Key Exchange

CS 601.642/442 Modern Cryptography

Fall 2018
Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element.
- (G, \cdot) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \cdot b \in G$
 - Associativity: For all $a, b, c \in G$, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - Identity: There exists an element e such that for all $a \in G$, we have $e \cdot a = a$
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \cdot b = e$
- Think: Is $a \cdot b$ always equal to $b \cdot a$?
 - Read: Abelian Groups
- Example: $(\mathbb{Z}, +)$
A group \((G, \cdot)\) is a cyclic group if it is generated by a single element. That is:
\[G = \{1 = e = g^0, g^1, \ldots, g^{n-1}\}, \text{ where } |G| = n\]
Written as:
\[G = \langle g \rangle\]
Order of \(G\): \(n\)
Let \((G, \cdot)\) be a cyclic group of order \(p\) with generator \(g\), where \(p\) is an \(n\)-bit “safe prime” number (i.e., \(p = 2q + 1\) for some large prime \(q\)).

Given \((g, b = g^a)\), where \(a \leftarrow \{0, \ldots, p - 1\}\), it is hard to predict \(a\).
Definition (Discrete Logarithm Problem)

Let \((G, \cdot)\) be a cyclic group of order \(p\) (where \(p\) is a safe prime) with generator \(g\), then for every non-uniform PPT adversary \(A\), there exists a negligible function \(\varepsilon\) such that

\[
\Pr[a \leftarrow \{0, \ldots, p - 1\}, a' \leftarrow A(G, p, g, g^a) : a = a'] \leq \varepsilon
\]
Computational Diffie-Hellman Assumption

- Let G be a cyclic group (G, \cdot) of order p with generator g, where p is an n-bit safe prime number.
- Give (g, g^a, g^b) to the adversary
- Hard to find g^{ab}
Definition (Computational Diffie-Hellman Assumption)

Let \((G, \cdot)\) be a cyclic group of order \(p\) (where \(p\) is a safe prime) with generator \(g\), then for every non-uniform PPT adversary \(A\), there exists a negligible function \(\varepsilon\) such that

\[
\Pr[a, b \leftarrow \{0, \ldots, p - 1\}, y \leftarrow A(G, p, g, g^a, g^b) : g^{ab} = y] \leq \varepsilon
\]
Let \((G, \cdot)\) be a cyclic group of order \(p\) with generator \(g\), where \(p\) is an \(n\)-bit safe prime number.

Pick \(b \leftarrow \{0, 1\}\)

If \(b = 0\), send \((g, g^a, g^b, g^{ab})\), where \(a, b \leftarrow \{0, \ldots, p - 1\}\)

If \(b = 1\), send \((g, g^a, g^b, g^r)\), where \(a, b, r \leftarrow \{0, \ldots, p - 1\}\)

Adversary has to guess \(b\)

Effectively: \((g, g^a, g^b, g^{ab}) \approx (g, g^a, g^b, g^r)\), for \(a, b, r \leftarrow \{0, \ldots, p - 1\}\) and any \(g\)
Definition (Decisional Diffie-Hellman Assumption)

Let \((G, \cdot)\) be a cyclic group of order \(p\) (where \(p\) is a safe prime) with generator \(g\), then the following two distributions are computationally indistinguishable:

1. \(\{a, b \leftarrow \{0, \ldots, p - 1\} : (G, p, g, g^a, g^b, g^{ab})\}\)
2. \(\{a, b, r \leftarrow \{0, \ldots, p - 1\} : (G, p, g, g^a, g^b, g^r)\}\)
DDH \implies CDH \implies DL
Alice and Bob want to share a key.
They want to establish a shared key by sending each other messages over a channel.
However, there is an adversary (Eavesdropper) that is eavesdropping on this channel and sees the messages that are sent over it.
How to securely establish a shared key while keeping it hidden from the eavesdropper?
Key Agreement: Definition

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice’s view $V_A = (r_A, \tau)$ and Bob’s view $V_B = (r_B, \tau)$
- Eavesdropper’s view $V_E = \tau$
- Alice outputs k_A as a function of V_A and Bob outputs k_B as a function of V_B
- Correctness: $\Pr_{r_A, r_B}[k_A = k_B] \approx 1$
- Security: $(k_A, V_E) \equiv (k_B, V_E) \approx (r, \tau)$
Key Agreement: Construction (Diffie-Hellman)

- Let \((G, \cdot)\) be a cyclic group of order \(p\) (where \(p\) is a safe prime) with generator \(g\).
- Alice picks \(a \leftarrow \{0, \ldots, p - 1\}\) and sends \(g^a\) to Bob.
- Bob picks \(b \leftarrow \{0, \ldots, p - 1\}\) and sends \(g^b\) to Alice.
- Alice outputs \((g^b)^a\) and Bob outputs \((g^a)^b\).
- Adversary sees: \((g^a, g^b)\).
- Correctness?
- Security? Use DDH to say that \(g^{ab}\) is hidden from adversary’s view.
- Think: Is this scheme still secure if the adversary is allowed to modify the messages?