Pseudorandomness - I

601.642/442: Modern Cryptography

Fall 2019
Randomness

- Your computer needs “randomness” for many tasks every day!
- Examples:
 - encrypting a session-key for an SSL connection (login)
 - encrypting your hard-drive for secure backup
- How does your computer generate this randomness?
 - true randomness is difficult to get
 - often, a lot of it is required (e.g. disk encryption)
Randomness

- Common sources of randomness:
 - key-strokes
 - mouse movement
 - power consumption
 - ...

- These processes can only produce so much true randomness
Can we “expand” few random bits into many random bits?

- Many heuristic approaches; good in many cases, e.g., primality testing
- But not good for cryptography, such as for data encryption
- For crypto, need bits that are “as good as truly random bits”
Pseudorandomness

- Suppose you have n uniformly random bits: $x = x_1 \| \ldots \| x_n$
- Find a **deterministic** (polynomial-time) algorithm G such that:
 - $G(x)$ outputs a $n + 1$ bits: $y = y_1 \| \ldots \| y_{n+1}$
 - y looks “as good as” a truly random string $r = r_1 \| \ldots \| r_{n+1}$
- $G : \{0, 1\}^n \rightarrow \{0, 1\}^{n+1}$ is called a **pseudorandom generator** (PRG)
- **Think:** What does “as good as truly random” mean?
As good as truly random

- Should have no obvious patterns
- Pass all statistical tests that a truly random string would pass
 - Number of 0’s and 1’s roughly the same
 - ...
- **Main Idea:** No efficient test can tell \(G(x) \) and \(r \) apart!
- Distributions:

\[
\left\{ x \leftarrow \{0, 1\}^n : G(x) \right\} \quad \text{and} \quad \left\{ r \leftarrow \{0, 1\}^{n+1} : r \right\}
\]

are “computationally indistinguishable”
Roadmap

- New crypto language: Computational Indistinguishability
- Defining Pseudorandomness using the above
- A complete test for pseudorandom distributions: Next-bit prediction
- Pseudorandom Generators
 - Small expansion
 - Arbitrary (polynomial) expansion
Distributions & Ensembles

- **Distribution**: X is a distribution over sample space \mathcal{S} if it assigns probability p_s to the element $s \in \mathcal{S}$ s.t. $\sum_s p_s = 1$

Definition

A sequence $\{X_n\}_{n \in \mathbb{N}}$ is called an ensemble if for each $n \in \mathbb{N}$, X_n is a probability distribution over $\{0, 1\}^*$. Generally, X_n will be a distribution over the sample space $\{0, 1\}^{\ell(n)}$ (where $\ell(\cdot)$ is a polynomial).
Computational Indistinguishability

- Captures what it means for two distributions X and Y to “look alike” to any efficient test
- Efficient test = efficient computation = non-uniform PPT
- No non-uniform PPT “distinguisher” algorithm D can tell them apart
- i.e. “behavior” of D on X and Y is the same
- Think: How to formalize?
Computational Indistinguishability

- Scoring system: Give D a sample of X:
 - If D say “Sample is from X” it gets +1 point
 - If D say “Sample is from Y” it gets −1 point
- D’s output can be encoded using just one bit: 1 = “Sample is from X” and 0 = “Sample is from Y”
- Want: Average score of D on X and Y should be roughly same

\[
\Pr [x \leftarrow X; D(1^n, x) = 1] \approx \Pr [y \leftarrow Y; D(1^n, y) = 1] \implies \\
\left| \Pr [x \leftarrow X; D(1^n, x) = 1] - \Pr [y \leftarrow Y; D(1^n, y) = 1] \right| \leq \mu(n).
\]
Definition (Computationally Indistinguishability)

Two ensembles of probability distributions $X = \{X_n\}_{n \in \mathbb{N}}$ and $Y = \{Y_n\}_{n \in \mathbb{N}}$ are said to be \textit{computationally indistinguishable} if for every non-uniform PPT D there exists a negligible function $\nu(\cdot)$ s.t.:

$$\left| \Pr [x \leftarrow X_n; D(1^n, x) = 1] - \Pr [y \leftarrow Y_n; D(1^n, y) = 1] \right| \leq \nu(n).$$
Properties of Computational Indistinguishability

- **Notation:** \(\{X_n\} \approx_c \{Y_n\} \) means computational indistinguishability

- **Closure:** If we apply an efficient operation on \(X \) and \(Y \), they remain indistinguishable. That is, \(\forall \) non-uniform-PPT \(M \)

\[
\{X_n\} \approx_c \{Y_n\} \implies \{M(X_n)\} \approx_c M\{Y_n\}
\]

Proof Idea: If not, \(D \) can use \(M \) to tell them apart!

- **Transitivity:** If \(X, Y \) are computationally indistinguishable, and \(Y, Z \) are computationally indistinguishable; then \(X, Z \) are also computationally indistinguishable.
Generalizing Transitivity: Hybrid Lemma

Lemma (Hybrid Lemma)

Let X^1, \ldots, X^m be distribution ensembles for $m = \text{poly}(n)$. If for every $i \in [m-1]$, X^i and X^{i+1} are computationally indistinguishable, then X^1 and X^m are computationally indistinguishable.

Used in most crypto proofs!