Securely Computing *any* Function

How can a group of parties securely compute *any* function over their private inputs?

- **Last time:** Yao’s Garbled Circuits based solution. Requires little interaction, but only tailored to two-party case.

- **Today:** Goldreich-Micali-Wigderson (GMW) solution. Highly interactive. But extends naturally to $n > 2$ parties (where up to $n - 1$ parties may be corrupted).
Function $f(x, y)$ can be written as a boolean circuit C:

- **Input**: Input wires of C correspond to inputs x and y to f
- **Gates**: C contains AND and NOT gates, where each gate has fan in at most 2 and arbitrary fan out
- **Output**: Output wires of C correspond to output of $f(x, y)$
Secret Sharing

A \(k \)-out-of-\(n \) secret sharing scheme allows for “dividing” a secret value \(s \) into \(n \) parts \(s_1, \ldots, s_n \) s.t.

- **Correctness**: Any subset of \(k \) shares can be “combined” to reconstruct the secret \(s \)

- **Privacy**: The value \(s \) is completely hidden from anyone who only has at most \(k - 1 \) shares of \(s \)

Think: How to formalize?
Secret Sharing: Definition

Definition

A (k, n) secret-sharing consists of a pair of PPT algorithms $(\text{Share}, \text{Reconstruct})$ s.t.:

- $\text{Share}(s)$ produces an n tuple (s_1, \ldots, s_n)
- $\text{Reconstruct}(s'_{i_1}, \ldots, s'_{i_k})$ is s.t. if $\{s'_{i_1}, \ldots, s'_{i_k}\} \subseteq \{s_1, \ldots, s_n\}$, then it outputs s
- For any two s and \tilde{s}, and for any subset of at most $k - 1$ indices $X \subset [1, n]$, $|X| < k$, the following two distributions are statistically close:

$$\left\{(s_1, \ldots, s_n) \leftarrow \text{Share}(s) : (s_i | i \in X)\right\},$$

$$\left\{ (\tilde{s}_1, \ldots, \tilde{s}_n) \leftarrow \text{Share}(\tilde{s}) : (\tilde{s}_i | i \in X)\right\}.$$
An \((n, n)\) secret-sharing scheme for \(s \in \{0, 1\}\) based on XOR:

- **Share**\((s)\): Sample random bits \((s_1, \ldots, s_n)\) s.t. \(s_1 \oplus \cdots \oplus s_n = s\)
- **Reconstruct**\((s'_1, \ldots, s'_n)\): Output \(s'_1 \oplus \cdots \oplus s'_n\)

Think: Security?

Additional Reading: Shamir’s \((k, n)\) secret-sharing using polynomials
GMW protocol consists of three phases:

- **Input Sharing**: Each party secret-shares its input into two parts and sends one part to the other party.

- **Circuit evaluation**: The parties evaluate the circuit in a gate-by-gate fashion in such a manner that for every internal wire w in the circuit, each party holds a secret share of the value of wire w.

- **Output reconstruction**: Finally, the parties exchange the secret shares of the output wires. Each party then, on its own, combines the secret shares to compute the output of the circuit.
GMW Protocol: Details

Notation:

- **Protocol Ingredients:** A $(2, 2)$ secret-sharing scheme (Share, Reconstruct), and a 1-out-of-4 OT scheme ($OT = (S, R)$)
- **Common input:** Circuit C for function $f(\cdot, \cdot)$ with two n-bit inputs and an n-bit output
- **A’s input:** $x = x_1, \ldots, x_n$ where $x_i \in \{0, 1\}$
- **B’s input:** $y = y_1, \ldots, y_n$ where $y_i \in \{0, 1\}$

Protocol Invariant: For every wire in $C(x, y)$ with value $w \in \{0, 1\}$, A and B have shares w^A and w^B, respectively, s.t. $\text{Reconstruct}(w^A, w^B) = w$
GMW Protocol: Details (contd.)

Protocol $\Pi = (A, B)$:

Input Sharing: A computes $(x^A_i, x^B_i) \leftarrow \text{Share}(x_i)$ for every $i \in [n]$ and sends (x^B_1, \ldots, x^B_n) to B. B acts analogously.

Circuit Evaluation: Run the CircuitEval sub-protocol. A obtains out^A_i and B obtains out^B_i for every output wire i.

Output Phase: For every output wire i, A sends out^A_i to B, and B sends out^B_i to A. Each party computes

$$\text{out}_i = \text{Reconstruct}(\text{out}^A_i, \text{out}^B_i)$$

The output is $\text{out} = \text{out}_1, \ldots, \text{out}_n$
CircuitEval: NOT Gate

NOT Gate: Input u, output w
- A holds u^A, B holds u^B
- A computes $w^A = u^A \oplus 1$
- B computes $w^B = u^B$

Observe: $w^A \oplus w^B = u^A \oplus 1 \oplus u^B = \overline{u}$
CircuitEval: AND Gate

AND Gate: Inputs u, v, output w

- A holds u^A, v^A, B holds u^B, v^B

- A samples $w^A \leftarrow \{0, 1\}$ and computes w_1^B, \ldots, w_4^B as follows:

<table>
<thead>
<tr>
<th>u^B</th>
<th>v^B</th>
<th>w^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$w_1^B = w^A \oplus ((u^A \oplus 0) \cdot (v^A \oplus 0))$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$w_2^B = w^A \oplus ((u^A \oplus 0) \cdot (v^A \oplus 1))$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$w_3^B = w^A \oplus ((u^A \oplus 1) \cdot (v^A \oplus 0))$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$w_4^B = w^A \oplus ((u^A \oplus 1) \cdot (v^A \oplus 1))$</td>
</tr>
</tbody>
</table>

- A and B run $\text{OT} = (S, R)$ where A acts as sender S with inputs (w_1^B, \ldots, w_4^B) and B acts as receiver R with input $b = 1 + 2u^B + v^B$
Intuition for Security

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

- **NOT gate**: Follows from construction
- **AND gate**: Follows from security of OT

At the end, the parties only learn the values of the output wires

Exercise: Construct Simulator for Π using Simulator for OT and prove indistinguishability