4: Estimate the target positive mean m̃+

t2 by target domain
data with equation (16);

5: Set the function cost F ∗ as infinite;
6: for α ∈ [0, 1] do
7: Construct the feature map by equation (30);
8: Solve the optimization problem (33) by the efficient

method [57] and obtain the weight vector v;
9: if F (α) < F ∗ then

10: Set F ∗ = F (α);
11: Calculate the target domain weight vector wt by

equations (24) and (29);
12: end if
13: end for
Output: Weight vector wt.

Therefore, the optimization problem (28) is rewritten as

F (α) = min
w,θ

1

2
∥v∥22 + C

∑
k,l

ξkl

s.t. vT fkl ≥ 1− ξkl, ξkl ≥ 0, ∀k, l
(32)

To solve the optimization problem (32) more efficiently, we
reformulate (32) by the square hinge loss as

min
v

1

2
∥v∥2 + C

∑
k,l

max(0, 1− vT fkl)
2

(33)

Employing the efficient algorithm [57] based on primal New-
ton method to solve the optimization problem (33), the optimal
weight vector v can be obtained. Then, the target weight vector
wt is calculated by equations (24) and (29). At last, the algo-
rithmic procedure for training the proposed Adaptive Ranking
Support Vector Machines (AdaRSVM) model is presented in
Algorithm 2.

IV. EXPERIMENTS

In this section, we first give an introduction to the datasets
and settings used for evaluation. Then, the comparison results
are reported in Sections IV-B to IV-E.

A. Datasets and Settings

Four publicly available datasets, namely PRID3 [27],
VIPeR4 [28], CUHK5 [23] and i-LIDS6 [58], are used for
evaluating the proposed method. PRID dataset consists of
person images from two static surveillance cameras. In total

3https://lrs.icg.tugraz.at/datasets/prid/
4http://soe.ucsc.edu/∼dgray/VIPeR.v1.0.zip
5http://www.ee.cuhk.edu.hk/∼xgwang/CUHK identification.html
6http://www.eecs.qmul.ac.uk/∼jason/data/i-LIDS Pedestrian.tgz

(a) CUHK (b) i-LIDS

Fig. 3. Example matched image pairs in (a) CUHK [23] and (b) i-LIDS [58]

385 persons were captured by camera A, while 749 persons
captured by camera B. The first 200 persons appeared in both
cameras, and the remainders only appear in one camera. In
our experiments, the single-shot version is used, in which
at most one image of each person from each camera is
available. VIPeR is a re-identification dataset containing 632
person image pairs captured by two cameras outdoor. CUHK
dataset contains five pairs of camera views. Under each camera
view, there are two images for each person. Following the
single shot setting in [23], images from camera pair one with
971 persons are used for experiments. The i-LIDS Multiple-
Camera Tracking (MCT) dataset contains a number of video
clips captured by five cameras indoor. In re-identification
application, total 476 person images from 119 persons are
used for experiments as in [22]. Example images in these
four datasets are shown in Fig 1(a), Fig. 1(b), Fig. 3(a) and
Fig. 3(b), respectively.

In our experiments, we use PRID, VIPeR or CUHK as the
target domain. For the i-LIDS dataset, the camera information
is not available. Since the proposed method requires camera
information to generate groups defined by equation (14) for
positive difference vector selection, we do not use the i-LIDS
dataset as the target domain. Without the time acquisition
information in the PRID, VIPeR and CUHK datasets, target
negative image pairs from non-overlapping cameras are gener-
ated by simulating the synchronization using label information.
Fixing the target domain dataset as PRID, VIPeR or CUHK,
one of the other three datasets is used as the source domain
to train the proposed AdaRSVM. When PRID is used as the
target dataset, 100 out of the 200 image pairs are randomly
selected as the training set, and the others for testing. If VIPeR
is used as the target dataset, 632 image pairs are randomly
separated into half for training and the other half for testing.
For the CUHK dataset, 971 persons are randomly split as 485
for training and 486 for testing. Given a query image in the
testing data from one camera view, the evaluation is performed
by ranking the person images from another view. For each
source dataset, following [22], one positive and one negative
image pair for each person are used for training, while the
training data in the target domain contains only one negative
image pair for each person. Each experiment was repeated ten
times and the mean accuracy is reported.

Three state-of-the-art distance learning methods for per-
son re-identification, namely Rank Support Vector Machines
(RankSVM) [19], Relative Distance Comparison (RDC) [22],
and Relaxed Pairwise Metric Learning (RPML) [21], are used
for comparison. Since the label information of persons is
supposed to be not available in the target dataset, cross-
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(a) PRID (b) VIPeR (c) CUHK (d) i-LIDS

Fig. 4. Example masked results in (a) PRID [27], (b) VIPeR [28], (c)
CUHK [23] and (d) i-LIDS [58] dataset (better view in color)

validation cannot be performed to select the best parameters.
Thus, we empirically set the parameters in existing methods
and the proposed AdaRSVM. The PCA dimension in RPML
is set as 80. The parameter C in RankSVM and the proposed
method is set as 1, while µ in the proposed AdaRSVM is set
as 100. For the number of selected positive difference vectors,
Q should be less than the number of detected persons in each
camera, so we set Q = 90 in PRID, 300 in VIPeR and 450 in
CUHK dataset.

To evaluate the robustness of the proposed method, we ex-
tract two kinds of features for the detected person images. The
first feature (Fea1) is constructed by dividing a person image
into six horizontal stripes and compute the RGB, YCbCr, HSV
color features and two types of texture features extracted by
Schmid and Gabor filters on each stripe as reported in [18]
[19] [22]. For the second feature (Fea2), we concatenate the
first feature with another one with foreground detection. The
spatial hierarchy pose estimation method [59] with source
code online7 is employed to detect the local human parts as
shown in the middle row of Fig. 4. Though it is reasonable to
compute the parts based difference, the pose estimation is not
accurate enough and does not consider the pair-wise matching
relationship. Instead, we use the estimated human parts to
mask the images as shown in the last row of Fig. 4(a)-4(d)
for PRID, VIPeR, CUHK and i-LIDS datasets, respectively.
Then, the masked person image is divided into 3×1 vertically
overlapped boxes. Color histogram and SIFT [16] features are
extracted on each box.

B. Comparison with Non-Learning Baselines

To evaluate our method, we compare with two commonly
used non-learning based metrics namely L1 and L2 norms
as baselines. The top r rank matching accuracies (%) are
shown in Tables I-VI. From these results, we can see that Fea2
by concatenating Fea1 and another feature with foreground
detection is more discriminative than Fea1. Comparing the
results on VIPeR dataset in Table III and Table IV for Fea1
and Fea2, respectively, the rank one accuracy of L1 using Fea2

7http://www.cs.cmu.edu/∼ILIM/projects/IM/humanpose/humanpose.html

TABLE I
TOP r RANK MATCHING ACCURACY (%) ON PRID USING FEA1

Source Method 1 5 10 20
— L1 3.65 9.80 14.25 17.90
— L2 1.35 5.05 9.55 14.00

VIPeR

Ours 4.85 13.10 18.35 26.25
RankSVM 1.05 5.90 9.70 16.20

RDC 1.95 5.30 8.05 12.90
RPML 1.10 7.00 11.85 17.40

CUHK

Ours 4.50 11.70 16.85 24.50
RankSVM 1.95 4.40 6.80 12.60

RDC 1.40 2.95 7.10 10.15
RPML 0.45 4.75 7.95 12.85

i-LIDS

Ours 4.85 12.65 18.55 27.45
RankSVM 2.95 6.75 11.40 19.65

RDC 2.35 4.75 8.35 13.40
RPML 0.90 4.20 6.80 12.65

TABLE II
TOP r RANK MATCHING ACCURACY (%) ON PRID DATASET FEA2

Source Method 1 5 10 20
— L1 7.40 17.30 24.70 34.55
— L2 2.90 10.00 14.95 23.40

VIPeR

Ours 7.60 19.95 28.05 37.25
RankSVM 5.90 14.15 20.25 26.70

RDC 3.10 7.70 10.45 17.05
RPML 3.05 8.70 15.65 22.05

CUHK

Ours 10.35 22.95 30.65 40.25
RankSVM 5.50 16.50 21.85 29.15

RDC 4.55 12.20 17.75 23.85
RPML 3.30 9.75 13.15 19.20

i-LIDS

Ours 9.20 21.05 28.15 39.50
RankSVM 5.35 16.60 24.65 34.15

RDC 3.50 11.30 18.30 25.05
RPML 2.10 7.30 12.10 17.55

is over three times higher than that using Fea1. And, the simple
non-learning methods L1 and L2 can achieve high rank-one
accuracies of 37.97% and 33.53%. Such good performance
may be due to the reason that the combination of foreground
detection and global feature extraction (on a large region of
an image) is very effective for VIPeR dataset8. On the other
hand, our method achieves better performance than L1 and L2

on the three target datasets with different source domains and
features. Moreover, Table IV shows that when using CUHK
as the source domain, the rank one accuracy of our method on
VIPeR dataset with Fea2 is 9.50% higher than L1 and 13.94%
higher than L2. These results convince that the proposed
method can learn useful information from the source domain
and target domain data to robustly improve the recognition
performance with different source domains and features over
the non-learning based methods.

C. Comparison with Supervised Learning Methods

Since label information is assumed to be not available in the
target domain, existing supervised distance learning methods
for person re-identification, e.g. RankSVM, RDC and RPML,
cannot be employed to train a discriminative model for the
target domain. For comparison, we use the labeled data from
the source domain to train the RankSVM, RDC and RPML.
Their results are recorded in Tables I-VI. From these tables,

8It is interesting to further investigate the deeper reasons for the good
performance on VIPeR dataset, but this is not the focus of this paper.
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TABLE III
TOP r RANK MATCHING ACCURACY (%) ON VIPER USING FEA1

Source Method 1 5 10 20
— L1 8.86 18.20 23.80 33.84
— L2 9.53 18.80 25.60 34.38

PRID

Ours 10.11 21.23 27.99 38.89
RankSVM 10.00 20.92 27.37 35.71

RDC 9.70 19.21 26.46 35.63
RPML 5.65 14.03 21.34 30.09

CUHK

Ours 9.75 22.25 31.09 42.33
RankSVM 5.00 15.38 22.53 33.10

RDC 7.30 17.75 25.98 36.72
RPML 5.00 12.47 18.91 29.05

i-LIDS

Ours 10.87 23.70 33.12 44.49
RankSVM 8.94 20.19 29.11 40.60

RDC 7.23 17.10 24.53 35.41
RPML 7.14 17.28 25.17 37.71

TABLE IV
TOP r RANK MATCHING ACCURACY (%) ON VIPER USING FEA2

Source Method 1 5 10 20
— L1 37.97 58.26 65.89 75.08
— L2 33.53 53.83 62.56 70.65

PRID

Ours 44.94 64.15 71.33 77.48
RankSVM 12.72 26.47 35.97 46.03

RDC 25.89 44.27 53.58 63.40
RPML 4.54 14.08 20.25 30.40

CUHK

Ours 47.47 66.84 72.67 78.94
RankSVM 25.51 44.72 53.84 63.02

RDC 35.46 54.19 62.15 70.66
RPML 10.65 26.66 35.85 47.99

i-LIDS

Ours 45.35 66.16 73.43 78.77
RankSVM 28.15 46.95 58.13 68.73

RDC 31.79 52.23 61.16 71.77
RPML 8.94 20.71 30.41 41.28

we can see that our method outperforms other supervised
distance learning methods when using the source domain
data for training. For many domain adaptation scenarios, the
improvements by our methods are remarkable. For example,
as shown in Table I, when the source domain is VIPeR or
CUHK, the rank one accuracy of our method on PRID using
Fea1 is higher than twice of others. Moreover, from Table IV,
we can see that our method outperforms RankSVM, RDC
and RPML by over 10% higher rank one accuracy on VIPeR
dataset using Fea2. These results indicate that the proposed
method can make good use of negative data (unmatched image
pairs generated from non-overlapping cameras) and unlabeled
data in the target domain to improve the re-identification
performance, when the label information of persons is not
available in the target domain.

From Tables II IV VI, we can see that the rank one
accuracies of the unsupervised methods L1 and L2 with Fea2
are lower than 10% on PRID and CUHK datasets, while
on VIPeR they achieve rank one accuracies of 37.97% and
33.53%, respectively. This means Fea2 is a very discriminative
feature for VIPeR and less discriminative for PRID and
CUHK, which indicates that the same feature can provide
different discriminabilities for different datasets/domains. Such
differences can cause that the supervised distance learning
algorithms, e.g. RankSVM, RDC and RPML, may learn the
incorrect information by the labeled data from the source
domain. Therefore, in most cases the non-learning methods,
e.g. L1 and L2, are better than the supervised ones as shown in

TABLE V
TOP r RANK MATCHING ACCURACY (%) ON CUHK USING FEA1

Source Method 1 5 10 20
— L1 3.78 10.31 15.09 22.76
— L2 3.41 8.77 13.77 20.07

PRID

Ours 4.85 13.30 19.71 27.85
RankSVM 3.38 10.20 15.87 23.13

RDC 3.73 9.96 15.11 23.23
RPML 0.94 4.15 7.85 13.94

VIPeR

Ours 5.79 15.25 22.36 31.07
RankSVM 3.61 10.53 16.30 24.26

RDC 2.82 10.20 15.32 21.78
RPML 1.54 5.82 9.91 16.10

i-LIDS

Ours 5.20 13.70 19.96 28.32
RankSVM 3.30 9.48 14.62 21.56

RDC 1.84 7.12 11.72 18.67
RPML 1.34 5.35 8.33 13.10

TABLE VI
TOP r RANK MATCHING ACCURACY (%) ON CUHK USING FEA2

Source Method 1 5 10 20
— L1 9.20 20.44 27.24 35.95
— L2 6.54 15.59 21.92 29.25

PRID

Ours 9.42 22.13 29.73 39.75
RankSVM 7.48 18.33 25.26 34.69

RDC 9.00 20.63 28.57 37.79
RPML 1.55 7.14 12.24 19.98

VIPeR

Ours 10.57 22.96 31.15 41.06
RankSVM 8.25 20.42 27.28 35.81

RDC 8.55 19.33 26.55 36.72
RPML 2.26 8.19 13.42 21.47

i-LIDS

Ours 9.57 22.52 30.67 40.86
RankSVM 8.52 18.88 27.07 37.79

RDC 8.92 21.21 27.97 36.78
RPML 2.09 8.88 14.68 23.34

Tables I-VI. Since our method makes use of the negative and
unlabeled data from the target domain to align the distribution
mismatch, it can outperform both the non-learning methods
and the supervised distance learning algorithms using only
labeled data from the source domain.

We further show the CMC curves of the RankSVM, RDC
and RPML trained by the labeled data from target or source
domain in Figs. 5(a)-(f), Figs. 6(a)-(f) and Figs. 7(a)-(f),
respectively. For the results trained by the source domain
data, the highest accuracy of each rank is recorded across
the three different source datasets. All these figures show
that the supervised distance learning methods have a dramatic
deterioration of performance, when the classification model is
trained with the data from the source domain. From Fig. 5(e),
Fig. 6(e) and Fig. 7(e), we can see that the rank one accuracy
can be degraded by about 30% with RDC and about 40% with
RankSVM and RPML. This means the joint distributions in
the source and target domains are different with each other
for these datasets. And, the distribution misalignment causes
serious performance degradation in person re-identification.

We also plot the CMC curves of our methods in Figs 5(a)-
(f), Figs 6(a)-(f) and Figs 7(a)-(f). From these figures, we
can see that our method outperforms other learning algorithms
using labeled data from source domain, as well as two non-
learning based metrics. In some cases, if the target positive
mean can be estimated with very small error and represent
the target positive data well, our method can achieve very con-
vincing performance which is close to that of the supervised



10

(a) Results on PRID using Fea1 (b) Results on VIPeR using Fea1 (c) Results on CUHK using Fea1

(d) Results on PRID using Fea2 (e) Results on VIPeR using Fea2 (f) Results on CUHK using Fea2

Fig. 5. CMC curve comparison of our method and RankSVM trained by labeled data from target or source domain

(a) Results on PRID using Fea1 (b) Results on VIPeR using Fea1 (c) Results on CUHK using Fea1

(d) Results on PRID using Fea2 (e) Results on VIPeR using Fea2 (f) Results on CUHK using Fea2

Fig. 6. CMC curve comparison of our method and RDC trained by labeled data from target or source domain

learning method using label information in the target domain.
For example, the results in Fig. 5(d), Fig. 6(d) and Fig. 7(d)
on PRID dataset using Fea2 show that our CMC curves are
very close to the ones using both positive and negative labeled
data in target domain for training. On the other hand, it is also
possible that the estimated target positive mean contains error
or cannot represent the positive data well. Under this situation,
the performance of our method is not as good as supervised
learning using target labeled data for training as shown in
Figs. 5(b)(c)(e)(f), Figs. 6(b)(c)(e)(f) and Figs. 7(b)(c)(e)(f).
However, by estimating the target positive mean, our method

outperforms the supervised learning methods using source
labeled data for training. This convinces that estimating target
label information can help to align the joint distributions in
source and target domains, so that the recognition performance
has been improved.

D. Comparison with Domain Adaptation Algorithms

In this experiment, we would like to evaluate whether the
equal conditional probability assumption is satisfied for per-
son re-identification. Two state-of-the-art domain adaptation
methods, Geodesic Flow Sampling (GFS) [30] and Transfer
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(a) Results on PRID using Fea1 (b) Results on VIPeR using Fea1 (c) Results on CUHK using Fea1

(d) Results on PRID using Fea2 (e) Results on VIPeR using Fea2 (f) Results on CUHK using Fea2

Fig. 7. CMC curve comparison of our method and RPML trained by labeled data from target or source domain

Component Analysis (TCA) [31], are used to learn a projection
Φ for the alignment of the marginal distributions between
the source and target domains, i.e. Prs(Φ(z)) ≈ Prt(Φ(z)).
For the implementation, we use the source code provided
by the authors for the GFS9 and re-implement the TCA
method. In our experiments, RankSVM is employed to train
the discriminative model by the projected labeled data from
the source domain. The best PCA dimension and number of
intermediate subspace in the GFS are empirically set as 100
and 6, respectively. Linear kernel is employed in the TCA and
the reduced dimension is set as 100.

The CMC curves of the domain adaptation methods using
Fea2 are shown in Figs. 8(a)-(c), Figs. 9(a)-(c) and Figs. 10(a)-
(c). When the source domain is CUHK or i-LIDS and target
domain is VIPeR, Figs. 9(b)(c) show that the recognition
accuracy by using the domain adaptation methods GFS and
TCA are higher than that of the supervised learning method
which uses labeled data from the source domain for training.
This indicates that the re-identification performance could
be improved by aligning the marginal distributions between
source and target domain in some domain adaptation settings.
Contrarily, simply aligning the marginal distributions may
further degrade the classifiers as shown in Figs. 8(a)-(c) and
Figs. 10(a)-(c). The reason could be that the source and
target classifiers (also known as conditional distributions) may
become farther away from each other in the space where
the marginal distributions are aligned. On the other hand, all
these figures show that the supervised learning method using
target label information greatly outperforms GFS and TCA.
This means the equal conditional probability assumption is
not valid for these domain adaptation scenarios in person re-
identification, i.e. Prs(y|Φ(z)) ̸= Prt(y|Φ(z)). Therefore, the

9http://www.umiacs.umd.edu/∼raghuram/UnsupervisedDA Grassmann.zip

joint distributions in the source and target domains are not
equal with each other (Prs(y,Φ(z)) ̸= Prt(y,Φ(z))), though
the marginal distributions are equal (Prs(Φ(z)) ≈ Prt(Φ(z)))
after domain adaptation projection.

From Figs. 8(a)-(c), Figs. 9(a)-(c) and Figs. 10(a)-(c), we
can see that our method clearly outperforms the domain adap-
tation methods derived based on the equal conditional prob-
ability assumption. This convinces that the proposed method
can improve the re-identification performance by removing the
assumption that the conditional probabilities in the source and
target domains are equal. Moreover, Figs. 9(b)(c) show that
the rank one accuracies of GFS and TCA are around 30%
with CUHK or i-LIDS as the source domain, while the rank
one accuracies of them are lower than 20% with PRID as the
source domain. This means the domain adaptation methods
with the equal conditional probability assumption may have
over 10% degradation of rank one accuracy when using a
different dataset as the source domain. By estimating the
positive information in the target domain to solve the joint
distribution mismatch problem, our method achieves much
more robust performance (around 45% rank one accuracy)
with different datasets as the source domain.

E. Comparing with Appearance-Based Methods

To demonstrate that the proposed domain adaptation ap-
proach can outperform unsupervised appearance-based meth-
ods for person re-identification, we compare our method
with state-of-the-art algorithms, including Symmetry-Driven
Accumulation of Local Features (SDALF) [6], Custom Pic-
torial Structures (CPS) [8], enriched Bio-inspired Covariance
(eBiCov) [13], enriched Local Descriptors encoded by Fisher
Vectors (eLDFV) [14], Color Invariant Signatures (CIS) [15]
and enriched Salience Correspondence (eSDC) [16]. Source
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(a) VIPeR as source domain (b) CUHK as source domain (c) i-LIDS as source domain

Fig. 8. CMC curve comparison of our method and Domain Adaptation methods on PRID dataset as the target domain using Fea2

(a) PRID as source domain (b) CUHK as source domain (c) i-LIDS as source domain

Fig. 9. CMC curve comparison of our method and Domain Adaptation methods on VIPeR dataset as the target domain using Fea2

(a) PRID as source domain (b) VIPeR as source domain (c) i-LIDS as source domain

Fig. 10. CMC curve comparison of our method and Domain Adaptation methods on CUHK dataset as the target domain using Fea2

codes of SDALF10, CIS11 and eSDC12 are provided online and
used for our experiments, while the results of CPS, eBiCov and
eLDFV are copied from their papers. The top r rank accuracy
of these methods and the proposed AdaRSVM on VIPeR
dataset are recorded in Table VII. From Table VII, we can
see that the appearance-based methods outperform ours when
using Fea1 to train the domain adaptation model. On the other
hand, when Fea2 is used, no matter what the source domain
is, our method can remarkably outperforms the appearance-
based algorithms. The rank one accuracy of our method with
CUHK as the source domain is over 20% higher than that of
the best state-of-the-art appearance-based algorithm. Since the

10http://www.lorisbazzani.info/code-datasets/sdalf-descriptor/
11http://www.cs.technion.ac.il/∼kviat/colorReid.htm
12http://mmlab.ie.cuhk.edu.hk/projects/project salience reid/index.html

proposed method is independent of the input features, these
results indicate that domain adaptation approach can improve
the performance remarkably over appearance-based methods
by employing a discriminative feature.

V. CONCLUSIONS

In this paper, we propose a novel Adaptive Ranking Support
Vector Machines (AdaRSVM) method to deal with the prob-
lem that label information of persons is not available under
target cameras. Without positive image pairs generated by
the label information of persons, we relax the discriminative
constraint to a necessary condition, which only relies on the
mean of positive pairs. In order to estimate the positive mean
in the target domain, we make use of the labeled data from the
source domain, the negative and unlabeled data from the target



13

TABLE VII
TOP r RANK MATCHING ACCURACY (%) OF STATE-OF-THE-ART

APPEARANCE-BASED ALGORITHMS AND OUR METHOD ON VIPER

Method Source 1 5 10 20

Ours+Fea1
PRID 10.11 21.23 27.99 38.89

CUHK 9.75 22.25 31.09 42.33
i-LIDS 10.87 23.70 33.12 44.49

Ours+Fea2
PRID 44.94 64.15 71.33 77.48

CUHK 47.47 66.84 72.67 78.94
i-LIDS 45.35 66.16 73.43 78.77

SDALF — 19.87 38.89 49.37 65.73
CPS — 21.84 44.00 57.21 71.00

eBiCov — 20.66 42.00 56.18 68.00
eLDFV — 22.34 47.00 60.04 71.00

CIS — 24.24 44.91 56.55 69.40
eSDC — 26.74 50.70 62.37 76.36

domain. With two estimations of the target positive mean, the
optimal combination is determined by the training data. And,
the target distance model is trained by adapting the source
domain distance model to target domain.

Extensive experiments show that the proposed method
achieve convincing recognition performance for person re-
identification. The proposed AdaRSVM not only outperforms
non-learning based methods but also is better than state-of-the-
art discriminative learning methods using labeled data from the
source domain for training. In our experiments, it is shown
that the performance deteriorates dramatically when using the
learnt model trained on source domain to target domain, which
means the joint distributions in source and target domains are
not equal to each other. On the other hand, compared with
two domain adaptation methods for the alignment of marginal
distributions, experimental results demonstrate that the equal
conditional probability assumption is not valid for person
re-identification. With the help of the negative image pairs
generated from non-overlapping target cameras, the proposed
AdaRSVM can improve the re-identification performance by
estimating the target positive mean for domain adaptation
learning. Moreover, it is also shown that the proposed do-
main adaptation method can remarkably outperform existing
appearance-based methods on VIPeR dataset without using
target label information for training.

While the proposed method only considers single source
domain, multiple source domains are usually available in
practice. Therefore, we will further investigate how to select
or combine different source domains to train a more dis-
criminative domain adaptation model in the future. On the
other hand, our method is developed based on RankSVM.
Since RankSVM does not address the problems for large-
scale dataset, it may not perform as good as state-of-the-art
large-scale ranking methods, e.g. [60], when a large amount
of training data is available. Therefore, we are also interested
in developing a new domain adaptation method for large-scale
learning in person re-identification.
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