

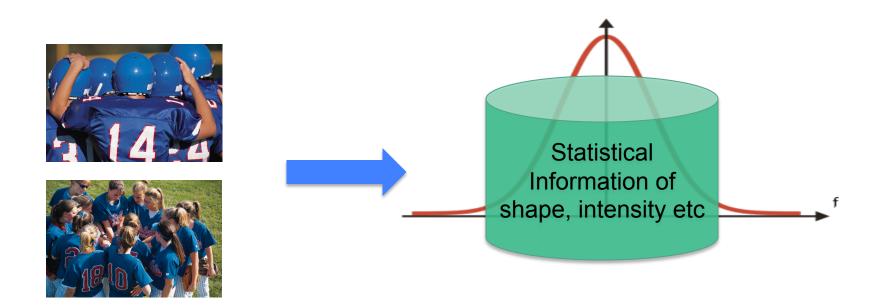
Statistical Atlases of Bone Anatomy and Applications

Gouthami Chintalapani
Johns Hopkins University

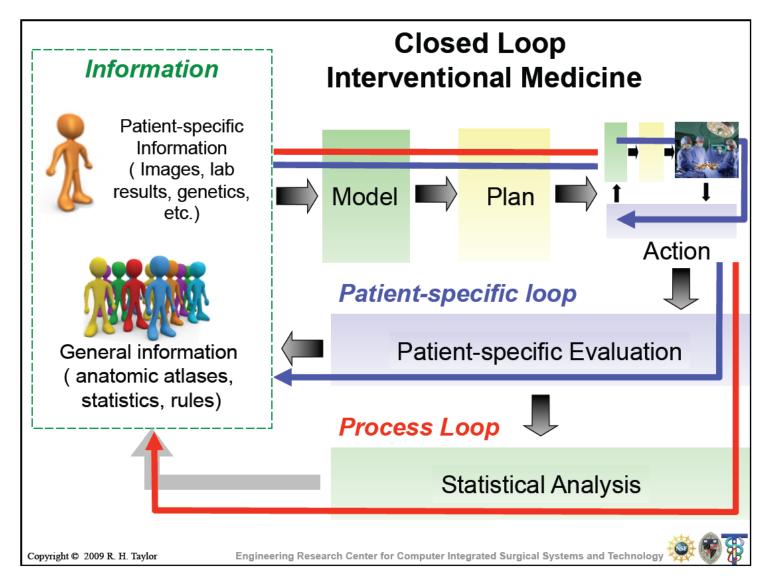
May 06, 2010

What is a "Statistical Atlas"?

 An atlas that incorporates <u>statistics of anatomical</u> <u>shape and intensity variations</u> of a given population



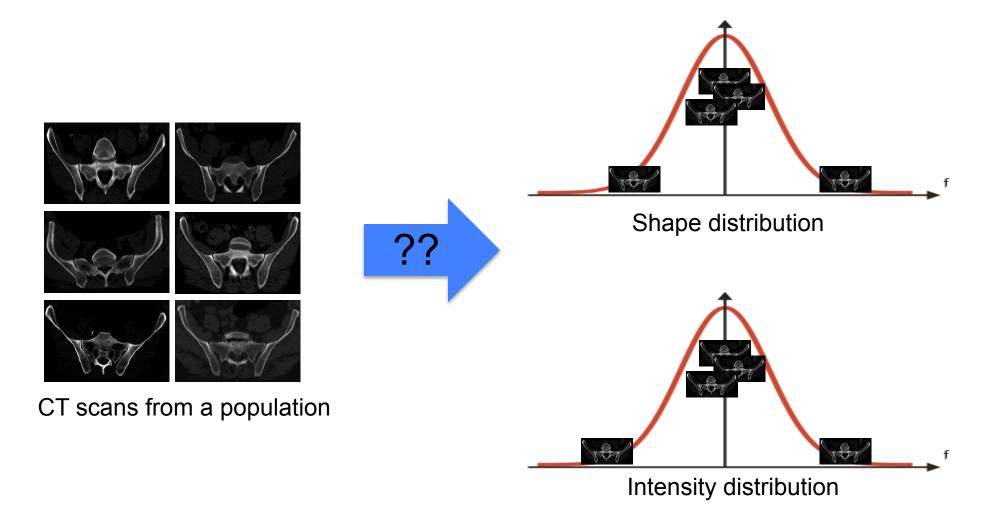
Atlases in Closed Loop Intervention



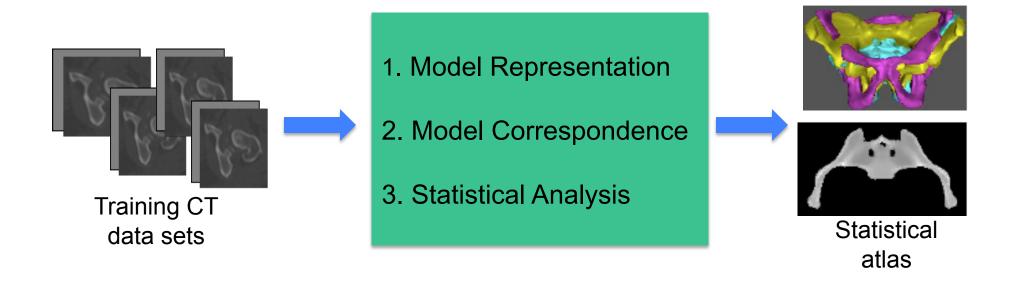
Outline

- Statistical Atlases
 - Construction
 - Iterative Improvement
 - Validation
- Applications of atlases
 - Segmentation
 - Registration
 - Hip Osteotomy
 - C-arm Distortion Correction
- Conclusion

Statistical Atlases



Atlas Construction



References: Cootes et al. CVIU '95; Yao et al. IJPRAI '03;

Model Representation

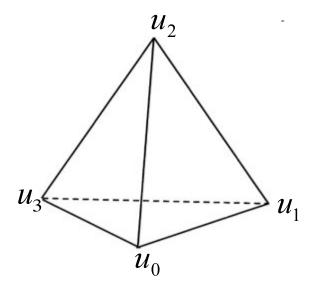
- Tetrahedral mesh represents shape
- Bernstein polynomials approximate CT density within each tetrahedron[1,2]

$$P^{d}(\mathbf{u}) = \sum_{|\mathbf{k}|=d} C_{\mathbf{k}} B_{\mathbf{k}}^{d}(\mathbf{u})$$

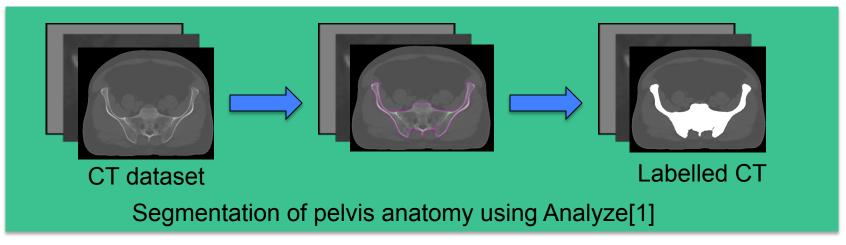
$$\mathbf{k} = (k_0, k_1, k_2, k_3) \quad \mathbf{u} = (u_0, u_1, u_2, u_3)$$

$$|\mathbf{k}| = k_0 + k_1 + k_2 + k_3 \quad |\mathbf{u}| = 1$$

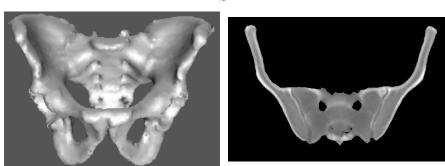
$$B_{\mathbf{k}}^d(\mathbf{u}) = \frac{d!}{k_0! k_1! k_2! k_3!} u_0^{k_0} u_1^{k_1} u_2^{k_2} u_3^{k_3}$$



Model Creation



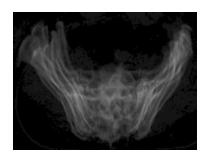
[1]Analyze, www.mayoclinic.org



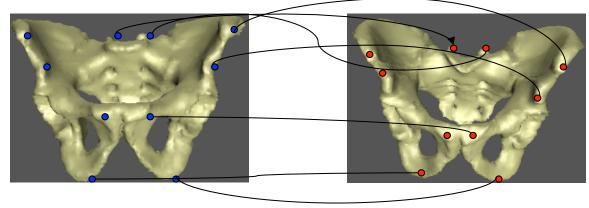
Surface rendering of pelvis tetrahedral model; Crosssection of tetrahedral model showing CT densities

Model Correspondence

Need to establish a common coordinate frame for the training database

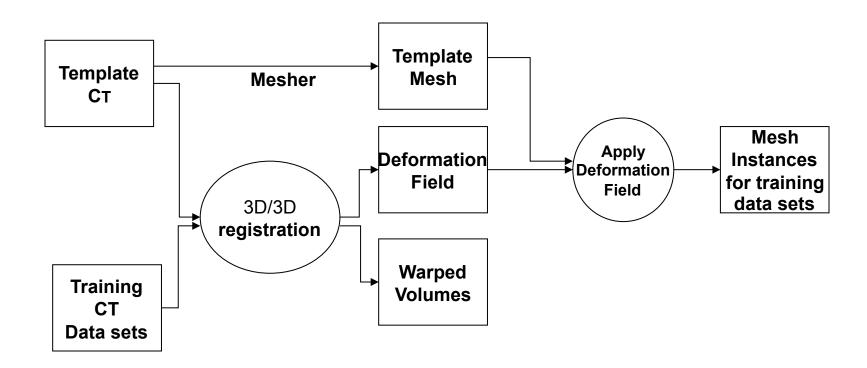


Need to establish point correspondence between the training datasets



Model Shape Correspondences

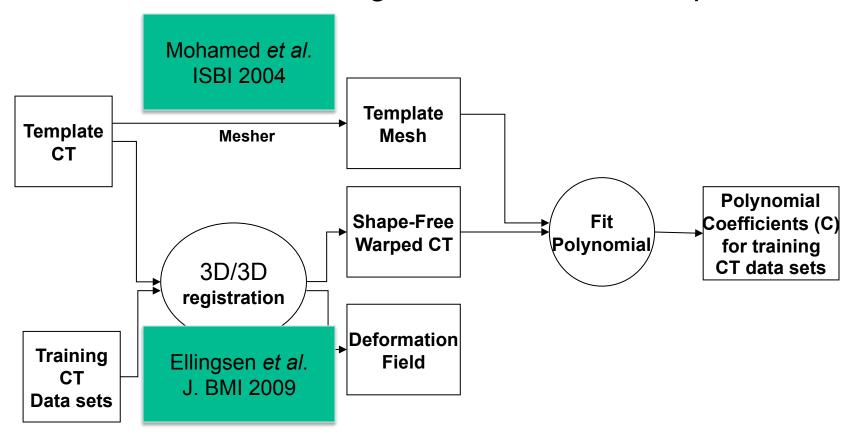
Automatic deformable registration based shape correspondences



Flowchart for establishing shape correspondences for the training sample

Model Intensity Correspondences

Automatic deformable registration based correspondences

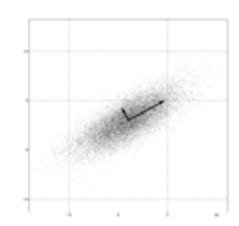


Flowchart for establishing intensity correspondences for the training sample

Principal Component Analysis

Given the mesh instances of training sample

$$S = \begin{bmatrix} \hat{s}_1 & \hat{s}_2 & . & . & \hat{s}_N \end{bmatrix}_{3nXN} = \begin{bmatrix} x_{11} & x_{12} & . & . & x_{1N} \\ y_{11} & y_{12} & . & . & y_{1N} \\ z_{11} & z_{12} & . & . & z_{1N} \\ . & . & . & . & . \\ y_{n1} & y_{n2} & . & . & z_{nN} \\ z_{n1} & z_{n2} & . & . & z_{nN} \end{bmatrix}$$



Compute mean and subtract the mean from the sample

$$S = S - \bar{s} = S - \frac{1}{N} \sum_{i=1}^{N} \hat{s}_{i}$$

$$SVD(S) = UDV^T$$

With principal components in U and eigen values $\lambda = \frac{1}{N-1}DD^T$

Principal Component Analysis

• Given the PCA model, any data instance can be expressed as a linear combination of the principal components N_{-1}

$$\overline{s} + \sum_{k=1}^{N-1} U_k \lambda_k$$

- Compact model → fewer components
- Select first 'd' components represented by the 'd' eigen values

Statistical Shape and Intensity Models

Shape statistical model: Mesh vertices become data matrix

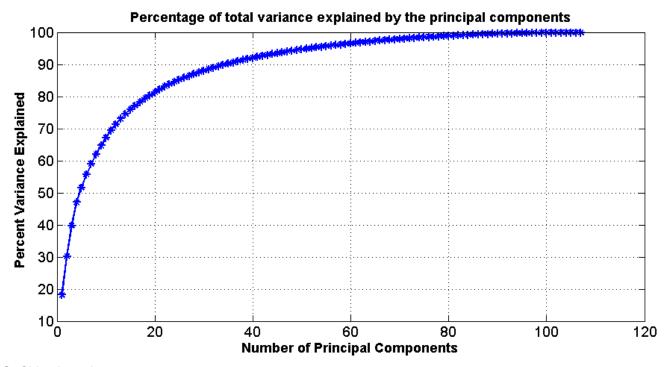
$$\overline{S} + \sum_{k=1}^{d} U_k \lambda_k = \overline{S} + U^T \lambda$$

 Intensity statistical model: Polynomial coefficients become data matrix

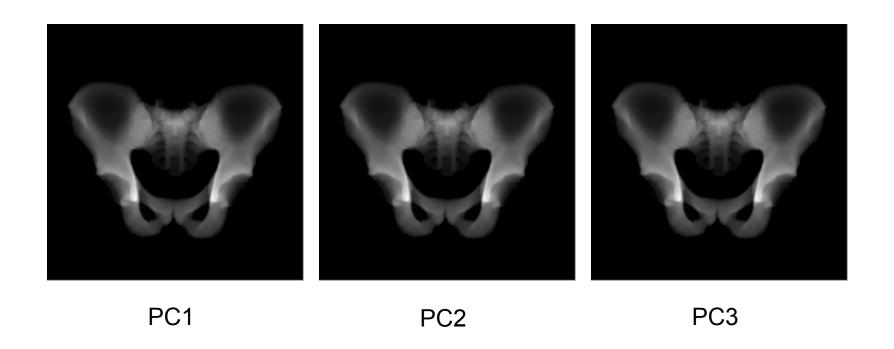
$$\overline{c} + \sum_{k=1}^{p} Y_k \mu_k = \overline{c} + \mathbf{Y}^T \mu$$

Statistical Atlas of Pelvis

- # of CT data sets in the training sample: 150
- # of data sets used for atlas building: 110
- # of shape modes retained: 18
- # of intensity modes retained: 12

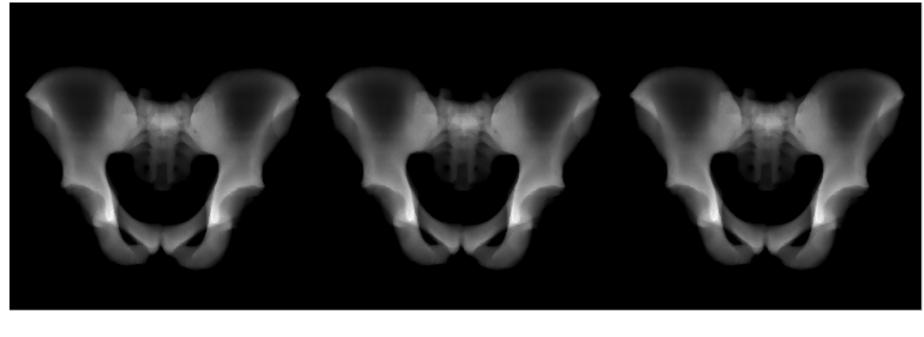


Pelvis Shape Modes



Shape variational modes from a male healthy pelvis atlas of 110 CT datasets

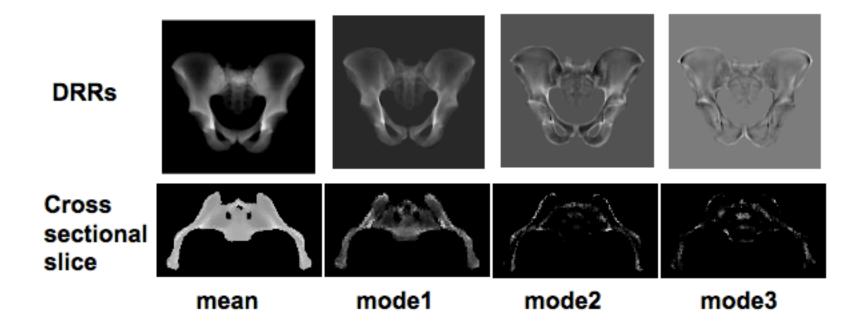
Pelvis Intensity Modes



PC1 PC2 PC3

Intensity variational modes from a male healthy pelvis atlas of 110 CT datasets

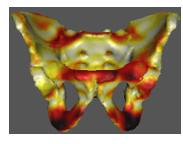
Pelvis Intensity Modes

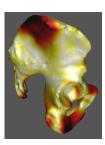


Statistical Atlas Construction

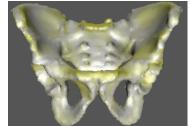
- Problem: Stability of the Atlas
 - Choice of deformable registration method
 - Choice of initial template
 - Size of training database
- My approach: Iterative Bootstrapping
 - Modified deformable registration
 - Validation to assess convergence
- Results
 - Significantly improved stability
 - Reduced residual error in deformable registration

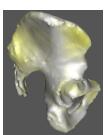
Chintalapani et al. MICCAI 2007



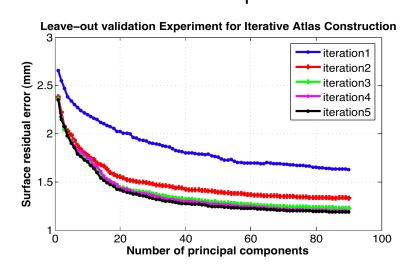


Before Iterative procedure





After Iterative procedure

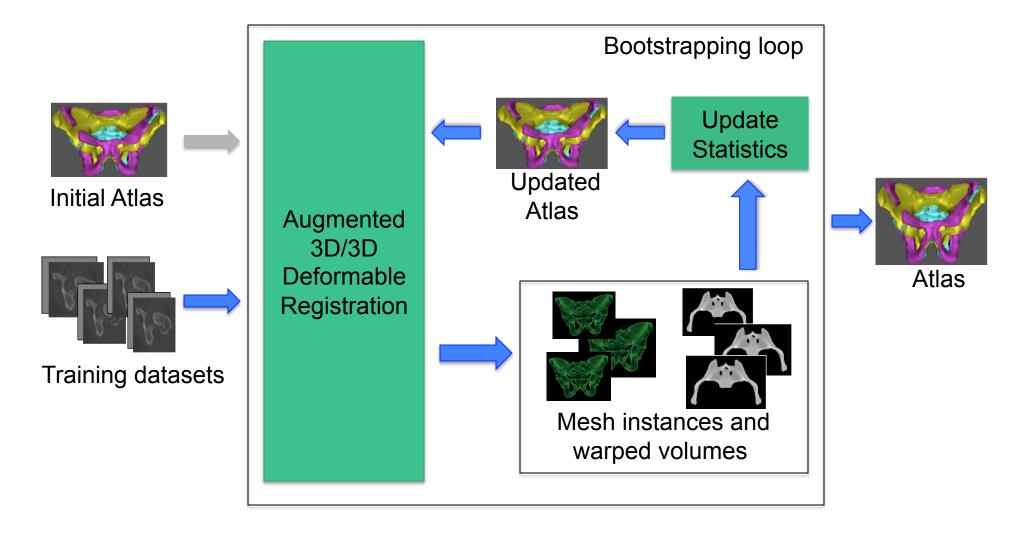


Iterative Technique - Motivation

Mean shape as a common reference frame?

Atlas modes that explain the training data base as well as possible

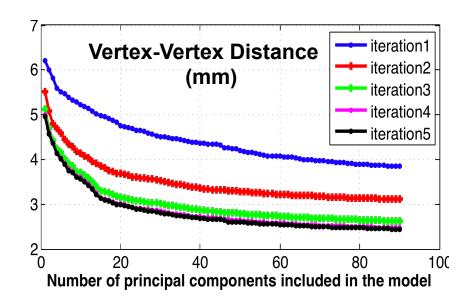
Iterative Technique

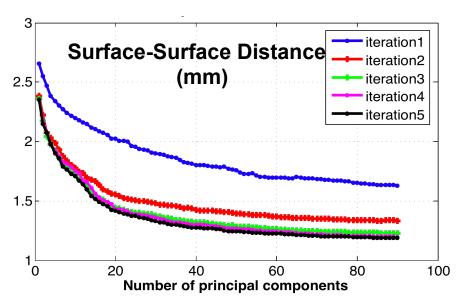


Leave-Out Validation Experiments

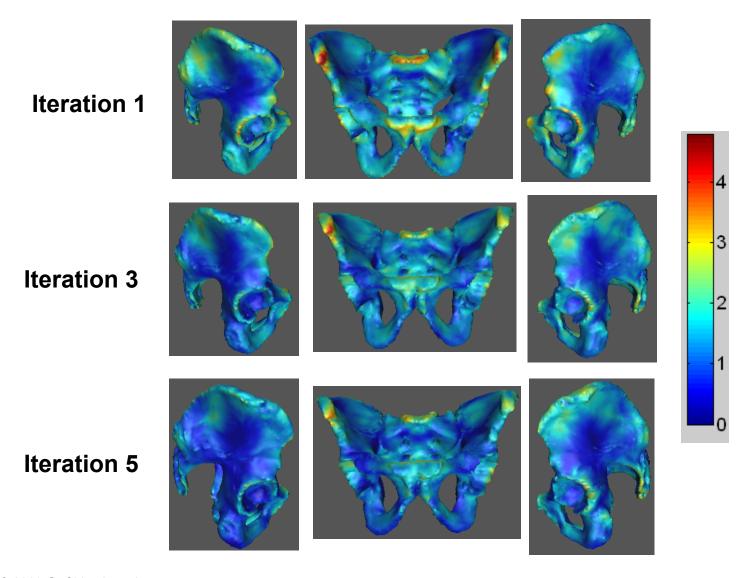
- # of iterations: 5
- # of data sets: 110
- # of data sets in atlas: 90
- # of data sets left out: 20
- Given a left-out dataset, s_j
 compute the estimated shape from atlas using

$$\lambda = U'^*(s_j - \overline{S})$$
$$s_j^{est} = \overline{S} + U\lambda$$





Distribution of Surface Registration Errors



Choice of Initial Template

Claim:

iterative method does not depend on the choice of template

Criteria:

- Mean shape converges
- Modes exhibit similar deformation patterns

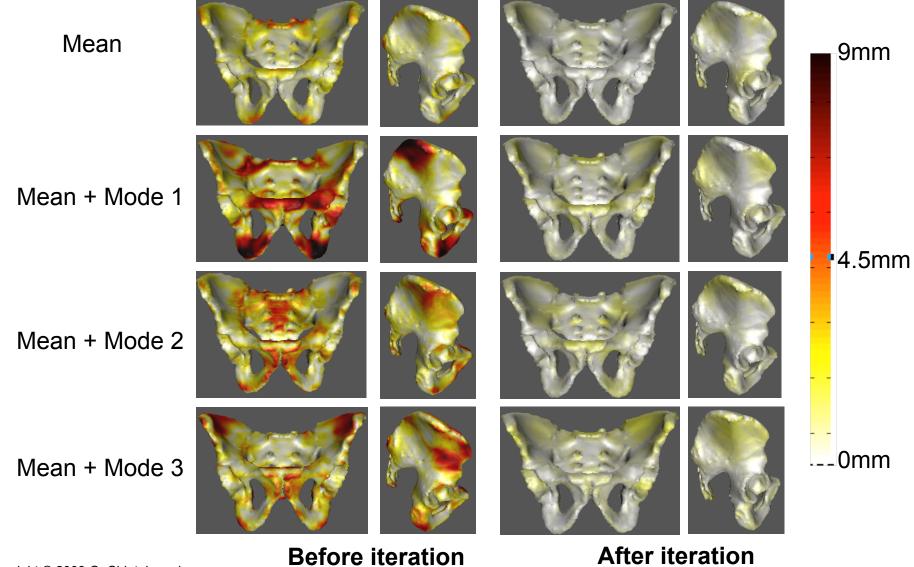
Experimental setup:

- Three random templates
- Atlases with and without bootstrapping compared

Result

 All three atlases exhibit similar deformation patterns after bootstrapping

Average Difference between Atlases 1,2 and 3



Training Sample Size

Goal:

 To determine the size of the training sample to build a stable statistical atlas

Criteria:

- Atlas is stable
- No significant improvement in residual error

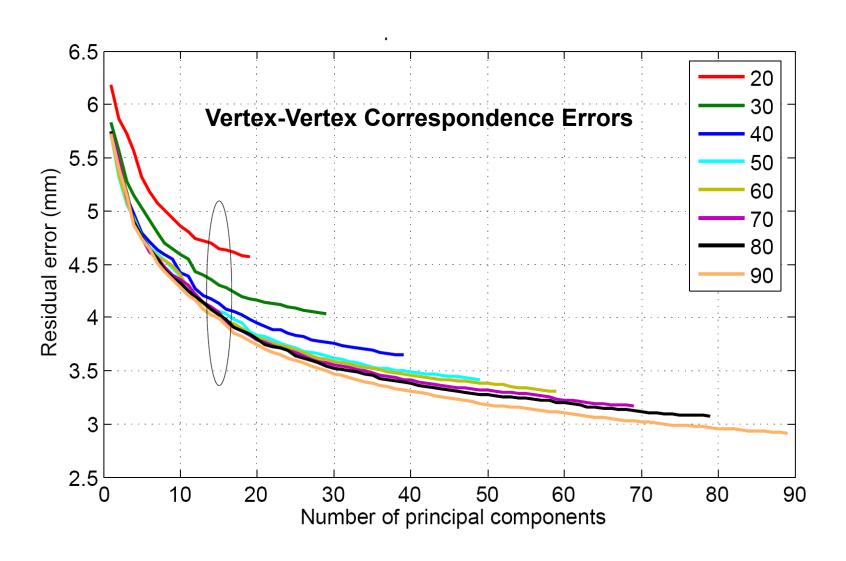
Experimental setup:

- Varying sample size 20, 40, 60, 80
- Leave-20-out validation test

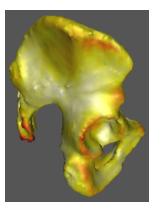
Result:

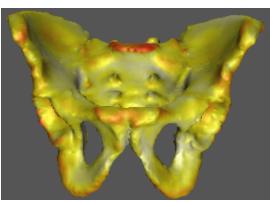
Minimum of 50 data sets are required for pelvis atlas

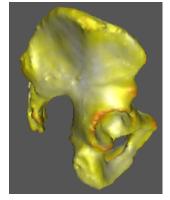
Training Sample Size

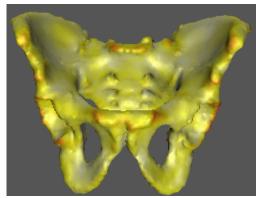


Surface residual error using 18 modes for different sample set sizes



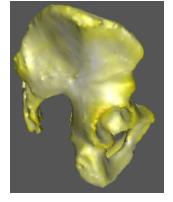


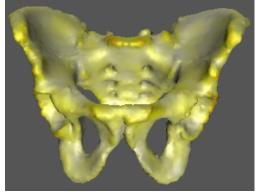


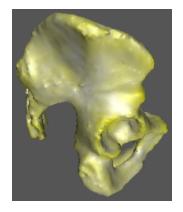


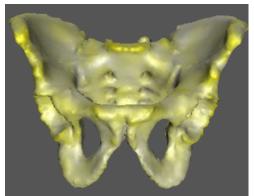
20 dataset atlas

40 dataset atlas









60 dataset atlas

80 dataset atlas

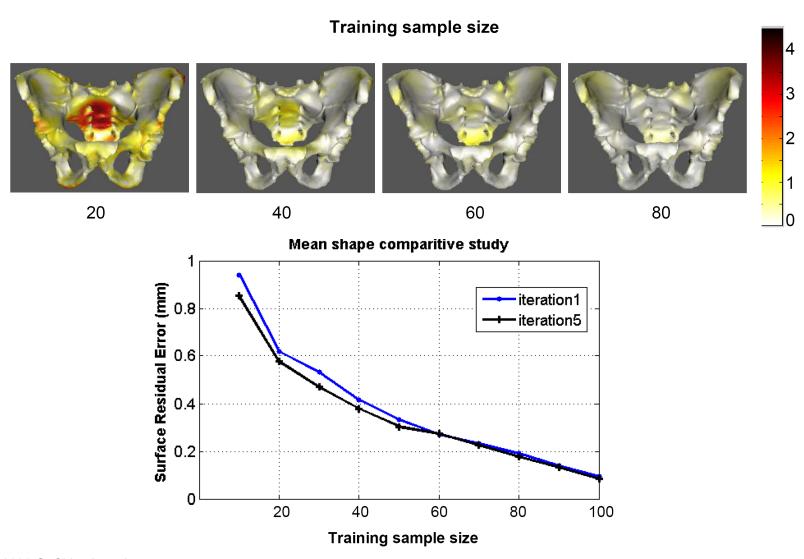
Copyright © 2009 G. Chintalapani

0mm

3_{mm}

6.5mm

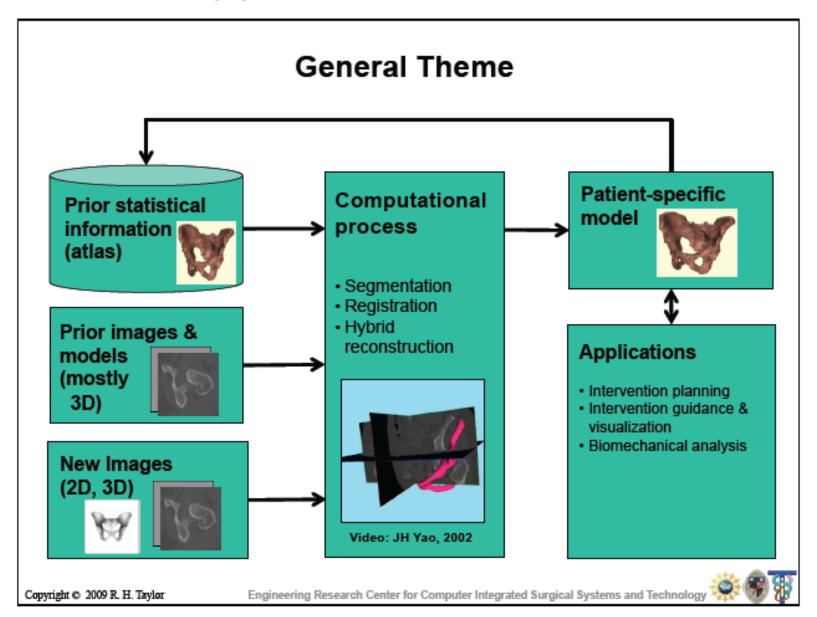
Stability Analysis – Mean Shape



Outline

- Statistical Atlases
 - Construction
 - Iterative Improvement
 - Validation
- Applications of atlases
 - Segmentation
 - Registration
 - Hip Osteotomy
 - C-arm Distortion Patterns
- Conclusions

Applications of Atlases



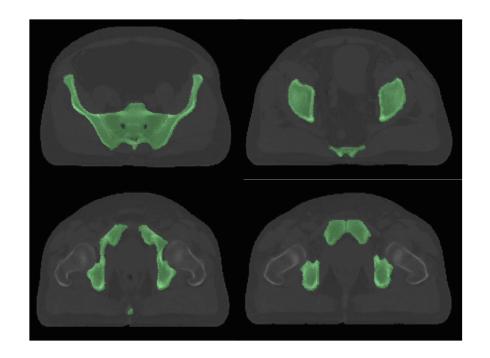
Outline

- Statistical Atlases
 - Construction
 - Iterative Improvement
 - Validation
- Applications of atlases
 - Segmentation
 - Registration
 - Hip Osteotomy
 - C-arm Distortion Patterns
- Conclusions

Image Segmentation

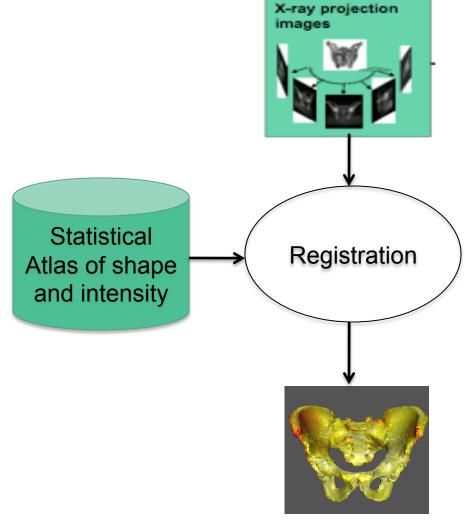
 Automatic segmentation through atlas deformations [1]

[1] Ellingsen L.M., <u>Chintalapani G.</u>, Taylor, R.H., Prince J.L., CMIG 2009



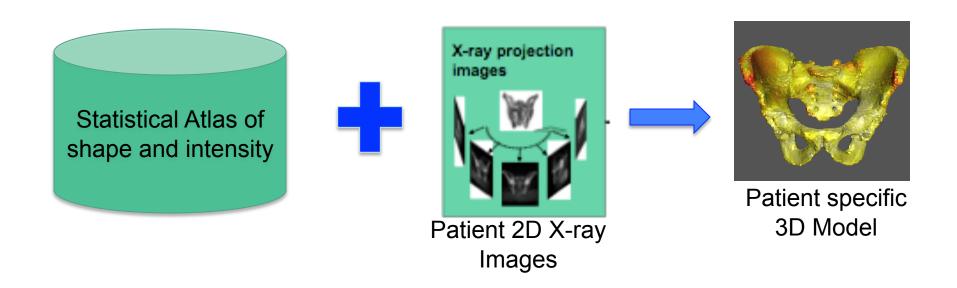
Outline

- Statistical Atlases
 - Construction
 - Iterative Improvement
 - Validation
- Applications of atlases
 - Segmentation
 - 2D/3D Registration
 - Hip Osteotomy
 - C-arm Distortion Patterns
- Conclusions

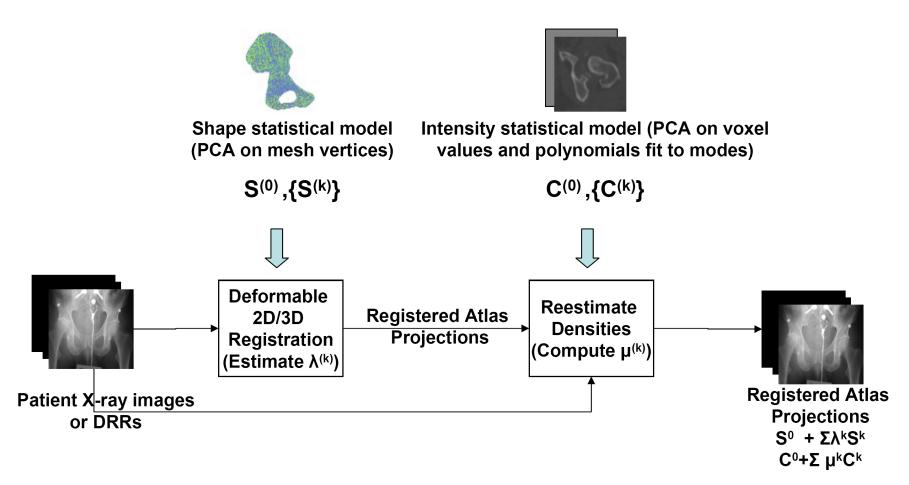


Patient specific 3D model

Applications – 2D/3D Registration



2D/3D Registration – Shape and Intensity Models



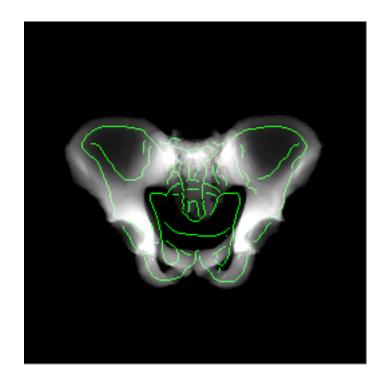
- [1] Sadowsky, O., Chintalapani, G., Taylor, R.H., MICCAI 2007;
- [2] Chintalapani et al. PMMIA/MICCAI 2009

2D/3D Registration – Shape and Intensity

(1)	(2)	(3)	(4)	(5)		
#	$egin{array}{c} \mathbf{S^{true}} - \ \mathbf{S^{est}} \end{array}$	$rac{ ext{RMS}}{ ext{V}^{ ext{true}}}$, $rac{ ext{V}^{ ext{est}}_{ ext{mean}})$	$rac{ ext{RMS}(}{ ext{V}^{ ext{true}}} , ext{V}^{ ext{est}}_{ ext{modes}})$	$ \left \frac{\Delta}{((3)\text{-}(4))/(3)} \right $		
''	(mm)	(HU)	(HU)	%		
1	1.94	109.92	58.88	46.43		
2	1.62	128.32	96.0	25.19		
3	1.90	98.4	77.12	21.63		
4	2.60	51.68	41.6	19.50		
5	2.48	109.44	84.8	22.51		
6	1.95	73.44	50.56	31.15		
7	2.30	72.96	47.52	34.84		
8	2.93	101.28	85.76	15.32		
avg	2.21	93.18	67.78	27.07		

Table 1: Residual errors from leave-out-validation tests of the augmented registration algorithm. Column 2 shows the surface distance after 2D/3D shape registration. Columns 3 shows residual errors when using mean density only and column 4 shows residual errors with mean density and density modes. The % reduction in RMS error between columns 3 and 4 is given in Column 5

Avg surface registration accuracy: 2.21mm Avg. reduction in RMS errors intensity: 27%

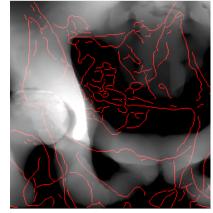


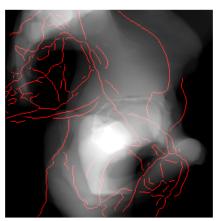
2D/3D Registration – Hip Model

- Problem: To create patient specific models using atlas
 - single organ atlases are insufficient
- My approach: Develop a multicomponent atlas
 - Use hip atlas instead of a pelvis or femuratlas
 - Extend atlas building framework to incorporate hip joint
 - Extend the registration framework to incorporate articulated hip joint

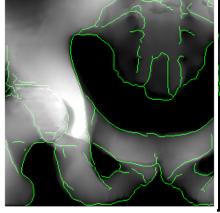
Results

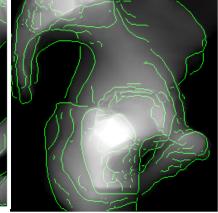
 Multi-component atlas registration is accurate compared to individual organ atlas





Pelvis atlas registered to hip projection images



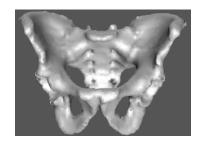


Hip atlas registered to hip projection images

Multi-Component Atlas

- 1. Two components pelvis and femur
- 2. Create mesh instances of pelvis and femur separately
- 3. Align pelvis and femur meshes together
- 4. Align pelvis meshes
- 5. Align femur meshes
- 6. Concatenate pelvis and femur meshes
- 7. PCA on the concatenated mesh

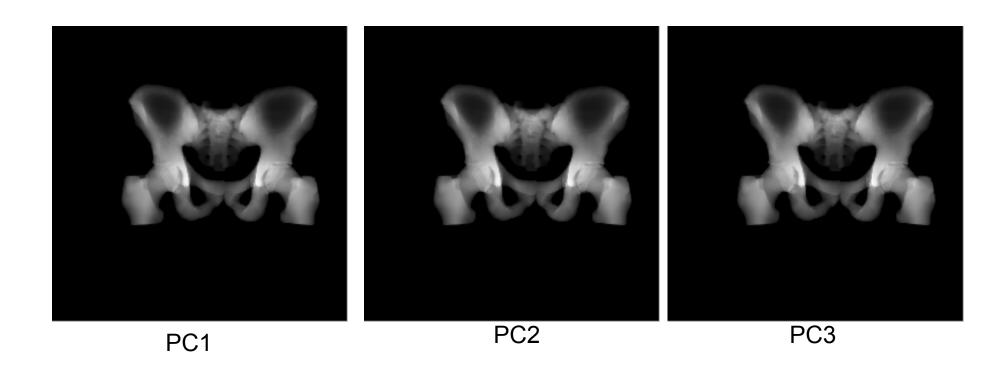
Combined Rigid+Scale



Separate Rigid

Combined Statistical Analysis

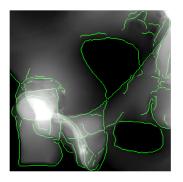
Multi-Component Hip Atlas

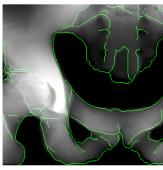


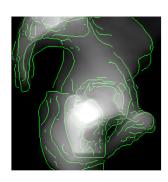
[1] Chintalapani et al. CAOS 2009

2D/3D Registration – Hip Model

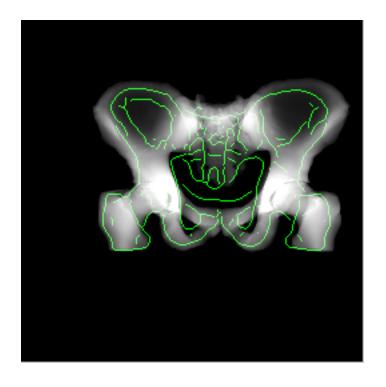
- Registration with truncated images
 - FOV: 160mm
 - Three views
- Avg surface registration accuracy: 2.15 mm







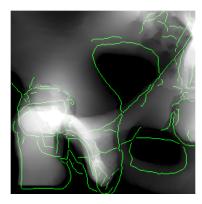
Atlas projections overlaid on DRR images after registration

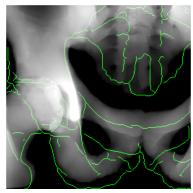


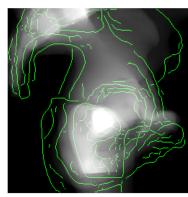
2D/3D deformable registration

2D/3D Registration – Hip Model

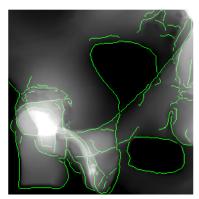
- Registration with truncated images
 - FOV: 160mm
 - Three views
- Avg surface registration accuracy: 2.15 mm

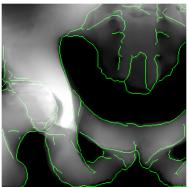


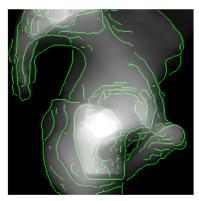




Atlas projections overlaid on DRR images before registration



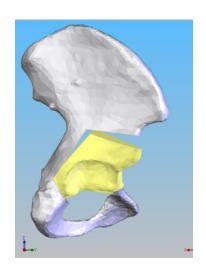


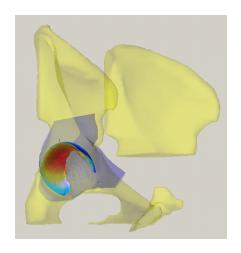


Atlas projections overlaid on DRR images after registration

Outline

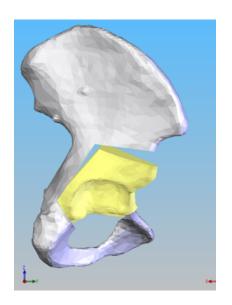
- Statistical Atlases
 - Construction
 - Iterative Improvement
 - Validation
- Applications of atlases
 - Segmentation
 - 2D/3D Registration
 - Hip Osteotomy
 - C-arm Distortion Patterns
- Conclusions

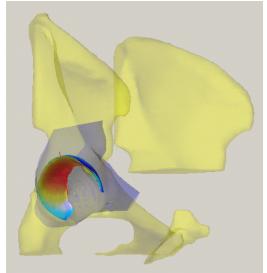




Chintalapani et al. SPIE 2010 – Honorable Mention Poster Award

Applications – Hip Osteotomy





Background

Hip dysplasia:

- Malformation of the hip (normally a ball and socket joint)
- Significant cause of osteoarthritis, especially in young adults

Surgery goals:

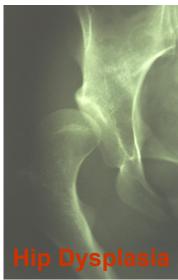
- Reduce pain symptoms
- Realign joint to contain the femoral head
- Diminish risk for degenerative joint changes
- Improve contact pressure distribution

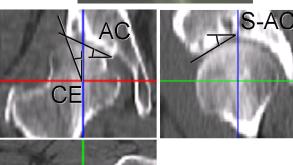
Periacetabular Osteotomy (PAO):

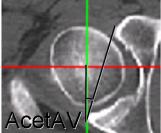
- Maintains pelvic structural stability
- Preserves viable vascular supply
- Technically challenging tool placement and realignment procedure

Limitations of current navigation systems:

- Lack the ability to track bone fragment alignment
- Do not provide anatomical measurements
- Omit biomechanical-based planning and guidance
- Ignore the risk of reducing joint range-of-motion







Anatomical measurements used to diagnose hip dysplasia

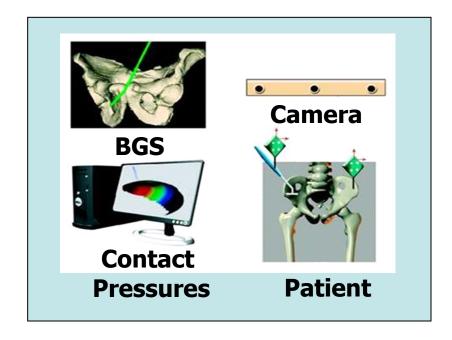
Biomechanical Guidance System (BGS)

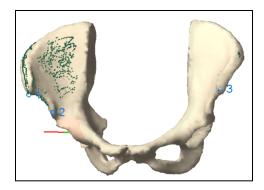
BGS Preoperatively:

- Plans surgical cuts
- Optimizes contact pressures and joint realignment
- Calculates anatomical-based angles that are meaningful to the surgical team

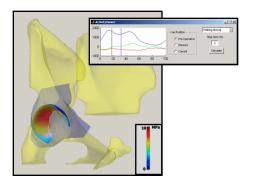
BGS Intraoperatively:

- Tracks surgical tools and bone fragment alignment
- Computes resulting contact pressures
- Calculates hip range-of-motion
- Visualizes the surgical cuts
- Displays radiation-free Digitally Reconstructed Radiographs (DRR)





Model to Patient Registration Slide src: Dr. Armand Mehran

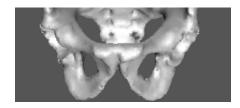


Joint contact-pressure after PAO

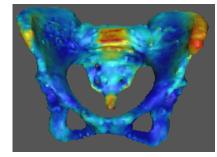
Hip-range-ofmotion

Atlas Based Extrapolation of CT

- Problem: Partial CT scans of patients
 - Dose minimization for young female patients
 - But the BGS needs full pelvis CT for planning
- My approach: Use atlas to predict the missing data
 - Robust probabilistic atlases
 - Improve prediction using pre-op and intraop x-ray images
- Preliminary Results
 - Comparable to the registration errors from full CT scans



Typical pre-operative CT scan of a dysplastic patient undergoing osteotomy



Distribution of surface registration errors of a patient pelvis model estimated from partial CT scan

Chintalapani et al. SPIE 2010

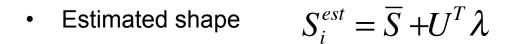
Revisiting PCA with Missing Data

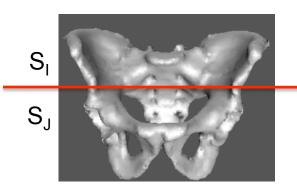
Let S_I be the available data and S_J be the missing data, such that

$$S = \begin{bmatrix} S_I \\ S_J \end{bmatrix} \qquad C = \begin{bmatrix} S_I S_I' & S_I S_J' \\ S_J S_I' & S_J S_J' \end{bmatrix}$$

- Rearrange U such that $U = \begin{bmatrix} U_I \\ U_J \end{bmatrix}$
- Solve $\dot{\lambda} = \underset{\lambda}{\operatorname{arg\,min}} ||\hat{S}_I U_I^T \lambda||^2$ s.t. $\lambda \min \leq \dot{\lambda} \leq \lambda \max$

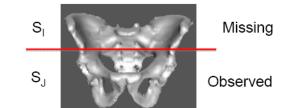
where λ_{\min} and λ_{\max} are derived from the training database





Atlas Adaptation to Partial Data

- Surface based registration of the observed data
 - $m{\succ}$ Rearrange $ar{S}$ and U such that $ar{S}=egin{bmatrix}ar{S}_I \ ar{S}_J\end{bmatrix}$ $U=egin{bmatrix}U_I \ U_J\end{bmatrix}$



Compute the rigid transformation (R, T) between the atlas and the patient data along with the mode weight parameters

> Infer the missing region

$$S^{est} = \left[egin{array}{c} S_I^{est} \ S_J^{est} \end{array}
ight] = \left[egin{array}{c} ar{S}_I \ ar{S}_J \end{array}
ight] + \lambda \left[egin{array}{c} U_I \ U_J \end{array}
ight]$$

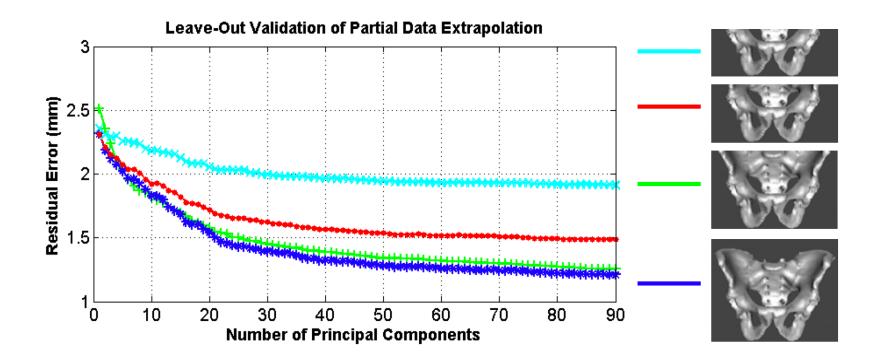
Atlas Adaptation to Partial Data with Xray Images

➤ 2D/3D registration[2] of inferred data with X-ray images

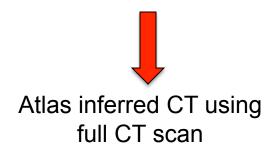
$$F, \Phi = \underset{(F,\Phi)}{\operatorname{argmax}} \sum_{i} MI \left(I_{i}, DRR \left(F. \left(\bar{S}_{I} + \Phi U_{I} \right) \right) \right)$$

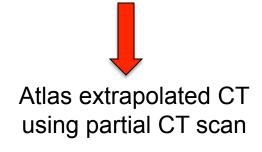
> Final atlas extrapolated model is given as

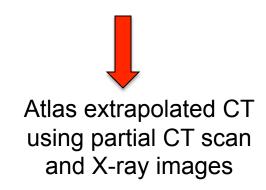
Results



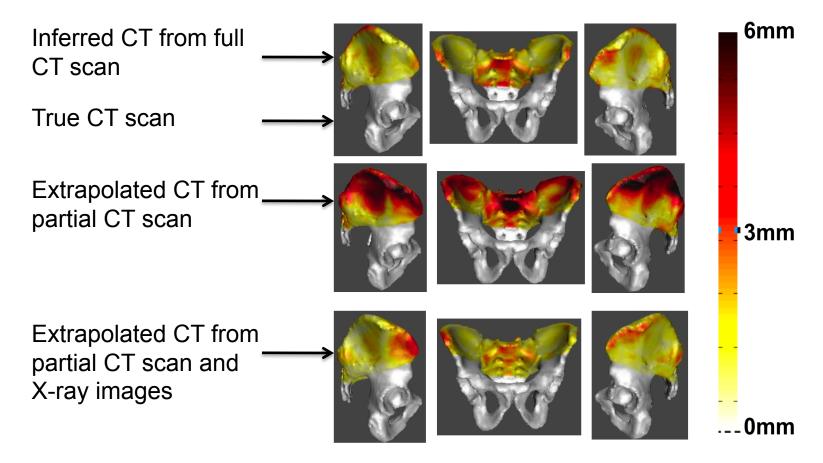
Results – Atlas Experiments







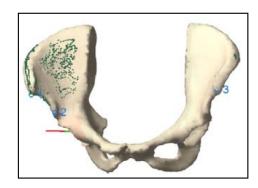
Results – Atlas Experiments



Distribution of surface errors between atlas extrapolated models and the true CT model

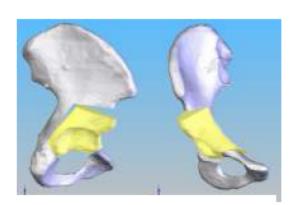
Osteotomy Simulations

- Atlas extrapolated model is used primarily for two reasons:
- Model to patient registration
 - simulation experiments
 - six leave out experiments
 - FRE error metric



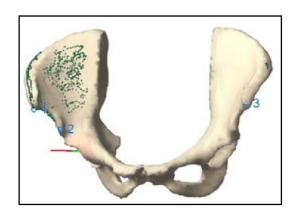
2. Fragment tracking

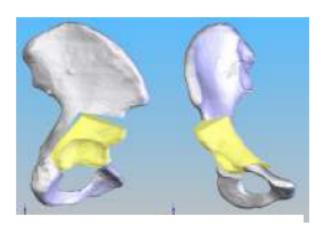
- Simulated osteotomy cuts
- Applied known transformation to the
- Fragment
- Computed the fragment transformation
- Compared it to the known transformation



Results – Osteotomy Simulations

- Atlas extrapolated model is used primarily for two reasons:
- 1. Model to patient registration
- 2. Fragment tracking





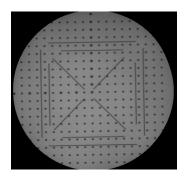
Results – Osteotomy Simulations

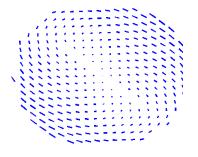
#	Full CT			Partial CT			Partial CT + X-ray					
#	rot	trans	mean	max	rot	trans	mean	max	rot	trans	mean	max
	(0)	(mm)	(mm)	(mm)	(0)	(mm)	(mm)	(mm)	(0)	(mm)	(mm)	(mm)
1	2.63	1.03	1.68	5.86	4.23	2.17	2.05	7.55	2.56	2.73	1.65	5.86
2	1.29	0.97	1.42	5.56	2.62	3.39	1.77	7.15	2.18	3.90	1.85	8.26
3	1.66	3.58	1.46	5.94	8.37	6.27	1.87	6.41	3.06	3.92	1.50	5.87
4	0.87	0.91	1.21	4.16	2.00	2.32	1.64	5.96	1.42	2.64	1.46	6.35
5	1.27	1.09	0.95	3.68	4.96	5.87	1.61	5.47	2.20	1.87	1.22	4.53
6	1.64	1.97	1.58	6.93	4.32	4.12	1.84	8.75	1.46	2.74	1.44	6.17
avg	1.56	1.59	1.38	5.35	4.41	4.02	1.79	6.88	2.14	2.96	1.52	6.16

Results from ICP registration experiments

Outline

- Statistical Atlases
 - Construction
 - Iterative Improvement
 - Validation
- Applications of atlases
 - Segmentation
 - Registration
 - Hip Osteotomy
 - C-arm Distortion Patterns
- Conclusions





Thanks to GE for donating us an OEC 9600 C-arm

C-arm Distortion

➤ What is distortion?

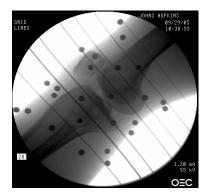
–Avg distortion: 2.14 mm/pixel

-max distortion: **4.60** mm/pixel

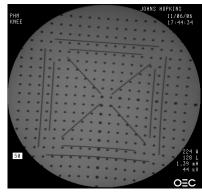
➤ How to rectify images?

- >Phantom based correction
- ➤ Polynomial functions to model distortion

$$(u_d, v_d) = \sum_{i=0}^{n} \sum_{j=0}^{n} C_{ij} B_{ij}(u_0, v_0)$$



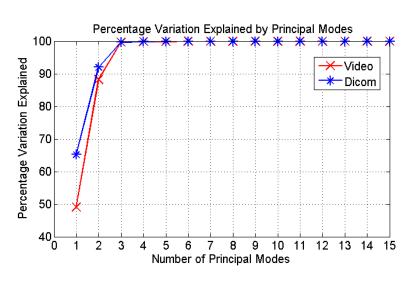
Example C-arm images showing distortion, straight metal wires appear curved due to distortion

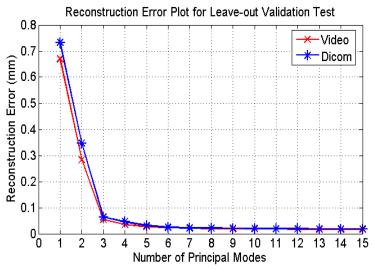


Typical bi-planar phantom used for Carm calibration

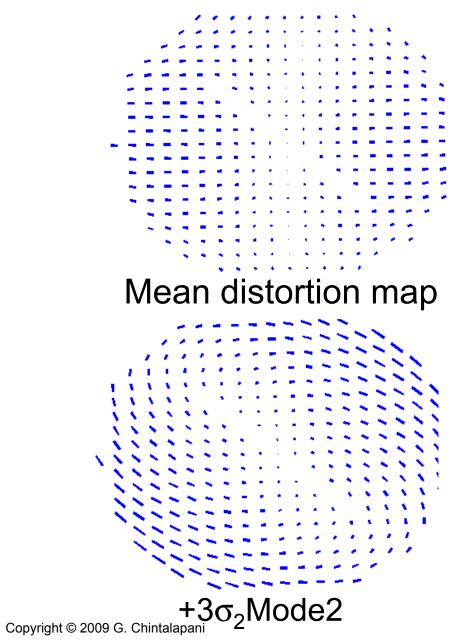
Statistical Characterization of C-Arm Distortion correction using PCA

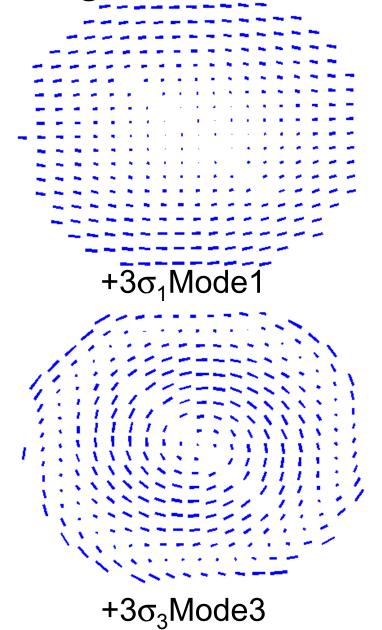
- Principal componet analysis on distortion maps
 - ➤ 120 images, one every 3 degrees approx., along propeller axis (similar to the full sweep data used for 3D reconstruction)
 - > 200 images to span the sphere defined by the "C" of the c-arm



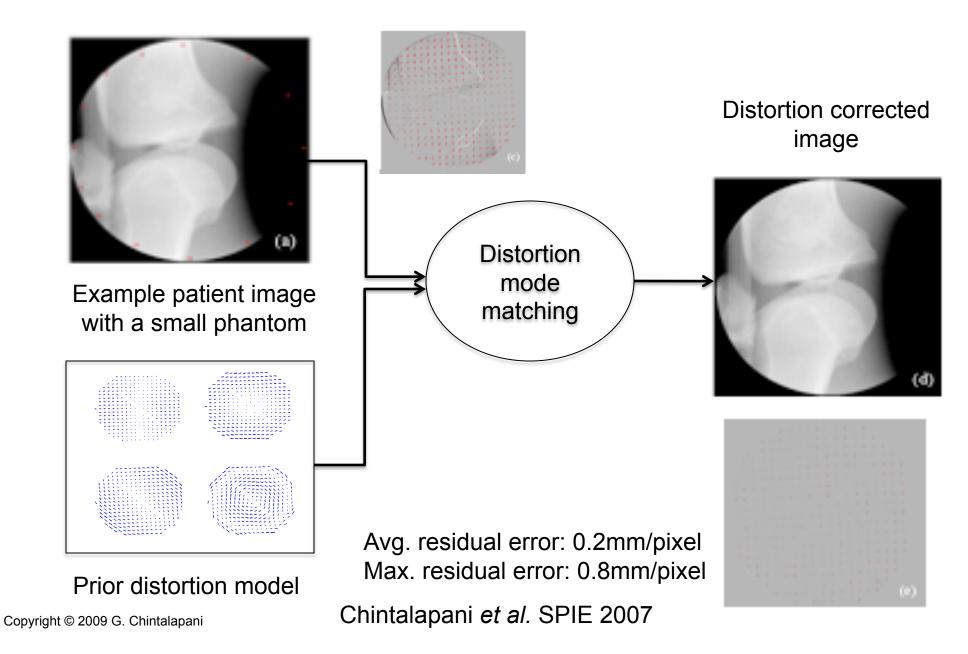


Distortion Pattern from Eigen Modes

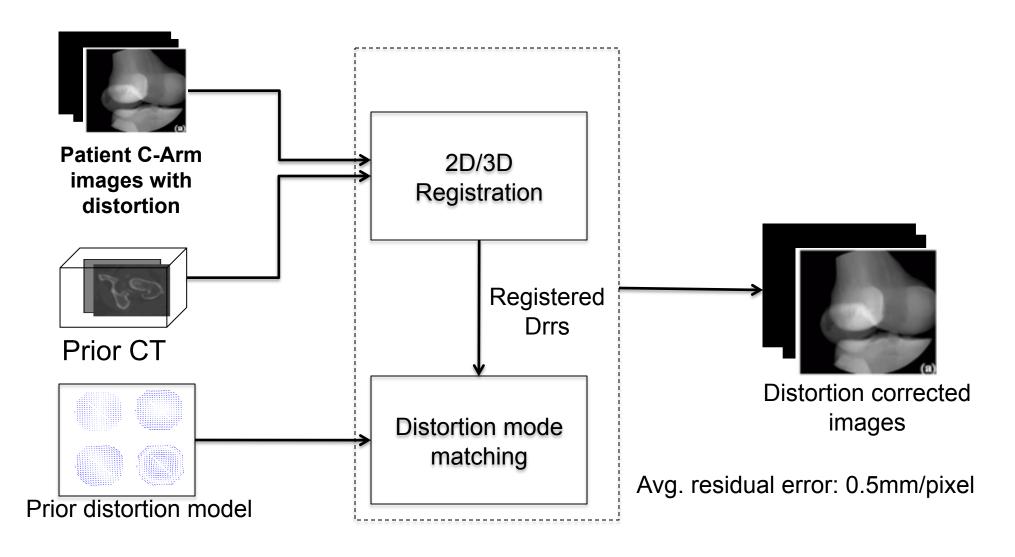




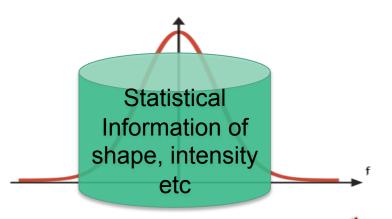
Small Phantom based Distortion Correction



Using Patient CT as Fiducial



Conclusions



Construction Validation

Population

Applications:

Hip Osteotomy
Hybrid Reconstruction
Bio-mechanical Analysis

.....

Patient-specific models

Registration Segmentation

Devices

Acknowledgments

- X-ray group, JHU
 - Russell H. Taylor, Jerry L. Prince, Ofri Sadowsky, Lotta Ellingsen, Pauline Pelletier, Junghoon Lee
- Prostate brachytherapy, JHU
 - Gabor Fichtinger, Jerry L. Prince, Ameet Jain, Anton Deguet, Iulian lordachita
- Hip Osteotomy, JHU APL and Osaka University
 - Armand Mehran, Russell H. Taylor, Robert Armiger, Ryan Murphy,
 Noushin Niknafs, Yoshito Otake, Nobuhiko Sugano
- Funding:
 - NIH grants 1-R01-EB006839-01A1, 1-R21- EB003616-01, NSF ERC cooperative agreement EEC9731478, Johns Hopkins University Internal Funds, Carl E. Heath Fellowship
- Clinicians:
 - Dr. Ted Deweese (JHMI), Dr. Lee Myers (JHMI), Dr. Nobuhiko Sugano (Osaka University, Japan)

Thank You!