The Broadcast Message Complexity of Secure Multiparty Computation

Sanjam Garg <u>Aarushi Goel</u> Abhishek Jain

ASIACRYPT 2019

Secure Multiparty Computation *x*₂ x_3 x_1 x_5 x_4

Secure Multiparty Computation

Compute $f(x_1, x_2, x_3, x_4, x_5)$

Communication Models

- Point to Point (P2P) Model
- Broadcast Model
- Hybrid Model (P2P + Broadcast)

Communication Models

- Point to Point (P2P) Model
- Broadcast Model
- Hybrid Model (P2P + Broadcast)

Authenticated Broadcast Channel

Problem Statement

What is the broadcast message complexity of secure multiparty computation in the presence of t < n semi-honest corruptions?

Problem Statement

What is the broadcast message complexity of secure multiparty computation in the presence of t < n semi-honest corruptions?

Counted as a single broadcast message

Related Work: P2P Message Complexity

t = n - 1 [Ishai, Mittal, Ostrovsky 18]

t < *n* [Mittal 18]

Every party broadcasts a message in each round

Every party broadcasts a message in each round

2 rounds are necessary for semi-honest secure computation [HLP11].

Round 1

2 rounds are necessary for semi-honest secure computation [HLP11].

Round 2

Round 1

2 rounds are necessary for semi-honest secure computation.

Round 2

Is the Broadcast Message Complexity 2n?

- Alice doesn't broadcast a message in the first round
- In a given round, honest parties broadcast messages at the same time.

Round 2

Round 1

- Alice doesn't broadcast a message in the first round
- In a given round, honest parties broadcast messages at the same time.

Round 1 b С Round 2 a Independent of Alice's input

Corrupt Bob can launch an offline spoofing attack

 Alice doesn't broadcast a message in the second round

Round 1Image: Constraint of the second s

Corrupt Bob can launch an offline residual function attack

Corrupt Bob can launch an offline residual function attack

Corrupt Bob can launch an offline residual function attack

Offline Computation Corrupt Bob can launch an offline residual function attack

Offline Computation

Corrupt Bob can launch an offline residual function attack

Offline Computation а

Offline Computation

a

Offline Computation

Corrupt Bob can launch an offline residual function attack

Corrupt Bob can launch an offline residual function attack

Our Observation

Increasing round complexity

can

decrease broadcast message complexity

Our Observation

Increasing round complexity

can

decrease broadcast message complexity

Simultaneity is wasteful

Model	Corruptions	Rounds	Output Parties	Broadcasts
Plain/CRS	t < n - 1		> 1	n + t + 1
			= 1	n+t

Model	Corruptions	Rounds	Output Parties	Broadcasts
Plain/CRS	t < n - 1		> 1	n + t + 1
			= 1	n+t
Plain/CRS	t = n - 1		> 1	2n - 1
			= 1	2n - 2

Model	Corruptions	Rounds	Output Parties	Broadcasts
Plain	t < n - 1		> 1	n + t + 1
			= 1	n+t
Plain	t = n - 1		> 1	2n - 1
			= 1	2n - 2
PKI	t < n		> n - t	n+t
			$\leq n-t$	n + t - 1

Model	Corruptions	Rounds	Output Parties	Broadcasts
Plain/CRS	t < n-1	3	> 1	n + t + 1
			= 1	n+t
Plain/CRS	t = n - 1	3	> 1	2n - 1
			= 1	2n - 2
PKI	t < n	3	> n - t	n+t
			$\leq n-t$	n+t-1

3 rounds are necessary and sufficient for optimal broadcast message complexity

Model	Corruptions	Rounds	Output Parties	Broadcasts
Plain/CRS	t < n-1	3	> 1	n + t + 1
			= 1	n+t
Plain/CRS	t = n - 1	3	> 1	2n - 1
			= 1	2n - 2
PKI	t < n	3	> n - t	n+t
			$\leq n-t$	n + t - 1

Broadcast message complexity is much lower than 2n.

This Talk: Lower Bounds

Model	Corruptions	Rounds	Output Parties	Broadcasts
Plain/CRS	t < n - 1	3	> 1	n + t + 1
			= 1	n+t
Plain/CRS	t = n - 1	3	> 1	2n - 1
			= 1	2n - 2
PKI/CRS	t < n	3	> n - t	n+t
			$\leq n-t$	n + t - 1

At least t+1 parties must broadcast at least two messages each

One message each

At least two messages each

Residual Function Attack by Spoofing

Can recompute messages of and and on different inputs by spoofing as them.

Not Secure !!

Obsv 1	At least t+1 parties must broadcast at least two messages each		
	$2 \times (t + 1)$ messages		
Obsv 2	All parties must broadcast at least one message		
	$1 \times (n - (t + 1))$ messages		

 $2 \times (t+1) + 1 \times (n - (t+1)) = n + t + 1$ messages

Minimum Round Complexity: 3

Minimum Round Complexity: 3

There is a unique communication pattern.

At least t parties must broadcast at least two messages each

At least t parties must broadcast at least two messages each

This is in contrast to the requirement in the plain model

Spoofing attacks are not possible in the PKI model

Residual Function Attack without Spoofing

Re-compute the message of 👗 on different inputs.

Not Secure !!

Message Complexity in the PKI Model

Message Complexity in the PKI Model

STEP 1	At least t parties must broadcast at least two messages each
	2×t messages
STEP 2	All parties must broadcast at least one message
	$1 \times (n - t)$ messages

 $(2 \times t) + (1 \times (n - t)) = n + t$ messages

Communication Pattern in the PKI Model

Minimum Round Complexity: 3

There is a restricted class of admissible communication patterns.

• Initiate the study of broadcast message complexity in MPC.

- Initiate the study of broadcast message complexity in MPC.
- Provide tight bounds for semi-honest corruptions in the PKI, plain and CRS models.

- Initiate the study of broadcast message complexity in MPC.
- Provide tight bounds for semi-honest corruptions in the PKI, plain and CRS models.
- Show that 3 rounds are necessary and sufficient for optimal message complexity.

- Initiate the study of broadcast message complexity in MPC.
- Provide tight bounds for semi-honest corruptions in the PKI, plain and CRS models.
- Show that 3 rounds are necessary and sufficient for optimal message complexity.
- Show which communication patterns are feasible for achieving optimal message complexity.

Thank You.

aarushig@cs.jhu.edu