Non-Interactive Zero Knowledge (II)

CS 601.442/642 Modern Cryptography

Fall 2017
NIZKs for \textbf{NP}: Roadmap

- **Last-time:** Transformation from NIZKs in hidden-bit model to NIZKs in common random string model
- **Today:** NIZKs for \textbf{NP} in the hidden-bit model
- **Homework:** Non-adaptive NIZKs to Adaptive NIZKs
Definition (Hamiltonian Graph)

Let $G = (V, E)$ be a graph with $|V| = n$. We say that G is a Hamiltonian graph if it has a Hamiltonian cycle, i.e., there are $v_1, \ldots, v_n \in V$ s.t. for all $i \in [n]$:

$$(v_i, v_{(i+1) \mod n}) \in E$$

Fact: Deciding whether a graph is Hamiltonian is \textbf{NP}-Complete. Let L_H be the language of Hamiltonian graphs $G = (V, E)$ s.t. $|V| = n$

Today: NIZK proof system for L_H in the hidden-bit model
Notation

Definition (Adjacency Matrix)

A graph $G = (V, E)$ with $|V| = n$, can be represented as an $n \times n$ adjacency matrix M_G of boolean values such that:

$$M[i, j] = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}$$

Cycle Matrix: A cycle matrix is a boolean matrix that corresponds to a graph that contains a Hamiltonian cycle and no other edges

Permutation Matrix: A permutation matrix is a boolean matrix such that each row and each column has exactly one entry equal to 1

Fact: Every cycle matrix is a permutation matrix, but the converse is not true. For every n, there are $n!$ permutation matrices, but only $(n - 1)!$ cycle matrices
NIZKs for L_H in Hidden-Bit Model

Two Steps:

Step I. NIZK (K_1, P_1, V_1) for L_H in hidden-bit model where K produces (hidden) strings r with a specific distribution: each r represents an $n \times n$ cycle matrix.

Step II. Modify the above construction to obtain (K_2, P_2, V_2) where the (hidden) string r is uniformly random.
Step I

Construction of \((K_1, P_1, V_1)\) for \(L_H\):

\(K_1(1^n)\): Output \(r \leftarrow \{0, 1\}^{n^2}\) s.t. it represents an \(n \times n\) cycle matrix \(M_c\)

\(P_1(r, x, w)\): Execute the following steps:

- Parse \(x = G = (V, E)\) s.t. \(|V| = n\), and \(w = H\) where \(H = (v_1, \ldots, v_n)\) is a Hamiltonian cycle in \(G\)
- Choose a permutation \(\varphi : V \rightarrow \{1, \ldots, n\}\) that maps \(H\) to the cycle in \(M_c\), i.e., for every \(i \in [n]\):
 \[
 M_c[\varphi(v_i), \varphi(v_{(i+1) \mod n})] = 1
 \]
- Define \(I = \{\varphi(u), \varphi(v) | M_G[u, v] = 0\}\) to be the set of non-edges in \(G\)
- Output \((I, \varphi)\)
Step I (contd.)

Construction of \((K_1, P_1, V_1)\) for \(L_H\):

\(V_1(I, r_I, \varphi)\): Execute the following steps:

- Parse \(r_I = \{M_c[u, v]\}_{(u,v) \in I}\)
- Check that for every \((u, v) \in I\), \(M_c[u, v] = 0\)
- Check that for every \((u, v) \in I\),
 \(M_G(\varphi^{-1}(u), \varphi^{-1}(v)) = 0\)
- If both the checks succeed, then output 1 and 0 otherwise

Completeness: An honest prover \(P\) can always find a correct mapping \(\varphi\) that maps \(H\) to the cycle in \(M_c\)

Soundness: If \(G = (V, E)\) is not a Hamiltonian graph, then for any mapping \(\varphi : V \rightarrow \{1, \ldots, n\}\), \(\varphi(G)\) will not cover all the edges in \(M_c\). There must exist at least one non-zero entry in \(M_c\) that is revealed as a non-edge of \(G\)
Step I (contd.)

Zero Knowledge: Simulator S performs the following steps:

- Sample a random permutation $\varphi : V \rightarrow \{1, \ldots, n\}$
- Compute $I = \{\varphi(u), \varphi(v) | M_G[u, v] = 0\}$
- For every $(a, b) \in I$, set $M_c[a, b] = 0$
- Output $(I, \{M_c[a, b]\}_{(a, b) \in I}, \varphi)$

It is easy to verify that the above output distribution is identical to the real experiment.
Define a deterministic procedure Q that takes as input a (sufficiently long) random string r and outputs a biased string s that corresponds to a cycle matrix with inverse polynomial probability $\frac{1}{\ell(n)}$.

If we feed $Q \cdot n \cdot \ell(n)$ random inputs, then with high probability, at least one of the outputs will correspond to a cycle matrix.

In the NIZK construction, the (hidden) random string will be $r = r_1, \ldots, r_{n \cdot \ell(n)}$.

For every i, the prover will try to compute a proof using $s_i = Q(r_i)$.

At least one s_i will contain a cycle matrix, so we can use the NIZK proof system from Step I.
Procedure Q

Let r be a random string s.t. $|r| = \lceil 3 \log n \rceil \cdot n^4$

Procedure $Q(r)$:

- Parse $r = r_1, \ldots, r_{n^4}$ s.t. $\forall i, |r_i| = \lceil 3 \log n \rceil$
- Compute $s = s_1, \ldots, s_{n^4}$, where:

 $$s_i = \begin{cases}
 1 & \text{if } r_i = 111 \cdots 1 \\
 0 & \text{otherwise}
 \end{cases}$$

- Define an $n^2 \times n^2$ boolean matrix M consisting of entries from s
- If M contains an $n \times n$ sub-matrix M_c s.t. M_c is a cycle matrix, then output (M, M_c), else output (M, \perp)
Analysis of Q

Notation. Let GOOD be the set of outputs of $Q(\cdot)$ that contain a cycle matrix and BAD be the complementary set.

Lemma

For a random input r, $\Pr[Q(r) \in \text{GOOD}] \geq \frac{1}{3n^3}$

Let M be an $n^2 \times n^2$ matrix computed by Q on a random input r. We will prove the above lemma via a sequence of claims:

- **Claim 1:** M contains exactly n 1’s with probability at least $\frac{1}{3n}$
- **Claim 2:** M contains a permutation sub-matrix with probability at least $\frac{1}{3n^2}$
- **Claim 3:** M contains a cycle sub-matrix with probability at least $\frac{1}{3n^3}$
Proof of Claim 1: Let X be the random variable denoting the number of 1's in M

- X follows the binomial distribution with $N = n^4$, $p = \frac{1}{n^3}$
- $E(X) = N \cdot p = n$
- $Var(X) = Np(1 - p) < n$
- Recall Chebyshev’s Inequality: $\Pr \left[\left| X - E(X) \right| > k \right] \leq \frac{Var(X)}{k^2}$

Setting $k = n$, we have:

$$Pr \left[\left| X - n \right| > n \right] \leq \frac{1}{n}$$

Observe:

$$\sum_{i=1}^{2n} Pr[X = i] = 1 - Pr \left[\left| X - n \right| > n \right] > 1 - \frac{1}{n}$$
Proof of Claim 1 (contd.):

- $\Pr[X = i]$ is maximum at $i = n$

- Observe:

\[
\Pr[X = n] \geq \frac{\sum_{i=1}^{2n} \Pr[X = i]}{2n} \geq \frac{1}{3n}
\]
Analysis of Q (contd.)

Proof of Claim 2: Want to bound the probability that each of the n ‘1’ entries in M is in a different row and column

- After k ‘1’ entries have been added to M,

 \[
 \Pr[\text{new ‘1’ entry is in different row and column}] = \left(1 - \frac{k}{n^2}\right)^2
 \]

- Multiplying all:

 \[
 \Pr[\text{no collision}] \geq \left(1 - \frac{1}{n^2}\right)^2 \cdots \left(1 - \frac{n - 1}{n^2}\right)^2 \geq \frac{1}{n}
 \]

- Combining the above with Claim 1,

 \[
 \Pr[M \text{ contains a permutation } n \times n \text{ submatrix}] \geq \frac{1}{3n^2}
 \]
Proof of Claim 3: Want to bound the probability that \(M \) contains an \(n \times n \) cycle sub-matrix

- Observe:

\[
\Pr[\text{n \times n permutation matrix is a cycle matrix}] = \frac{1}{n}
\]

- Combining the above with Claim 2,

\[
\Pr[M \text{ contains a cycle } n \times n \text{ submatrix }] \geq \frac{1}{3n^3}
\]
Step II: Details

Construction of \((K_2, P_2, V_2)\) for \(L_H\):

\[K_2(1^n) : \text{Output } r \leftarrow \{0, 1\}^L \text{ where } L = \lceil 3 \log n \rceil \cdot n^8 \]

\[P_2(r, x, w) : \text{Parse } r = r_1, \ldots, r_{n^4} \text{ s.t. for every } i \in [n^4], \]
\[|r_i| = \lceil 3 \log n \rceil \cdot n^4. \text{ For every } i \in [n^4]: \]
- If \(Q(r_i) = (M_i, \bot)\), set \(I_i = |r_i|\) (i.e., reveal the entire \(r_i\)), and \(\pi_i = \emptyset\)
- Else, let \((M_i, M_{ic}) \leftarrow Q(r_i)\). Compute \((I'_i, \varphi_i) \leftarrow P_1(M_{ic}^i, x, w)\). Set \(I_i = I'_i \cup J_i\) where \(J_i\) is the set of indices s.t. \(r_i\) restricted to \(J_i\) yields the residual \(M_i\) after removing \(M_{ic}^i\), and \(\pi_i = \varphi_i\)

Output \((I = \{I_i\}, \pi = \{\pi_i\})\)
Step II: Details (contd.)

Construction of (K_2, P_2, V_2) for L_H:

$V_2(I, r_I, \pi)$: Parse $I = I_1, \ldots, I_{n^4}$, $r_I = s_1, \ldots, s_{n^4}$, and $\pi = \pi_1, \ldots, \pi_{n^4}$. For every $i \in [n^4]$:

- If I_i is the complete set, then check that $Q(s_i) = (\cdot, \perp)$

- Otherwise, parse $I_i = I'_i \cup J_i$. Parse $s_i = s^1_i, s^2_i$ and check that s^2_i is the all 0 string. Also, check that $V_1(I'_i, s^1_i, \pi_i) = 1$

If all the checks succeed, then output 1 and 0 otherwise
Step II: Security

Completeness: Follows from completeness of the construction in Step I

Soundness: For random $r = r_1, \ldots, r_n$, $Q(r_i) \in \text{GOOD}$ for at least one r_i with high probability. Soundness then follows from the soundness of the construction in Step I

Zero-Knowledge: For i s.t. $Q(r_i) \in \text{GOOD}$, V does not learn any information from the zero-knowledge property of the construction in Step I. For i s.t. $Q(r_i) \in \text{BAD}$, V does not see anything besides r_i.