Key Exchange

CS 601.642/442 Modern Cryptography

Fall 2017
A group G is defined by a set of elements and an operation which maps two elements in the set to a third element.

(G, \cdot) is a group if it satisfies the following conditions:

- **Closure**: For all $a, b \in G$, we have $a \cdot b \in G$.
- **Associativity**: For all $a, b, c \in G$, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **Identity**: There exists an element e such that for all $a \in G$, we have $e \cdot a = a$.
- **Inverse**: For every $a \in G$, there exists $b \in G$ such that $a \cdot b = e$.

Think: Is $a \cdot b$ always equal to $b \cdot a$?

Read: Abelian Groups.

Think: Can there be different left and right identity elements?

Think: Can there be different left and right inverses?

Example: $(\mathbb{Z}, +)$

Read: (Example) Symmetry Group.
A group \((G, \cdot)\) is a cyclic group if it is generated by a single element. That is:
\[G = \{ 1 = e = g^0, g^1, \ldots, g^{n-1} \}, \text{ where } |G| = n \]
Written as: \(G = \langle g \rangle \)
Order of \(G \): \(n \)
Discrete Logarithm Problem

- Let \((G, \cdot)\) be a cyclic group of order \(p\) with generator \(g\), where \(p\) is an \(n\)-bit prime number.
- Given \((g, b = g^a)\), where \(a \leftarrow \{0, \ldots, p - 1\}\), it is hard to predict \(a\).
Definition (Discrete Logarithm Problem)

Let \((G, \cdot)\) be a cyclic group of prime order \(p\) with generator \(g\), then for every non-uniform PPT adversary \(A\), there exists a negligible function \(\varepsilon\) such that

\[
\Pr[a \leftarrow \{0, \ldots, p - 1\}, a' \leftarrow A(G, p, g, g^a) : a = a'] \leq \varepsilon
\]
Computational Diffie-Hellman Assumption

- Let G be a cyclic group (G, \cdot) of order p with generator g, where p is an n-bit prime number.
- Give (g, g^a, g^b) to the adversary
- Hard to find g^{ab}
Definition (Computational Diffie-Hellman Assumption)

Let \((G, \cdot)\) be a cyclic group of prime order \(p\) with generator \(g\), then for every non-uniform PPT adversary \(\mathcal{A}\), there exists a negligible function \(\varepsilon\) such that

\[
\Pr[a, b \leftarrow \{0, \ldots, p - 1\}, y \leftarrow \mathcal{A}(G, p, g, g^a, g^b) : g^{ab} = y] \leq \varepsilon
\]
Let (G, \cdot) be a cyclic group of order p with generator g, where p is an n-bit prime number.

Pick $b \leftarrow \{0, 1\}$

If $b = 0$, send (g, g^a, g^b, g^{ab}), where $a, b \leftarrow \{0, \ldots, p - 1\}$

If $b = 1$, send (g, g^a, g^b, g^r), where $a, b, r \leftarrow \{0, \ldots, p - 1\}$

Adversary has to guess b

Effectively: $(g, g^a, g^b, g^{ab}) \approx (g, g^a, g^b, g^r)$, for $a, b, r \leftarrow \{0, \ldots, p - 1\}$ and any g
Decisional Diffie-Hellman Assumption: Definition

Definition (Decisional Diffie-Hellman Assumption)

Let (G, \cdot) be a cyclic group of prime order p with generator g, then the following two distributions are indistinguishable:

- $\{a, b \leftarrow \{0, \ldots, p - 1\} : (G, p, g, g^a, g^b, g^{ab})\}$
- $\{a, b, r \leftarrow \{0, \ldots, p - 1\} : (G, p, g, g^a, g^b, g^r)\}$
DDH \implies CDH \implies DL
Key Agreement

- Alice and Bob want to share a key.
- They want to establish a shared by by sending each other messages over a channel.
- However, there is an adversary (Eavesdropper) that is eavesdropping on this channel and sees the messages that are sent over it.
- How to securely establish a shared key while keeping it hidden from the eavesdropper?
Key Agreement: Definition

- Alice picks a local randomness \(r_A \)
- Bob picks a local randomness \(r_B \)
- Alice and Bob engage in a protocol and generate the transcript \(\tau \)
- Alice’s view \(V_A = (r_A, \tau) \) and Bob’s view \(V_B = (r_B, \tau) \)
- Eavesdropper’s view \(V_E = \tau \)
- Alice outputs \(k_A \) as a function of \(V_A \) and Bob outputs \(k_B \) as a function of \(V_B \)
- Correctness: \(\Pr_{r_A, r_B}[k_A = k_B] \approx 1 \)
- Security: \((k_A, V_E) \equiv (k_B, V_E) \approx (r, \tau) \)
Let \((G, \cdot)\) be a cyclic group of order \(p\) with generator \(g\), where \(p\) is an \(n\)-bit prime number.

Alice picks \(a \leftarrow \{0, \ldots, p-1\}\) and sends \(g^a\) to Bob

Bob picks \(b \leftarrow \{0, \ldots, p-1\}\) and sends \(g^b\) to Alice

Alice outputs \((g^b)^a\) and Bob outputs \((g^a)^b\)

Adversary sees: \((g^a, g^b)\)

Correctness?

Security? Use DDH to say that \(g^{ab}\) is perfectly hidden from it

Think: Is this scheme still secure if the adversary is allowed to modify the messages?