Secure Computation - III

CS 601.642/442 Modern Cryptography

Fall 2019
Securely Computing \textit{any} Function

How can a group of parties securely compute \textit{any} function over their private inputs?

- **Last time:** Yao’s Garbled Circuits based solution. Requires little interaction, but only tailored to two-party case.

- **Today:** Goldreich-Micali-Wigderson (GMW) solution. Highly interactive. But extends naturally to $n > 2$ parties (where up to $n - 1$ parties may be corrupted).
Circuit Representation

Function $f(x, y)$ can be written as a boolean circuit C:

- **Input**: Input wires of C correspond to inputs x and y to f

- **Gates**: C contains AND and NOT gates, where each gate has fan in at most 2 and arbitrary fan out

- **Output**: Output wires of C correspond to output of $f(x, y)$
Secret Sharing

A k-out-of-n secret sharing scheme allows for “dividing” a secret value s into n parts s_1, \ldots, s_n s.t.

- **Correctness:** Any subset of k shares can be “combined” to reconstruct the secret s

- **Privacy:** The value s is completely hidden from anyone who only has at most $k - 1$ shares of s

Think: How to formalize?
Secret Sharing: Definition

Definition

A \((k, n)\) secret-sharing consists of a pair of PPT algorithms \((\text{Share}, \text{Reconstruct})\) s.t.:

- \(\text{Share}(s)\) produces an \(n\) tuple \((s_1, \ldots, s_n)\)
- \(\text{Reconstruct}(s'_{i_1}, \ldots, s'_{i_k})\) is s.t. if \(\{s'_{i_1}, \ldots, s'_{i_k}\} \subseteq \{s_1, \ldots, s_n\}\), then it outputs \(s\)
- For any two \(s\) and \(\tilde{s}\), and for any subset of at most \(k - 1\) indices \(X \subset [1, n], |X| < k\), the following two distributions are statistically close:

 \[
 \{(s_1, \ldots, s_n) \leftarrow \text{Share}(s) : (s_i | i \in X)\},
 \]

 \[
 \{(ilde{s}_1, \ldots, \tilde{s}_n) \leftarrow \text{Share}(\tilde{s}) : (\tilde{s}_i | i \in X)\}.
 \]
Secret Sharing: Construction

An \((n, n)\) secret-sharing scheme for \(s \in \{0, 1\}\) based on XOR:
- \(\text{Share}(s)\): Sample random bits \((s_1, \ldots, s_n)\) s.t. \(s_1 \oplus \cdots \oplus s_n = s\)
- \(\text{Reconstruct}(s'_1, \ldots, s'_n)\): Output \(s'_1 \oplus \cdots \oplus s'_n\)

Think: Security?

Additional Reading: Shamir’s \((k, n)\) secret-sharing using polynomials
GMW Protocol: Outline

GMW protocol consists of three phases:

- **Input Sharing:** Each party *secret-shares* its input into two parts and sends one part to the other party.

- **Circuit evaluation:** The parties evaluate the circuit in a *gate-by-gate* fashion in such a manner that for every internal wire w in the circuit, each party holds a secret share of the value of wire w.

- **Output reconstruction:** Finally, the parties exchange the secret shares of the output wires. Each party then, on its own, combines the secret shares to compute the output of the circuit.
GMW Protocol: Details

Notation:

- **Protocol Ingredients:** A (2, 2) secret-sharing scheme (Share, Reconstruct), and a 1-out-of-4 OT scheme (OT = (S, R))
- **Common input:** Circuit C for function \(f(\cdot, \cdot) \) with two \(n \)-bit inputs and an \(n \)-bit output
- **A’s input:** \(x = x_1, \ldots, x_n \) where \(x_i \in \{0, 1\} \)
- **B’s input:** \(y = y_1, \ldots, y_n \) where \(y_i \in \{0, 1\} \)

Protocol Invariant: For every wire in \(C(x, y) \) with value \(w \in \{0, 1\} \), A and B have shares \(w^A \) and \(w^B \), respectively, s.t. Reconstruct\((w^A, w^B) = w \)
GMW Protocol: Details (contd.)

Protocol \(\Pi = (A, B) \):

Input Sharing: \(A \) computes \((x_i^A, x_i^B) \leftarrow \text{Share}(x_i)\) for every \(i \in [n] \) and sends \((x_1^B, \ldots, x_n^B)\) to \(B \). \(B \) acts analogously.

Circuit Evaluation: Run the CircuitEval sub-protocol. \(A \) obtains \(\text{out}_i^A \) and \(B \) obtains \(\text{out}_i^B \) for every output wire \(i \).

Output Phase: For every output wire \(i \), \(A \) sends \(\text{out}_i^A \) to \(B \), and \(B \) sends \(\text{out}_i^B \) to \(A \). Each party computes

\[
\text{out}_i = \text{Reconstruct}(\text{out}_i^A, \text{out}_i^B)
\]

The output is \(\text{out} = \text{out}_1, \ldots, \text{out}_n \)
CircuitEval: NOT Gate

NOT Gate: Input u, output w
- A holds u^A, B holds u^B
- A computes $w^A = u^A \oplus 1$
- B computes $w^B = u^B$

Observe: $w^A \oplus w^B = u^A \oplus 1 \oplus u^B = \overline{u}$
CircuitEval: AND Gate

AND Gate: Inputs u, v, output w

- A holds u^A, v^A, B holds u^B, v^B

- A samples $w^A \leftarrow \{0, 1\}$ and computes w_1^B, \ldots, w_4^B as follows:

<table>
<thead>
<tr>
<th>u^B</th>
<th>v^B</th>
<th>w^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$w_1^B = w^A \oplus ((u^A \oplus 0) \cdot (v^A \oplus 0))$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$w_2^B = w^A \oplus ((u^A \oplus 0) \cdot (v^A \oplus 1))$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$w_3^B = w^A \oplus ((u^A \oplus 1) \cdot (v^A \oplus 0))$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$w_4^B = w^A \oplus ((u^A \oplus 1) \cdot (v^A \oplus 1))$</td>
</tr>
</tbody>
</table>

- A and B run $\text{OT} = (S, R)$ where A acts as sender S with inputs (w_1^B, \ldots, w_4^B) and B acts as receiver R with input $b = 1 + 2u^B + v^B$
Intuition for Security

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

- **NOT gate**: Follows from construction
- **AND gate**: Follows from security of OT

At the end, the parties only learn the values of the output wires

Exercise: Construct Simulator for Π using Simulator for OT and prove indistinguishability