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Abstract. This paper introduces a new language model, Coqa, for deeply
embedding concurrent programming into objects. Every program writ-
ten in our language has the desirable behaviors of atomicity, mutual
exclusion, and race freedom automatically built in. A key property of
our model is the notion of quantized atomicity: every concurrent pro-
gram execution can be viewed as being divided into quantum regions of
atomic execution, greatly reducing the number of interleavings to con-
sider. Rather than building atomicity locally, i.e. declaring some code
blocks as atomic blocks and leaving other code segments with no guar-
antee of any atomicity property, we build it in globally, so that a form of
atomicity, quantized atomicity, ubiquitously exists at all program points.
We justify our approach both from a theoretical basis by showing that
a formal representation, KernelCoqa, has provable quantized atomicity
properties, and by implementing CoqaJava, a Java extension incorporat-
ing all of the Coqa features.

1 Introduction

Coga (for Concurrent objects with guantized atomicity) is a new object-oriented
language aimed at facilitating programming in a multi-core CPU environment.
Programming multi-core CPUs requires much greater programmer skill, and is
one of the most significant new demands programmers will face in the coming
decade. The design goal of Coqa is to build a language in which it is easier to
naturally write concurrent programs with good concurrency properties. Unlike
Java where good properties such as race freedom can only be achieved if the
programmer explicitly declares it by using synchronized, the “default” mode
in Coqa is inverted: good properties of race freedom, mutual exclusion, and
atomicity are preserved unless programmers explicitly declare otherwise.
Existing concurrent object language designs are numerous and include for
example [Agh90,Arm96,Mil,BST00]. What makes our work novel is the intrinsic
properties Coqa preserves. Most important is atomicity, i.e. the property that a
block of code can always be viewed as occurring atomically no matter what inter-
leaving it is involved in. With tightly coupled computation running on multi-core
CPUs, data sharing between threads is very common and the patterns are more
complex than on a single-core CPU due to random variations in scheduling.



To support atomicity, Coqa takes the route of “atomicity-by-design” for each
method: atomicity is ubiquitous because by default each complete method exe-
cution is observably atomic. Note this is much stronger than the synchronized
methods of Java: the Coqa method and all methods it invokes are viewed as hap-
pening atomically. The synchronized methods in Java only provide a shallow
notion of mutual exclusion.

One particular challenge of whole-method atomicity is that it can be overly
strong, and the resulting executions will not be efficient, or may even deadlock if
there is significant contention across methods. For this reason, Coqa allows pro-
grammers to relax whole-method atomicity by dividing a method into a small
number of discrete zones of atomicity (called gquanta in Coqa), and each quan-
tum is serializable regardless of the interleaving of the actual execution. This
property, called quantized atomicity, is preserved for all Coqa programs. The
main appeal is to significantly reduce the number of interleavings possible in
concurrent program runs, and thus to ease the debugging burden. If two pieces
of code each have 100 execution steps, reasoning tools would have to consider
C389 (i.e., around 10°®) interleaving scenarios; however, if the aforementioned
100 steps can be split into 3 atomic quanta, there are only Cg = 20 possibili-
ties to consider. With quantized atomicity, next-generation verification tools can
potentially enumerate all interleaving scenarios, a strategy largely impractical
today. Actors [Agh90,AMST97] were in some sense the starting point for the de-
sign of Coqa: atomicity is preserved for each Actor method because its execution
once initiated does not depend on the state of other actors and each method is
therefore trivially serializable. Actors’ ubiquitous atomicity arises from the fact
that the model supports only asynchronous messaging, and so methods once
initiated cannot receive outside inputs.

Another design goal of Coqa is to make a concurrent language design that
naturally meshes well with object-oriented language features. This stands in con-
trast to the non-object-based syntax and semantics commonly used in existing
languages for concurrent programming. Language abstractions such as library
class Thread, thread spawning via its start method and synchronized blocks in
Java, and the atomic blocks in various Software Transactional Memory (STM)
systems that have been adopted into OO languages [CMCT06], are not that dif-
ferent from what was used three decades ago in non-object-oriented languages
[Lom?77].

Existing language models fall short of achieving the goals of both ubiquitous
atomicity and easy OO-style concurrent programming. Ubiquitous atomicity is
a global property of all programs; Java does not have a notion of atomicity
built into the language and the form of atomicity in STM systems is only local
atomicity. STM systems also require rollbacks to deal with atomicity-breaking
contentions and are known to be inapplicable to I/O-intensive applications, such
as GUI and network systems, so they can never be ubiquitous. Out of the desire
of pervasiveness, we take a blocking and not a rollback approach to achieve
atomicity. The Actor model achieves ubiquitous atomicity, but programming in
Actors is very different from what programmers are used to, since with pure



p what it is why you should use it
messaging
o .m(v) intra-task messaging| promotes mutual exclusion and atomicity
o > m(v) task creation promotes parallelism by starting up a new task
o = m(v) sub-tasking promotes parallelism by encouraging early free

Fig. 1. The Three Messaging Mechanisms and Their Relative Strengths

asynchronous messaging any processing of a message reply must be handled by
a completely new message, necessarily chopping up methods into many small
pieces. So, Coqa shares the spirit of ubiquitous atomicity of Actors, but allows
more familiar synchronous messaging syntax to be used which avoids the need
to break up methods.

In this paper, we formalize Coga in a formal system called KernelCoqa, in
which we prove the properties of quantized atomicity, mutual exclusion and
race freedom. We have also implemented a prototype language CoqaJava as a
Java extension which simply replaces Java threads with our new forms of object
messaging.

2 Informal Overview

The concurrency unit in our language is a task. A task is a unit of execution
that can potentially be interleaved with other units. Tasks are closely related
to (logical) threads, but come with inherent atomicity properties not found in
threads, and we coin a new term to reflect this distinction. Coqa has a very
simple syntax: the only difference from the Java object model is a richer syn-
tax to support object messaging, as summarized in Fig. 1. Beyond the familiar
o .m(v) message sending expression, o > m(v) and o = m(v) are addition-
ally provided for task creation (a form of thread spawning) and subtasking (a
form of thread open nesting), respectively.

The Running Example Throughout the section, we will use a simple example of
basic banking operations, including account opening and balance transfer opera-
tions, as shown in Fig. 2. Bank accounts are stored in a hash table, implemented
in a standard manner with bucket lists.

2.1 Task Creation

Tasks are created by simply sending asynchronous messages to objects, using the
o > m(v) expression. This is a more “object-based” thread creation than the
current practice in Java, where a special Thread class is used. This notion is more
aligned with Actor languages, where all message passings can be viewed as thread
creations. In Fig. 2, the top-level main method starts up three concurrent tasks,
two balance transfers and one account opening, by the invocations of lines M1, M2



class BankMain {
public static void main (String [] args) {
Bank bk = new Bank();
bk. open("Alice", 10); bk. open("Bob", 20); bk. open("Cathy", 30);

bk > transfer("Alice", "Bob", 3); //(M1)
bk > transfer("Cathy", "Alice", 5); // (M2)
bk > open("Dan", 40); //(M3)

}

class Bank {
void transfer (String from, String to, int bal) {

Status status = new Status(); // (A1)
status.log();

Account afrom = (Account)htable. get(from, status); //(A2)
afrom. withdraw(bal); //(A3)
Account ato = (Account)htable. get(to, status); //(A4)
ato. deposit(bal); // (A5)

}
void open(String n, int b) { htable. put(n, new Account(n, b));}
private HashTable htable = new HashTable();
}
class Account {
Account (String n, int b) {name = n; bal = b; }
void deposit(int b) { bal += b; }
void withdraw(int b) {bal -= b; }
private String name;
private int bal;
}
class Status {
void log() {
String sysinfo = ... //prepare system info
info.append(sysinfo);

}

private StringBuffer info = new StringBuffer();

}

Fig. 2. A Banking Program

and M3. Syntax bk > transfer("Alice", "Bob", 3) indicates an asynchronous
message transfer sent to object bk with indicated arguments. Asynchronous
message sending returns immediately, so the sender can continue, and a new
task is created to execute the invoked method. This new task terminates when
its method is finished. To keep the language simple, asynchronous invocations

in Coqa do not return values.



2.2 Intra-Task Messaging

Message sending o . m(v) is the same syntax as Java, but has different semantics
giving stronger atomicity properties: when invoked, object o will be captured by
the invoking task and cannot be used by other tasks until the current task is
complete. Capturing is a blocking mechanism, but unlike Java where program-
mers need to explicitly specify what to lock and when to lock, the capture and
blocking of objects is built into Coqa.

This intuitive definition for o .m(v) is the programmer view, but is not
an efficient implementation strategy: only mutation affects the preservation of
atomicity, and so we actually only need to capture objects “lazily” when their
fields are read and written. Our notion of “capture” is a standard two-phase
non-exclusive read lock and exclusive write lock [Gra78]. When an object’s field
is read, the object is said to be read captured; when the field is written, the object
is said to be write captured. The same object can be read captured by multiple
tasks at the same time, but to be write captured, the object has to be exclusively
owned, i.e. not read captured or write captured by another task. Two-phase
locking optimizes our model since reads are overwhelmingly more common than
writes in most programs. Many other optimizations are also possible by static
analysis, a topic we leave to future work.

The preservation of atomicity can be seen in the invocation of the transfer
method of Fig. 2: the HashTable object referenced by htable is captured by a
task, say the task created in line M1, and will not be released until the end of
the method (and hence, the task). Therefore it is not possible for one transfer
task to be reading from the HashTable object while at the same time a different
transfer task is writing to it.

2.3 Subtasking

The model we have presented thus far admits significant parallelism if most
object accesses are read accesses. Blocking is possible, however, when frequent
writes are needed. For instance, consider the parallel execution of the two tasks
spawned by (M1) and (M3). One of them will be blocked as (M1) reads from the
HashTable object, while (M3) attempts to write.! And the task being blocked
cannot make any progress until the other task completes and releases its captured
object. Intuitively, the task of adding Dan as a new account, (M3), is totally
unrelated to the task of transferring money from Alice to Bob, (M1), except
for their shared access to the HashTable object. There should be at least some
parallelism possible between the two tasks.

Coqa achieves this by allowing programmers to spawn off the access of the
HashTable object (and all objects it indirectly accesses) as a new subtask. The
high-level meaning behind a subtask is that it achieves a relatively independent

! Strictly speaking, the read-write conflict happens on the object representing the
bucket list inside the HashTable, but we omit this detail since we do not have space
to give the source code for the internals of the HashTable.



goal; its completion signals a partial victory so that the captured objects used
to achieve this subtask can be “freed”, i.e. no longer considered captured. In
terms of syntax, the only change to the source code of transfer in Fig. 2 is
to change the dot (.) messagings at (A2) and (A4) to = for subtask creation
messaging. In this case, the task ¢ created at (M1) spawns a subtask ¢’ at (A2)
via = . The HashTable object will be captured by ¢’ but not ¢. More parallelism
is achieved by such subtasking: other tasks waiting to capture the HashTable
object would have to block for the duration of ¢ instead of the much shorter
span of ¢’ if (.) was used. Subtasking is a synchronous invocation, i.e., the task
executing transfer waits until its subtask executing get returns a result. But
the subtask has a distinct capture set of its own. And like a task, a subtask frees
objects in its capture set when it finishes.

A subtask is also a task, so it prevents arbitrary interleaving. The change in
line (A2) from (.) to = admits interleaving between task (M1) and (M3) that
was not allowed before, but it does not mean that arbitrary interleaving can
occur; for example, if M1 were in the middle of a key lookup M3 still cannot add
a new bucket. We will discuss such concurrency properties in the presence of
subtasking later in this section.

Subtasking is related to open nesting in STM systems [NMAT+07,CMCT06].
Open nesting is used to nest a transaction inside another transaction, where the
nested transaction can commit before the enclosing transaction runs to comple-
tion. While the mechanism of open nesting of transactions can be summarized
as early commit, subtasking can be summarized as early release.

Capture set inheritance One contentious issue for open nesting is the case where
a nested transaction and the transactions enclosing it both need the same object.
For instance in Atomos [CMC™06], the issue is circumvented by restricting the
read/write sets to be disjoint between the main and nested transaction. When
the same issue manifests itself in the scenario of subtasking, the question is,
“Can a subtask access objects already captured by its enclosing task(s)?”

We could in theory follow Atomos’ approach. This however would signifi-
cantly reduce programmability. Let us consider the example of the Status object
in the transfer method. From the programmer’s view, this object keeps track
of the system status throughout the execution of the transfer method. How-
ever, if the Atomos’s approach were taken, a subtask spawned by the transfer
task for accessing the HashTable would not be able access the Status object be-
cause this object has already been captured by the transfer task. Even worse,
a deadlock would be introduced in this case.

We believe the essence of having a subtasking relationship between a parent
and a child is that the parent should generously share its resources with the
child. Therefore accessing the Status in the subtask is perfectly legal in Coqa.
Observe that the relationship between a task and its subtask is synchronous, so
there is no concern of interleaving between a task and its subtask.



2.4 Properties

Quantized Atomicity Some tasks simply should not be considered wholly atomic
because they are fundamentally needing to share data with other tasks, and
for this case it is simply impossible to have full atomicity over the whole task.
The main reason why a programmer wants to declare a subtask is to open a
communication channel with other tasks for such sharing, as was illustrated in
the subtasking example above. With subtasking, objects captured by the subtask
can serve as communication points between different tasks. This is because the
objects freed at the end of one subtask might be recaptured later, and the object
may have been mutated by the original subtask.

Quantized atomicity is the property that for any task, its execution sequence
can be viewed as a sequence of atomic regions, the atomic quanta, demarcated by
task and subtask creation points. This atomicity property is weaker than a whole
task being atomic, but as long as full task atomicity is broken only when it is
really necessary (that is, a minimal number of = and - messagings are used),
the atomic quanta will each be large, and significant reduction of interleaving
can be achieved. In reality, what matters is not that the entire method must be
atomic, but that the method admits a drastically limited number of interleaving
scenarios. Quantized atomicity aims to strikes a balance between what is realistic
and what is reasonable.

Mutual Exclusion For objects accessed by synchronous messaging, the property
of mutual exclusion over mutation spans the lifetime of the current task, even
across the boundaries of quanta. For instance, over the entire duration of any
task executing transfer in Fig. 2, the Status object is guaranteed not to be
mutated by any other task before the current transfer ends, even if other tasks
have reference to Status. Our notion of object mutual exclusion is much stronger
than what Java’s synchronized provides: Java only guarantees the object with
the method is itself not mutated by other threads, while we are guaranteeing
the property for all objects which are directly or indirectly sent synchronous
messages to at run time by the method, many of which may be unknown to the
caller.

Race Freedom In Coqa, we show that two tasks cannot race to access any object
field, except in the case where both may only read from the same object field.

A Simple Memory Model With these concurrency properties, Coqa eliminates
the need for the overly complex memory model of Java [MPAO5].

3 Formalization

In this section we present KernelCoqa, a small formal kernel language of Coqa.

We first define some basic notation used in our formalization. We write 7,, as
shorthand for a set {z1, ..., x,}, with () as empty set. x,, — ¥,, denotes a mapping
{x1 — y1,...,@n — Yn}, where {z1,...2,} is the domain of the mapping,



H := o~ (ecnyR;W; F)

P := cnw— (l; Fd; Md) F = fa—wv
Fd = fn T == (tye) | TIT

- -
Md = mn— Az.e N = t—t
e == null | z | cst | this RW =1

| new cn v == o | null
| fn| fn=e v == cst | o | null
| e.mn(e) e = v | waitt
| e=>mn(e) | ete | ...
| e=>mn(e) E = o|fn=E
| letz=eine | Em(e) | v.m(E)

[ == exclusive | € | E->m(e) | v->m(E)
cst constant | E=>m(e) | v=>m(E)
cn class name | letz=Eine
mn method name 0 object ID
fn field name t task ID
x variable name {t},if N(t) = null

anc(N,t) = { {t} Uanc(N, t'),if N(t) = t

Fig. 3. Language Abstract Syntax and Dynamic Data Structure

dom(H). We also write H(x1) = y1, ..., H(x,) = y,. When no confusion arises,
we drop the subscript n for sets and mapping sequences. We write H{z — y}
as a mapping update: if € dom(H), H and H{x — y} are identical except that
H{z — y} maps x to y; if x ¢ dom(H), H{z — y} = H,z — y. H\x removes
the mapping « — H(z) from H if € dom(H), otherwise the operation has no
effect.

KernelCoqa is an idealized object-based language with objects, messaging,
and fields. Its abstract syntax is shown on the left of Fig. 3. A program P is
a set of classes. Each class has a unique name cn and its definition consists of
sequences of field (Fd) and method (Md) declarations. To make the formalization
feasible, many features are left out, including types and constructors. Besides
local method invocations via dot (.) notation, synchronous and asynchronous
messages are sent to objects using = and ->, respectively. A class declared
exclusive will have its objects write captured upon any access. This label is
useful for eliminating deadlocks inherent in a two-phase locking strategy, such
as when two tasks first read capture an object, then both try to write capture
the same object and thus deadlock.

Operational Semantics Our operational semantics is defined as a contextual
rewriting system over states S = S, where each state is a triple S = (H, N, T)
for H the object heap, IV a task ancestry mapping, and T a set of parallel tasks.
Every task has a local evaluation context E. The relevant definitions are given
in Fig. 3. H is a mapping from objects o to field records tagged with their class
name cn. In addition, each o has capture sets, R and W, for recording tasks



SET
H(y) = (en; Ry W3 F)
H' = H{yw~ (en; R;W U {t}; F{fn— v})} if R C anc(N,t), W C anc(N, )
H,N,(t;v;E[fn=wv]) = H',N, {t; ;E[v])

GET
H(vy) = {(cn; R;W; F) P(cn) = (I; Md; Fd) F(fn)=v
y— H{vyw (ecn; R;W U {t}; F)}, if | = exclusive, R C anc(N,t), W C anc(N,t)
T H{y— {en; RU{t}; W; F)},if I = ¢, W C anc(N,t)

H, N, (t;v; E[fn]) = H, N, {t;v; E[v])

INVOKE
H(o) = {cn; R;W; F) P(cn) = (I; Fd; Md) Md(mn) = Az.e

H, N, (t;v;E[o.mn(v)]) = H, N, (t; 0; E[e{v/x} 17])

TasK(t, v, mn,v, 0,t")
t' fresh
H, N, {77 Bl o > mn(0)]) = H, N, {t; B[ mall]) || (7; o7 chis. mn(0)

SuBTASK(t, v, mn,v,7,t")
N' = N{t' — t} t' fresh
H,N,{t;v;E[o=>mn(v)]) = H,N', (t;y; E[wait t']) || (t'; 0; this.mn(v))

TEND(t)
H = L—Ij (0 — {cn; R\t; W\¢t; F)) N(t) = null
H(o)=(cn;R;W;F)
H,N,(t;v;v) = H',N,e

STEND(t,v,t")

H' = ) (0 — (en; R\ W\t; F))  N(t) =t
H(o)=(cn; R;W;F)

H, N, (t;v;0) || (t's7; Elwait t]) = H', N\t, (t';7; E[v])

Fig. 4. KernelCoga Core Operational Semantics Rules

that have read or write captured this object. A task is a triple consisting of the
task ID ¢, the object v this task currently operates on, and an expression e to
be evaluated.

The core single-step evaluation rules are presented in Fig. 4. The rules for
LeET, RETURN and other standard constructs are omitted here; see [Lu07]. The
rules implicitly operate over some fixed program P. The INVOKE rule for intra-
task messaging is interpreted as a standard function application. The TASK rule
creates a new task via asynchronous messaging. The SUBTASK rule creates a
subtask of the current task via synchronous messaging, and the parent task



enters a wait state until the subtask returns. When a task finishes, all objects
it has captured are freed; the TEND and STEND are rules for ending a task and
a subtask, respectively. The two-phase locking capture policy is implemented in
the SET and the GET rules. The optional exclusive modifier requires an object
to be write captured in both rules. When a task cannot capture an object it
needs, it is implicitly object-blocked on the object until it is entitled to capture
it—the SET/GET rule cannot progress.

Atomicity Theorems Here we formally establish the informal claims about Ker-
nelCoqa: quantized atomicity, mutual exclusion of tasks, and race freedom.
Proofs are provided in [Lu07]. The key Lemma is the Bubble-Down Lemma,
Lemma 1, which shows that consecutive steps of a certain form in a compu-
tation path can be swapped to give an equivalent path. Then, by a series of
bubblings, each quantum of steps can be bubbled to all be consecutive in an
equivalent computation path, showing that the quanta are serializable: Theorem
1. The technical notion of a quantum is the pmsp below, a pointed mazimal sub-
path. These are a series of local steps of one task with a nonlocal step at the end,
which may be embedded in a larger concurrent computation path. We prove in
Theorem 1 that any computation path can be viewed as a collection of pmsp’s,
and all pmsp’s in the path are serializable and thus the whole path is.

Definition 1 (Object State). Recall the global state is a triple S = (H,N,T).
The object state for o, written s,, is defined as H(0), the value of the object o
in the current heap H, or null if o & dom(H).

Definition 2 (Local and Nonlocal Step). A step st, = (S,r,S’") denotes a
transition S = S’ by rule v of Figure 4. st. is a local step if r is one of the
local rules: either GET, SET, THIS, LET, RETURN, INST or INVOKE. st. is a
nonlocal step if r is one of nonlocal rules: either TASK, SUBTASK, TEND or
STEND.

Every nonlocal rule has a label given in Fig 4, used as the observable.

Definition 3 (Computation Path). A computation path p is a finite se-
quence of steps st,, ... st., such that st., st., ... st.._, st.. =(So,71,51) (S1,72,52)
- (Sic2,ric1,8i-1) (Si—1, 74, 54).

When no confusion arises, we simply call it a path.

Definition 4 (Observable Behavior). The observable behavior of a path p,
ob(p), is the sequence of labels for the nonlocal steps in p.

Note that this definition encompasses I/O behavior elegantly since I/O in Kernel-
Coqga can be viewed as a fixed object which is sent nonlocal and thus observable
messages.

Definition 5 (Observable Equivalence). Two paths p1 and ps are observ-
ably equivalent, written p1 = pa, iff 0b(p1) = ob(p2).



Definition 6 (Object-blocked). A task t is in an object-blocked state S at
some point in a path p if it would be enabled for a next step st. = (S,r,S") for
which r is a GET or SET step on object o, except for the fact that there is a
capture violation on o: one of preconditions of the GET/SET fails to hold in S
and so st cannot in fact be the next step at that point.

Definition 7 (Sub-path and Maximal Sub-path). Given a path p, for some
t a sub-path sp, of p is a sequence of steps in p which are all local steps of task
t. A maximal sub-path is a sp, in p which is longest: no local t steps in p can
be added to the beginning or the end of sp, to obtain a longer sub-path.

Definition 8 (Pointed Maximal Sub-path). For a given path, a pointed
maximal sub-path for t (pmsp,) is a mazimal sub-path sp, with either 1) it has
one nonlocal step appended to its end or 2) there are no more t steps ever in the
path.

The second case is the technical case of when the (finite) path has ended but
the task t is still running. The last step of a pmsp, is called its point.

The pmsp’s are the units which we need to serialize: they are all spread out
in the initial path p, and we need to show there is an equivalent path where each
pmsp runs in turn as an atomic unit.

Definition 9 (Task Indexed pmsp). For some fized path p, define pmsp, ;
to be the it" pointed mazimal sub-path of task t in p, where all the steps of the
pmsp, ; occur after any of pmsp, ;1 and before any of pmsp; ;_;.

Definition 10 (Waits-for and Deadlocking Path). For some path p, PSPy,
waits-for pmsp,, ; if t1 goes into a object-blocked state in pmsp,, ; on an object
captured by to in the blocked state. A deadlocking path p is a path where this
waits-for relation has a cycle: pmsp,, ; waits-for pmsp,, ; while pmsp,, ;; waits-
Jor pmsp,, .

From now on we assume in this theoretical development that there are no
such cycles. In Coqa deadlock is an error that should have not been programmed
to begin with, and so deadlocking programs are not ones we want to prove facts
about.

Definition 11 (Quantized Sub-path and Quantized Path). A quantized
sub-path contained in p is a pmsp, of p where all steps of pmsp, are consecutive
in p. A quantized path p is a path consisting of a sequence of quantized sub-paths.

The main technical Lemma is the following Bubble-Down Lemma, which
shows how local steps can be pushed down in a path. Use of such a Lemma is the
standard technique to show atomicity properties. Lipton [Lip75] first described
such a theory, called reduction; his theory was later refined by [LS89].

Definition 12 (Equivalent Step Swap). For two consecutive steps st st.,
in a path p, where st., € pmsp, , st., € pmsp,,, t1 # t2 and st. st.,, =
(S,7r1,8")(S",72,8"),if the step swap of st st,, wrilten as st st , gives a new

path p’ such that p=p’ and st st = (S,72,5%)(S*,71,5"), then it is an equiv-
alent step swap.



Lemma 1 (Bubble-down Lemma). For any path p with any two consecutive
steps sty st., where st., € pmsp, ,st., € pmsp,, and t1 # ta, if it is not the
case that pmsp,, waits-for pmsp,, and if st., is a local step, then a step swap of
Str, Str, is an equivalent step swap.

Theorem 1 (Quantized Atomicity) For all paths p there exists an observ-
ably equivalent quantized path p'.

Theorem 2 (Data Race Freedom) For all paths, no two different tasks can
access a field of an object in consecutive steps, where at least one of the two
accesses changes the value of the field.

Theorem 3 (Mutual Exclusion over Tasks) It can never be the case that
two tasks t1 and ta overlap execution in a consecutive sequence of steps sty, ... st
in a path, and in those steps both t1 and ts write the same object o, or one reads
while the other writes the same object.

4 Discussion and Related Work

Implementation We have implemented a prototype of Coqa, called CoqaJava.
Polyglot [NCMO03] was used to construct a translator from CoqaJava to Java.
All language features introduced in Fig. 3 are included in the prototype. The
implementation dynamically enforces the object capture, freeing, and mutual ex-
clusion semantics of Coqa. Refer to [Lu07] for more details about CogaJava. The
compiler translates CoqaJava to Java. This approach serves as a proof of concept;
it unavoidably suffers additional overhead because it is implemented directly on
top of Java. For example, every object capture operation in CoqaJava requires a
method invocation to realize it in the translated code. The overhead brought by
those method invocations can be huge when a large number of capture opera-
tions are involved. Even with this highly inefficient implementation, preliminary
benchmark results in [Lu07] show that CoqaJava programs on single-core CPUs
have slowdowns of “only” 20% - 60% compared with a Java implementation of
the same problem, a result we consider good given the opportunities available for
improving it. Making our language more expressive and its implementation more
efficient is an important future goal. For instance, we can build a more efficient
CoqaJava by building object capture into the lower level Virtual Machine. It will
also be interesting to add more concurrency-related language features, such as
futures and synchronization constraints. Optimization techniques should also be
able to minimize the amount of capture information that needs to be retained
at runtime since many objects are completely local.

Deadlocks Deadlock will be a more common occurrence in Coqa: accessing shared
objects without using subtasking can potentially produce deadlocks. A primary
task of writing and debugging Coqa programs will be refactoring code into the
correct quanta to both minimize sharing and avoid deadlock. While these extra
deadlocks may make it sound like a step backward has been taken, there is reason



to be optimistic: Coqa programs will inherently have fewer semantically distinct
interleavings, and thus the probability of catching deadlocks before deployment
will be significantly greater since there will a much greater likelihood of exercising
the different interleaving cases during program testing.

There are two forms of deadlock arising in Coqa. The first is inherent in two-
phase locking, when an object is read captured by two tasks but neither task can
further write capture it. The second form is cyclically dependent deadlock. The
first form of deadlock can be avoided by declaring the class to be exclusive (see
Sec. 3). Programmers can also explicitly introduce interleaving via = to break
deadlock. There are also many static and dynamic analysis techniques and tools
to ensure deadlock freedom; for an overview, see [Sin89]. Deadlock detection is
an important topic of future work for Coqa. We are interested in applying some
Java-based analysis tools such Java PathFinder [PF] directly to the target Java
code generated by the compiler. The precision of static techniques are reduced
due to the combinatorial explosion of interleaving, but Coqa code inherently
has many fewer interleavings to consider and so stronger analysis results will
de facto be obtained. We are also investigating language design approaches to
write deadlock-free programs. It is known that by organizing objects into run-
time hierarchies [BLRO2], deadlock can be effectively avoided; one system we are
considering adapting for this purpose is our Pedigree Types [Liu07].

Blocking vs. Rollback Rollback is a suitable solution in an open database system
where the inputs are arbitrary and unknown at the start, and thus a general
purpose lock-based deadlock avoidance technique is not possible. Software ap-
plications on the other hand are largely closed systems in the sense that the code
of an application is often entirely available at deployment time, and so all the
code in all the potentially contending threads is known. Therefore, analyzing ap-
plications for deadlocks is a more realistic approach in a programming language
than in a database system.

Atomicity is commonly addressed in STM systems via rollbacks; example
approaches include Harris and Fraser [HF03], Transactional Monitors [WJHO04]
for Java, and Atomos [CMC*06]. Compared with blocking systems like ours,
STM systems have the appeal of not introducing deadlocks. However, there is
a counterpart to deadlock in STM systems, livelock, where rollbacks resulting
from contention might result in further contentions and further rollbacks, etc.
How frequently livelocks occur is typically gauged by experimental methods. In
addition, rollback also may not be as easy as simply discarding the read/write set
and retrying (see AbortHandler, etc. in [CMCT06] and onAbort etc. methods
in [NMAT™*07]). In terms of performance there have been no detailed studies
that we know of comparing locking and rollback. A good overview of the pros
and cons of blocking and rollback appears in [WHJO06].

Another reason why Coqga does not take a rollback approach is a desire for
ubiquitous atomicity, even for I/O-intensive applications. Existing STM systems
provide atomicity guarantees only for code explicitly specified by programmers,
say, by declaring a block to be atomic; I/O cannot occur in these regions since
it cannot generally be undone. In order to make sure that the system can roll



back to the state before an abandoned transaction, a STM system needs to
perform bookkeeping on the initial state of every transaction. So programmers
have to be stingy in the number of atomic blocks declared, to avoid the over-
head of such bookkeeping growing unexpectedly large with increasing number
of threads and transaction sizes. As a result, in a large number of STM sys-
tems [HF03,WJHO04,Cra05], code by default runs in a mode with no atomicity
guarantees, and the interleaving of this code with atomicity-preserving code in
fact can break the atomicity of the latter, an unfortunate consequence known as
weak atomicity [CMCT06].

Atomicity in Actors and Other Languages Our work is most related to Actor lan-
guages. Actors [Agh90,AMST97] provide a simple concurrent model where each
actor is a concurrent unit. Inter-actor communication is only via asynchronous
messaging. Ubiquitous atomicity is preserved in the Actor model because ex-
ecuting each actor method does not depend on the state of other actors and
so each method execution is trivially serializable. However, the Actor model’s
per-method atomicity is only a local property in the sense that it neither in-
cludes more than one actor nor other methods invoked by the current method.
So, Coqa is a significant extension to the Actor notion of atomicity. Morevoer,
Actors are a model more suited to loosely-coupled distributed programming: for
tightly-coupled message sequences, programming them in the pure Actor model
means breaking off each method after each send and wrapping up the continu-
ation as a new actor method. Typically when Actor languages are implemented
[Arm96,Mil,HO06,YBS86], additional language constructs (such as futures, and
explicit continuation capture) are included to ease programmability, but there
is still a gap in that the most natural mode of programming, synchronous mes-
saging, is not fully supported, only limited forms thereof. We elect to support
full synchronous messaging so that Coqa coding style can be extremely close to
standard programming practice.

Argus [Lis88] pioneered the study of atomicity in object-oriented languages.
Like actors it is focused on loosely coupled computations in a distributed con-
text, so it is quite remote in purpose from Coqa but there is still overlap in some
dimensions. Argus allows nested transactions, called subactions. Unlike our sub-
tasking, when a subaction ends, all its objects are merged with the parent action,
instead of being released early to promote parallelism as a subtask does. Guava
[BSTO00] was designed with the same philosophy as Coqa: code is concurrency-
aware by default. The property Guava enforces is race freedom, which is a weaker
and more low-level property than the quantized atomicity of Coqa.

5 Conclusion and Future Work

Coqa is a foundational study of how concurrency can be built deeply into object
models; our particular target is tightly coupled computations running concur-
rently on multi-core CPUs. Coqa has a very simple and sound foundation — it
is defined via only three forms of messaging, which account for (normal) lo-
cal message send, thread spawning via asynchronous message send, and atomic



subtasking via synchronous nonlocal send. We formalized Coqa as the language
KernelCoqa, and proved that it observes a wide range of good concurrency prop-
erties, in particular quantized atomicity. We justify our approach by implement-
ing CoqaJava, a Java extension incorporating all of the Coqa features.
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