Essential Math for CIS Part 2: Transformations and Frames of Reference

Gabor Fichtinger, PhD

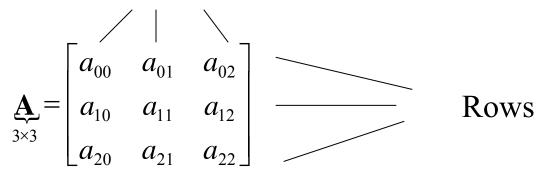
Associate Research Professor of Computer Science, Mechanical Engineering and Radiology

NSF-Funded Engineering Research Center for Computer-Integrated Surgical Systems and Technology, Johns Hopkins University

Matrices

An ordered table of numbers (or sub-tables)

columns



Product : $C = BA \neq AB$,

$$C = \begin{bmatrix} \overrightarrow{a_{00}} & \overrightarrow{a_{01}} \\ a_{10} & a_{11} \end{bmatrix} \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix} \quad b_{01} \\ b_{11} \end{bmatrix} = \begin{bmatrix} a_{00} * b_{00} + a_{01} * b_{10} & a_{00} * b_{01} + a_{01} * b_{11} \\ a_{10} * b_{00} + a_{11} * b_{10} & a_{10} * b_{01} + a_{11} * b_{11} \end{bmatrix}$$

Identity :
$$\mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix Addition (+)

Definition:

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} + \begin{bmatrix} x & u \\ y & v \end{bmatrix} = \begin{bmatrix} a+x & c+u \\ b+y & d+v \end{bmatrix}$$

Example:

$$\begin{bmatrix} 1 & 5 \\ 2 & 6 \end{bmatrix} + \begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$$

Properties:

1. Closed result is always a matrix

2. Commutative A+B=B+A

3. Associative (A+B)+C = A+(B+C)

4. Identity A+0 = A (null matrix)

5. Inverse A+A⁻=0 (negated matrix)

Matrix Multiplication (*)

Definition:

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} * \begin{bmatrix} x & u \\ y & v \end{bmatrix} = \begin{bmatrix} ax + cy & au + cv \\ bx + dy & bu + dv \end{bmatrix}$$

Example:

$$\begin{bmatrix} 1 & 5 \\ 2 & 6 \end{bmatrix} + \begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix} = \begin{bmatrix} 5 & -37 \\ 6 & -46 \end{bmatrix}$$

Properties:

- Closed 1.
- NOT Commutative A*B != B*A
- 4. Identity
- 5. Inverse

result is always a matrix

$$A*B != B*A$$

Associative
$$(A*B)*C = A*(B*C)$$

$$A*I = A$$
 (identity matrix)

$$A^*A^-=I$$
 (difficult to obtain!)

Distributive from either side

$$(A+B)C = AC + BC$$

$$C(A+B) = CA + CB$$

Vector is a special matrix

Examples:

v=[x,y,z] row vector, 1x3 matrix

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 column vector, 2x1 matrix

Vector addition: just like adding matrices

Column vector

$$\begin{bmatrix} a & b \\ b & d \end{bmatrix} + \begin{bmatrix} x & y \\ y & y \end{bmatrix} = \begin{bmatrix} a+x & c+v \\ b+y & d+v \end{bmatrix}$$

Row vector

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} + \begin{bmatrix} x & u \\ b + y & d + v \end{bmatrix} = \begin{bmatrix} a+x & c+u \\ b+y & d + v \end{bmatrix}$$

Vector* Matrix Multiplication:

just like multiplying matrices

$$\mathbf{v_1} = [\mathbf{x_1}, \mathbf{y_1}]$$
 Row vector on the left $\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\mathbf{v_2} = \mathbf{v_1} \mathbf{M}$

$$\mathbf{v_2} = \overrightarrow{[\mathbf{x_1, y_1}]} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 & cx_1 + dy_1 \end{bmatrix}$$

Result is a new row vector

Matrix*Vector Multiplication:

just like multiplying matrices

$$\mathbf{v}_{1} = \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix}$$
 Column vector on the right
$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{v}_{2} = \mathbf{M}\mathbf{v}_{1}$$

$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} = \begin{bmatrix} ax_{1} + by_{1} \\ cx_{1} + dy_{1} \end{bmatrix}$$

Result is a new column vector

Matrix*Vector Multiplication(example)

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$$

$$\mathbf{v}_{2} = \mathbf{M}\mathbf{v}_{1}$$

$$= \begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5*1+1*2 \\ 2*1+3*2 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \end{bmatrix}$$

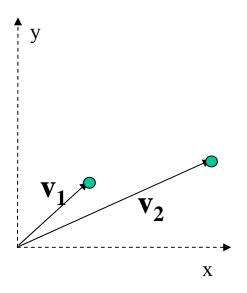
Matrices as transformations

Matrix-vector multiplication creates a new vector. New vector means new location in space. If all points of an object is multiplied by a matrix, then the whole object assumes a new position (and may be new shape and size, too). This is called transformation.

$$\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{v}_2 = \mathbf{M}\mathbf{v}_1$$



Matrices as transformations (examples)

Transform 4 points [0,0], [1,0], [1,1], [0,1] using the matrix M.

$$\mathbf{M} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{v}_2 = \mathbf{M}\mathbf{v}_1$$

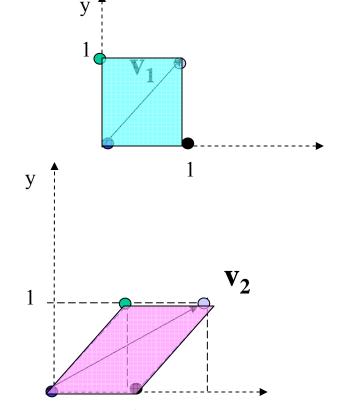
$$\mathbf{v}_2 = \mathbf{M}\mathbf{v}_1$$

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$



X

Scaling

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mathbf{v}_{2} = \mathbf{S}\mathbf{v}_{1}$$

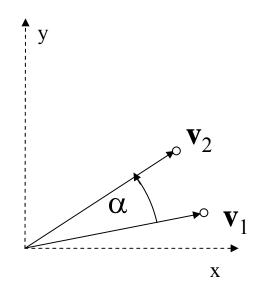
$$= \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5*1+0*2 \\ 0*1+3*2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & \mathbf{s}_{y} \end{bmatrix} \qquad \mathbf{S}^{-1} = \begin{bmatrix} 1/\mathbf{s}_{x} & 0 \\ 0 & 1/\mathbf{s}_{y} \end{bmatrix} \qquad \mathbf{S} * \mathbf{S}^{-1} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & 0 & \mathbf{s}_{y} \end{bmatrix} \qquad \mathbf{S} * \mathbf{S}^{-1} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & 0 & \mathbf{s}_{y} \end{bmatrix} \qquad \mathbf{S}^{-1} = \mathbf{S$$

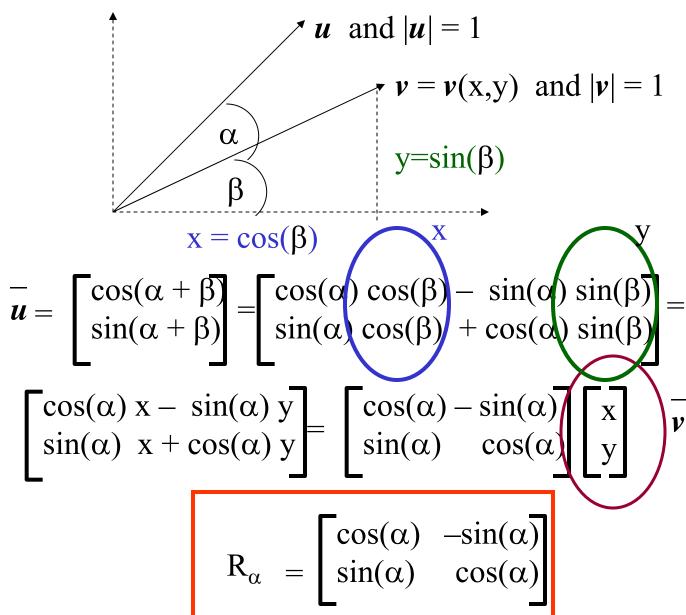
Rotation

$$\mathbf{v}_2 = \mathbf{R}_{\alpha} \mathbf{v}_1$$

$$\mathbf{v}_1 = \mathbf{R}_{-\alpha} \mathbf{v}_2$$



Rotation Matrix



Inverse of Rotation Matrix

$$R_{\alpha} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \longrightarrow R_{-\alpha} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} =$$

$$R_{-\alpha} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

$$R_{\alpha}^{-1} = R_{-\alpha}$$
 The proof: $R_{\alpha} * R_{-\alpha} = I$

Series of Rotations

$$R_{(\alpha+\beta+\gamma)} = R_{\alpha} R_{\beta} R_{\chi}$$

3D Rotation Matrices

Rotation by α around z axis

$$R_{\alpha} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad v_{2} = R_{\alpha} v_{1}$$

$$\mathbf{v}_2 = \mathbf{R}_{\alpha} \mathbf{v}_1$$

When applied on vector v_1 , it does not change z coordinate. Try it!

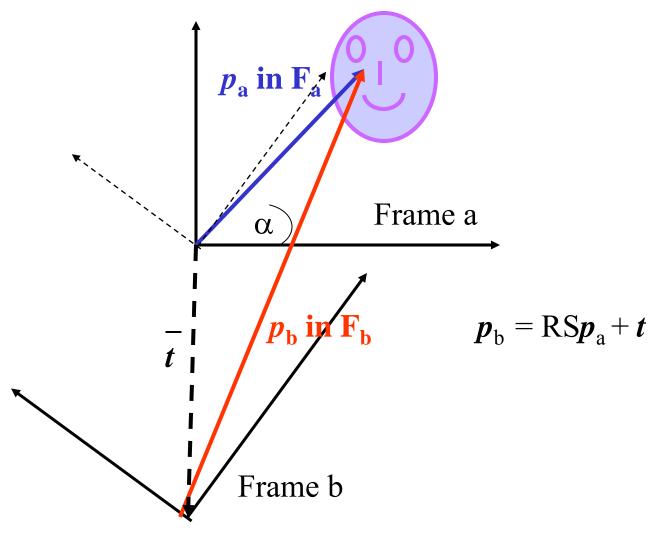
Rotation around all axes

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \qquad R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \qquad R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation Matrix: example

$$\mathbf{R}_{60} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$

Passage from reference system to another



(1) scale, (2) rotate, and (3) translate to go from F_a to F_b

Change of reference systems backwards (inverse transform)

$$p_b = RSp_a + t$$
 //subtract t

$$p_b - t = Rsp_a$$
 //left multiply by R-1
$$R^{-1}(p_b - t) = Sp_a$$
 //left multiply by S-1
$$S^{-1}R^{-1}(p_b - t) = p_a$$

Slight problem: mixes translation vector with matrices... **Solution**: make *t* translation vector appear as matrix T in multiplications. Then the equations will read as:

$$\boldsymbol{p}_{b} = (T(R(S\boldsymbol{p}_{a})))$$

Introduce 4x4 Translation Matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
Padding with 1 (If I padded with 0 then inverse would not exist!)

$$Tv = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x+d_x \\ y+d_y \\ z+d_z \\ 1 \end{bmatrix}$$

Problem: rotation and scaling matrices must also be padded, so that we can multiply all 4x4 matrices.

Homogeneous Matrices and Translation Vector

Rotation matrix by α around z axis

$$R_{\alpha} \ = \begin{bmatrix} \cos(a) & -\sin(a) & 0 & 0 \\ \sin(a) & \cos(a) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling matrix

$$S = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{Padding all vectors with 1}$$

$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\boldsymbol{p}_{\mathrm{b}} = (\mathrm{T}(\mathrm{R}(\mathrm{S}\boldsymbol{p}_{\mathrm{a}})))$$

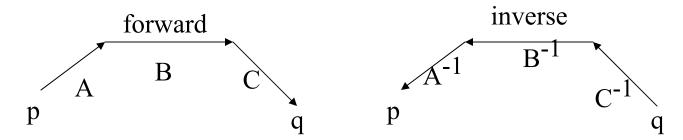
Series of transformations

Inverse transformation:

$$\begin{array}{ll} Ap=q & //apply\ A\ on\ p \\ A^{-1}Ap=A^{-1}q & //mult\ both\ sides\ from\ left\ by\ A^{-1} \\ p=A^{-1}q & //because\ A^{-1}A=I \end{array}$$

Series of transformations

Inverse of series of transformations



Inverse of coordinate transformations

$$p_{\rm b} = \text{TRS}p_{\rm a}$$

Multiply from the left by T⁻¹

$$T^{-1} \boldsymbol{p}_{b} = RS\boldsymbol{p}_{a}$$

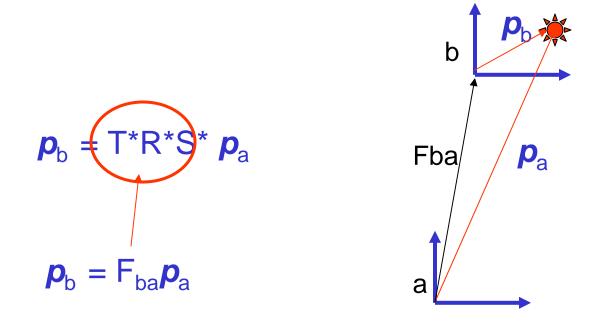
Multiply from the left by R⁻¹

$$R^{-1}T^{-1}\,\boldsymbol{p}_{\mathrm{b}}=\mathrm{S}\boldsymbol{p}_{\mathrm{a}}$$

Multiply from the left by S⁻¹

$$S^{-1}R^{-1}T^{-1}p_b = p_a$$

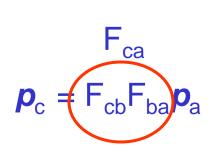
Reference frame transformations

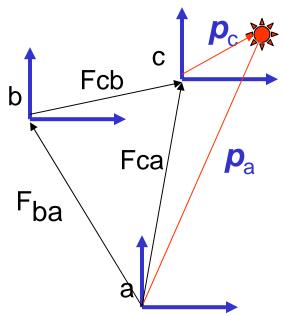


F_{ba} is often called frame transformation or shortly frame

Series of reference frame transformation

Most real systems involve complicated series of frames, where we traverse from frame to frame...

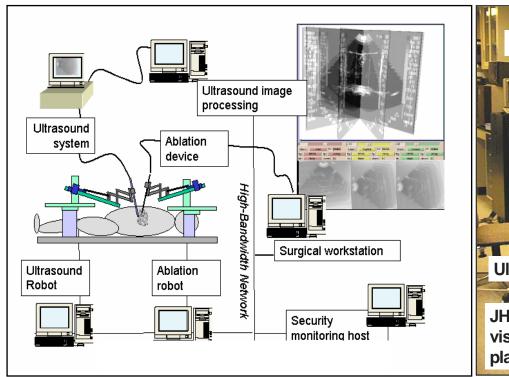


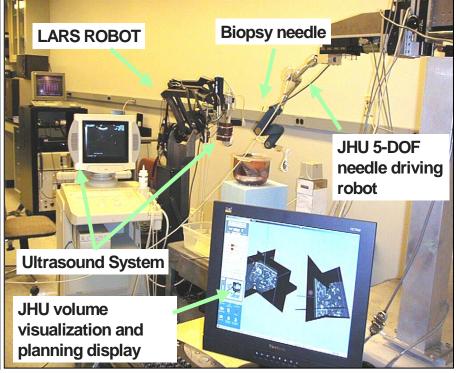


All frames must be known: some of them are measured/calculated during the procedure, some of them are pre-operatively known through "calibration".

Example: Robot-Assisted Ultrasound-Guided Liver Surgery

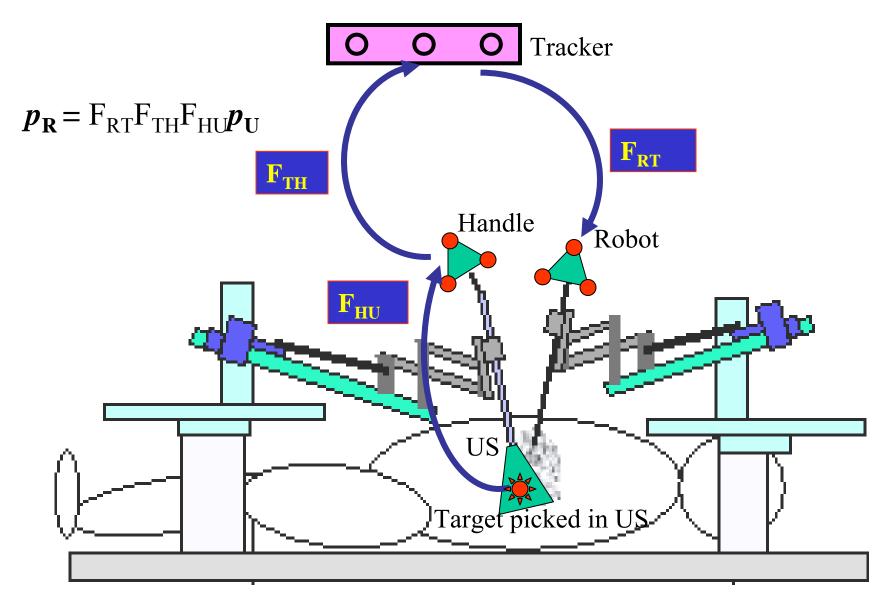
R. Taylor, G. Fichtinger, C. Burdette, M. Choti





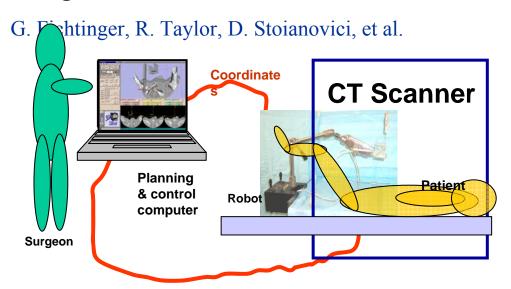
Credit: Emad Boctor, doctoral student,

Example cont'd: Some frames in the tracked dual-arm robot system

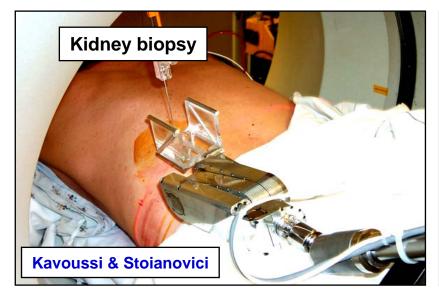


Example: CT-guided Needle Placement with Robot

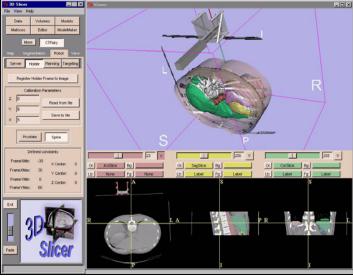
Digital



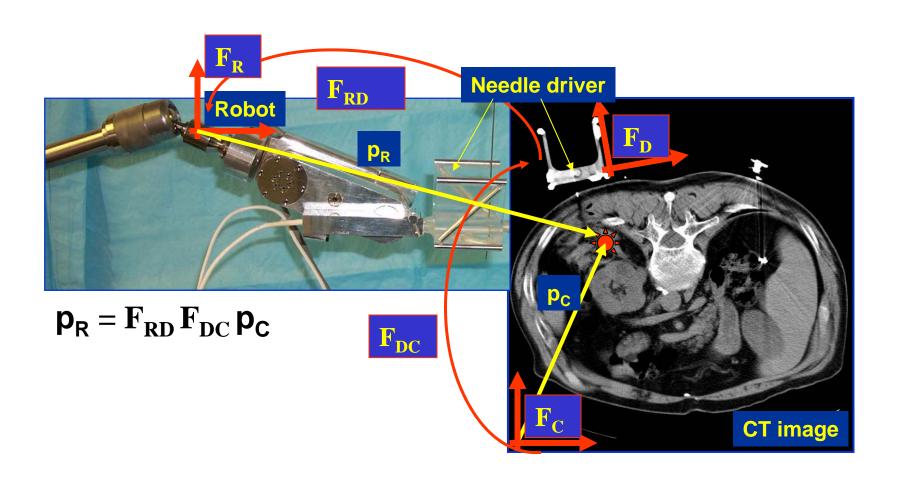
Patient in the scanner with robot



Screen of the surgical planning and control workstation

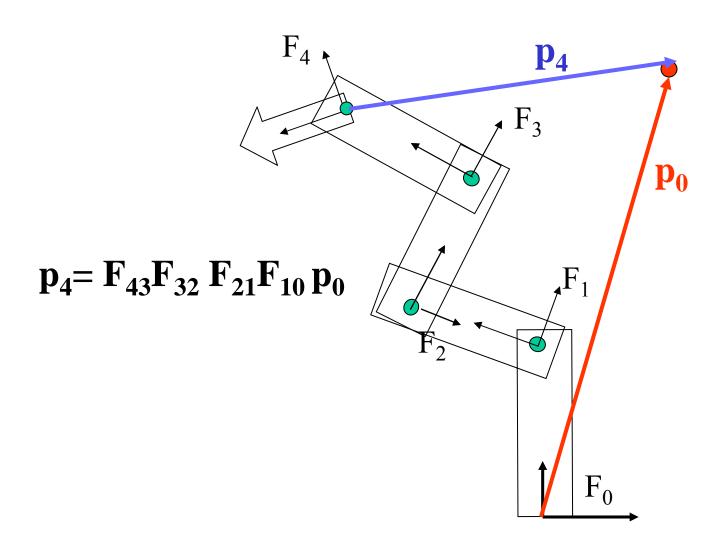


Example cont'd: Frames

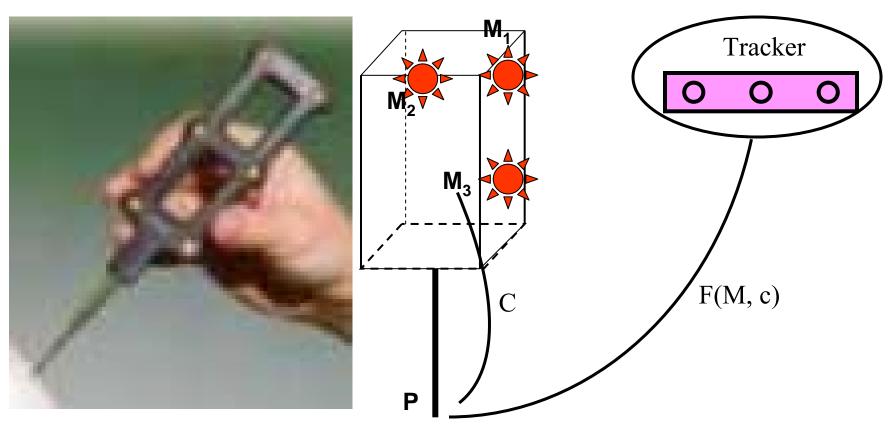


Example: Multi-Joint Serial Robots

4-joint serial robot

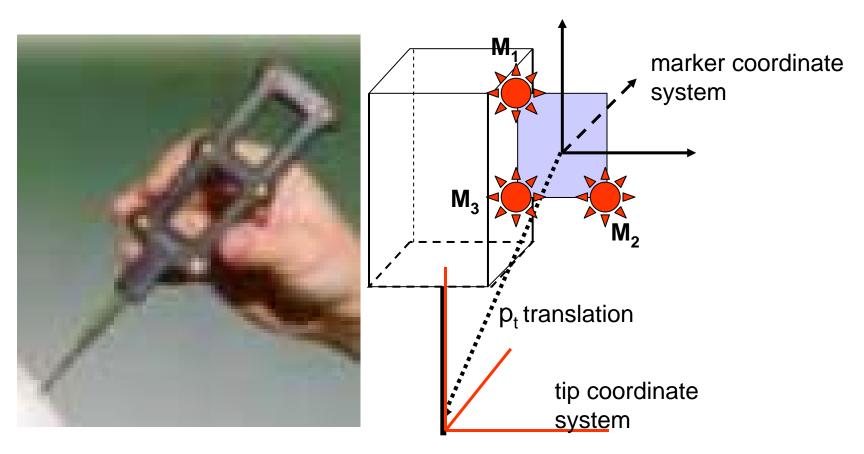


Example: Pointer Calibration



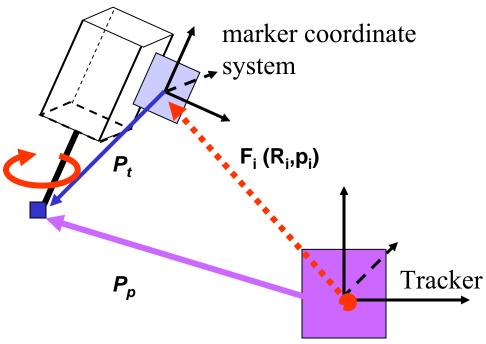
- M = (M1,M2,...Mi) tracker readings
- P = F(M, C) function to get tool tip position from tracker readings, where C = (c1,c2,c3...) is set of constants
- How to get these constants? -- CALIBRATION

Generic Pivot Calibration



- Determine p_t translation between tip and marker coordinate system
- Pivot around a fixed point

Pivot and measure many times...



- p_t vector is constant if looking from marker coordinate system
- Pivot point is constant if looking from the tracker base
- $M_1, M_2, M_3... M_n$ are reported by tracker
- F_i (R_i,p_i) is easily calculated by software package
- F_i (R_i,p_i) takes the p_i vector to the pivot point
- $F_i^*p_t = p_p$
- First rotation by R_i, then translation by p_i
- $R_i^* p_t + p_i = p_p$
- Unknowns: Pt and Pp
- Two poses are sufficient to calculate Pt
- Take many poses (i.e. redundancy) to reduce errors!!!

Solve the math...

(1)
$$R_i^* p_t + p_i = p_p$$

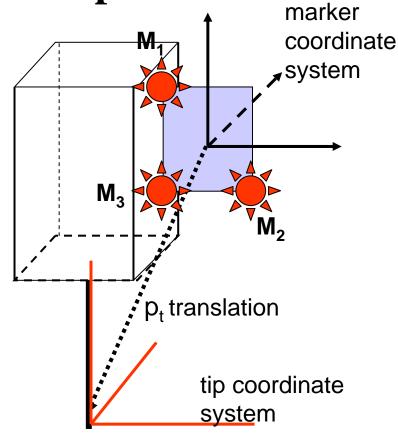
(2)
$$R_j^* p_t + p_j = p_p$$
 subtract and 1 and 2

 $R_i^* p_t - R_j^* p_t + p_i - p_j = 0$ $(R_i^- R_j^-) p_t + p_i^- p_j^- = 0$ $(R_i^- R_i^-) p_t^- = -(p_i^- p_i^-)$

$$p_t = -(R_i - R_j)^{-1}(p_i - p_j)$$

Repeat the above on all pairs of measurements and then take the average p,

Now how to use the pointer



- Read M₁,M₂,M_{3...} M_n are reported by tracker
 F_i (R_i,p_i) is easily calculated by software package
- Plug p_t into $R_i^*p_t + p_i = p_p$
- If possible, take multiple measurements, reject outliers, and average the rest

