Acknowledgments

- This is the work of many people
- Some of the work reported in this presentation was supported by fellowship grants from Intuitive Surgical and Philips Research North America to Johns Hopkins graduate students and by equipment loans from Intuitive Surgical, Think Surgical, Philips, Kuka, and Carl Zeiss Meditec.
- Some of the work reported in this talk incorporates intellectual property that is owned by Johns Hopkins University and that has been or may be licensed to outside entities, including Intuitive Surgical, Varian Medical Systems, Philips Nuclear Medicine, Galen Robotics and other corporate entities. Prof. Taylor has received or may receive some portion of the license fees. These arrangements have been reviewed and approved by JHU in accordance with its conflict of interest policy.
- Much of this work has been funded by Government research grants, including NSF grants EEC9731478 and IIS0099770 and NIH grants R01-EB016703, R01-EB007969, R01-CA127144, R42-RR019159, and R21-EB004547; by Industry Research Contracts, including from Think Surgical; by gifts to Johns Hopkins University from John C. Malone, Richard Swirnow and Paul Maritz; and by Johns Hopkins University internal funds.
Motivating Insight

A partnership between human clinicians and computer-based technology will fundamentally change the way surgery and interventional medicine is performed in the 21st Century, in much the same way that computer-based technology changed manufacturing in the 20th Century.

Goal: Human-machine partnership to fundamentally improve interventional medicine
Over 25 years ago: Robotic Joint Replacement Surgery

Emerging: Information-Augmented Robotic Surgery

Experimental System: not for clinical use
This Paradigm has not changed since Imhotep’s day

But medical robots and computer-integrated interventional systems will make it much more effective.

Multidisciplinary Integration is Crucial

Modeling & analysis
- Segmentation
- Registration
- Atlases
- Optimization
- Visualization
- Task characterization
- etc.

Interface Technology
- Sensing
- Robotics
- Human-machine interfaces

Systems
- Safety & verifiability
- Usability & maintainability
- Performance and validation
Patient-Specific Models for Interventions

- Computationally efficient **representation of patient** enabling computer to assist in planning, guidance, control, and assessment of interventional procedures
- Generally focus on **anatomy**, but may sometimes include biology or other annotations
- Predominately derived from medical images and image analysis
- Increasingly reference statistical **“atlases”** describing patient populations

Data courtesy of Terry Peters and Eric Ford
Combining prior knowledge with online images

Prior statistical information (atlas) → Computational process → Patient-specific model

Prior images & models (mostly 3D) → Computational process

New Images (2D, 3D) → Computational process

Applications
- Intervention planning
- Intervention guidance & visualization
- Biomechanical analysis

Video: JH Yao, 2002

Deformable 2D/3D Registration to Statistical Atlas

Prior statistical information (atlas) → Computational process → Patient-specific model

Applications
- Orthopaedic surgery planning
- Biomechanical analysis
- Hybrid reconstruction

Examples: R. Taylor, J. Yao, O. Sadowsky, G. Chintalapani, O. Ahmad, …
Model Completion, Given Partial CT + X-rays

Prior statistical information (atlas) → Computational process (Atlas Extrapolation) → Patient-specific model

Partial CT Scan → 2D/3D Registration → Hip Osteotomy
+ Biomechanical analysis
+ Intraoperative registration

Information

Patient-specific Information (Images, lab results, genetics, etc.) → Model → Plan

Procedure Planning

Copyright © 2016 R. H. Taylor
Engineering Research Center for Computer Integrated Surgical Systems and Technology
Procedure Planning

• Highly procedure-specific
• Occurs at many time scales
 – Preoperative
 – Intraoperative
 – Preop. + intraop. update
• Typically based on images or segmented models
• May involve:
 – Optimization
 – Simulations
 – Visualization & HCI

Photos: Mehran Armand

Procedure Planning

• Typical outputs
 – Target positions (seeds, biopsies, ablation sites, etc.)
 – Tool paths
 – Desired geometric relationships
 – Key-frame visualizations
 – Images, models & control parameters
• Emerging themes
 – Atlas-based planning
 – Statistical process control & integration of outcomes into plans
 – Dynamic, interactive replanning

Photos: Mehran Armand
Procedure Execution

- **General/Multi-Patient Data**
 - Statistical anatomic atlases
 - Disease/pathology data
 - Genomic data bases
 - Planning rules
 - Outcomes statistics
 - Etc.

- **Model** → **Diagnose** → **Plan** → **Intervention**

- **Patient-Specific Data**
 - Images, lab data, genomics
 - Clinical history
 - Models & plans
 - Etc.

- **Assess**

Procedure Execution

- **Highly procedure-specific**
- **Don't always have a robot**
 - Surgical Navigation
 - Image Overlay
- But robots can transcend human limitations
 - to make procedures less invasive,
 - more precise,
 - more consistent,
 - and safer

Masamune, Fischer, Deguet, Coons, Taylor, Sauer, Itzkovitz, Masamune, Zinreich, Fichtinger, …
Procedure Execution

- Highly procedure-specific
- Don’t always have a robot
 - Surgical Navigation
 - Image Overlay
- **But robots can transcend human limitations**
 - to make procedures less invasive,
 - more precise,
 - more consistent,
 - and safer

Procedure Execution

- Highly procedure-specific
- Don’t always have a robot
 - Surgical Navigation
 - Image Overlay
- **But robots can transcend human limitations**
 - to make procedures less invasive,
 - more precise,
 - more consistent,
 - and safer
Procedure Execution

- Highly procedure-specific
- Don’t always have a robot
 - Surgical Navigation
 - Image Overlay
- But robots can transcend human limitations
 - to make procedures less invasive,
 - more precise,
 - more consistent,
 - and safer
Procedure Execution

• Highly procedure-specific
• Don’t always have a robot
 – Surgical Navigation
 – Image Overlay
• But robots can transcend human limitations
 – to make procedures less invasive,
 – more precise,
 – more consistent,
 – and safer

Procedure Execution

• Intraoperative systems typically combine multiple elements
 – Imaging
 – Information fusion
 – Robotics
 – Visualization and HMI
• Issues
 – Design
 – Imaging compatibility
 – OR compatibility
 – Safety & sterility
 – Intelligent control
 – Human-machine cooperation
Image-guided needle placement

Masamune, Fichtinger, Iordachita, ...
Okamura, Webster, ...
Krieger, Fichtinger, Whitcomb, ...

TRUS Robot for Prostate Brachytherapy

Kazanzides, Iordachita, Burdette, Song, et al.

Current efforts:
- Integration with RadVision / RUF project
- Needle quick-release mechanism
- Intraoperative user interface (sterile touchscreen)

Robot clinical trial

Prototype sterile touchscreen: Digital Dash
Prostate brachytherapy seed localization using combined photoacoustic and ultrasound imaging
Boctor/Kang/Prince (JHU), Burdette (AMS)

B-mode PA-mode

Clear Guide ONE

CG1 enables more doctors to perform more needle-based procedures more places, more effectively and more quickly.
MRI-guided Surgical Manipulator for Transperineal Prostate Interventions - Clinical Workflow

Patient ready on scanner table

Z-frame in position

Drape robot, attach needle guide

Slide in robot until hit Z-frame

Lock robot in place

Robot ready for targeting

NIH 2R01CA111288: Tempany, Iordachita, Fischer, Tokuda, Hata, ...

Information-enhanced robotic surgery

augmented reality displays imaging

safety barriers shared control “virtual fixtures”

SAW
Robots for Head and Neck Surgery

- Collaboration with JHU Department of Otolaryngology
- Robot to manipulate flexible endoscopes (RoboELF)
 - Prototype for flexible laryngoscope
 - “No significant risk” from FDA; IRB approved at JHU
- Steady-hand robot for head and neck surgery (REMS)
 - Initial targets: laryngeal, sinus, ear, open microsurgery
 - Readily adapted for spine, brain, other microsurgery
 - First prototype constructed

A Robotic Assistant for Trans-Oral Surgery: The Robotic Endo-Laryngeal Flexible (Robo-ELF) Scope

K. Olds, A. Hillel, E. Cha, J. Kriss, A. Nair, L. Akst, J. Richmon, R. Taylor

- Goals
 - Develop clinically usable robot for manipulating flexible endoscope in throat and airways
 - Permit bimanual surgery
 - Manipulation of ablation catheter
- Approach
 - Simple hardware for manipulating unmodified flexible scope
 - Simple joystick control
 - Platform for image guidance
- Status
 - “No significant risk” determination from FDA
 - IRB approved clinical trial starting
Robo-ELF Scope Clinical Prototype

- FMEA
- Extensive documentation
 - User manual etc.
- New scope holder and draping system
- FDA approved as NSR
- JHU Clinical engineering approval
- JHU IRB approval
- Clinical study starting this summer

Challenges in Precise Minimally Invasive Head-and Neck Surgery

- Long (25cm) instruments
 - Amplify hand tremor
 - Reduce precision
- Tight spaces near sensitive anatomy
- Limited working area
The Robotic ENT Microsurgery System (REMS)

User interface:
- Hands-on control, surgeon “in the game”
- Foot pedal-controlled gain

Technical specs:
- Up to 0.025 mm precision on-demand
- 6 degrees of freedom
- 125x125x125mm work volume
- Calibrated accuracy ~50-150μm

Control modes:
- Free hand
- Remote center of motion
- Virtual fixture avoidance
- Teleoperation

K. Olds, Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery, PhD thesis in Biomedical Engineering, Johns Hopkins University, Baltimore, March 2015.

REMS Typical Applications

Laryngeal / Vocal Cord

Open Microsurgery

Image-guided sinus surgery with virtual fixtures

Other applications include:
- Otology
 - Stapes surgery
 - Mastoidectomy
 - Cochlear implant
- Craniotomy
- Spine
- Hand
- …
Snake-like robot for minimally invasive surgery

- **Goals**
 - Develop scalable robotic devices for high dexterity manipulation in confined spaces
 - Demonstrate in system for surgery in throat and upper airway

- **Approach**
 - "Snake-like" end effectors with flexible backbones and parallel actuation
 - Integrate into 2-handed teleoperator system with optimization controller

- **Status**
 - Evaluation of prototype ongoing
 - Licensed to industry partner

- **Funding**
 - NIH R21, CISST ERC, JHU, Columbia
 - NIH proposals pending

Single Port Access Surgery
Nabil Simaan (Vanderbilt, Columbia), with P. Allen (Columbia), D. Fowler (Columbia)

New technology finally allows true evaluation of the potential of single port access surgery. Systems raise new questions about control and telemanipulation infrastructure/cooperative control.
Single Port Access Robotic Surgery

Titan Medical Sport
https://www.youtube.com/watch?v=jlvyvKdA6xQ

Intuitive Surgical Sp
https://www.youtube.com/watch?v=jm63JdTrp4

Minimally-Invasive Osteolysis Curettage

M. Armand, R. Taylor, M. Kutzer, R. Murphy, S. Segretti, et al.
Curved Drilling of the Femoral Head
Alambeigi, et al.

- Osteonecrosis of the femoral head
 - More than 20,000 patients per year
 - To reduce the pressure in the femoral head, core decompression was developed more than three decades ago.

- Steerable "snake" with flexible drill provides better

Foreign Bodies in the Heart

Causes
- Thrombi
- Shrapnel
- Iatrogenic

Symptoms
- Cardiac Tamponade
- Hemorrhage
- Arrhythmia
- Infection
- Shock
- Embolism
- Valve Dysfunction

Conventional Treatment
- Median Sternotomy
- Cardiopulmonary Bypass

Beating Heart MIS with 3D US Guidance

Paul Thienphrapa, Aleksandra Popovic, Russell Taylor

- Combined RCM Robot and Dexterous Manipulator
- Workstation Computer
- Philips 3D Ultrasound
- Cone Beam CT (optional)
- TEE
- Dexterous Manipulator
- US Beacon (on tip)
- 3D TEE Probe
- Foreign Body
Retrieval Experiment Results
Robotically Assisted Laparoscopic Ultrasound

- NIH STTR between CISST ERC and Intuitive Surgical
- Goals
 - Develop dexterous laparoscopic ultrasound instrumentation and software interfaces for DaVinci surgical robot
 - Produce integrated system for LUS-enhanced robotic surgery
 - Evaluate effectiveness of prototype system for liver surgery
- Approach
 - Custom DaVinci-S LUS tool
 - Software built on JHU/ISI “SAW” interface
- Status
 - Evaluation of prototype by surgeons

Ultrasound Elastography with DaVinci
(Boctor, Billings, Taylor)

Human-robotic collaboration for in-vivo detection of tumors and monitoring of therapy
(Research DaVinci Application – Not for Human Use)
Vitreoretinal Microsurgery

Microsurgery Assistant Workstation

- 3D Display with Overlays
- OCT Display
- Stereo video Microscope
- EyeRobot2
- Audio Output
- Force and OCT sensing tools
- FBG Interrogator
In-Vivo Experiments

- Overall System Performance
- System Ergonomics
- Collect Data
 - Robot / Force / OCT
 - Video / Audio

Patient-specific assessment and feedback

General/Multi-Patient Data
- Statistical anatomic atlases
- Disease/pathology data
- Genomic data bases
- Planning rules
- Outcomes statistics
- Etc.

Model → Diagnose → Plan

Patient-Specific Data
- Images, lab data, genomics
- Clinical history
- Models & plans
- Etc.

Assess → Intervention
Elastography monitoring of ablations

Ex vivo

B-mode image Displacement image Strain image Gross pathology image

ultrasound elasticity post-operation CT

patient 1

patient 2

Credit: Boctor, Rivaz, Choti, Hager, et al.

General/Multi-Patient Data
- Statistical anatomic atlases
- Disease/pathology data
- Genomic data bases
- Planning rules
- Outcomes statistics
- Etc.

Model
Diagnose
Plan

Patient-Specific Data
- Images, lab data, genomics
- Clinical history
- Models & plans
- Etc.

Assess

Intervention

Statistical Analysis and Decision Support

Copyright © 2016 R. H. Taylor
Information-Integrated Process Learning

• **Key idea**
 - Medical robots and CAI systems inherently generate data and promote consistency
 - Eventually, outcomes are known
 - Combine this information over many patients to improve treatment plans / processes

• **Issues / Themes**
 - Very large data bases combining heterogeneous data
 - Statistical modeling of patients, procedures, and outcomes
 - Online tracking of procedures

Statistical process control for radiation therapy

Overall Goal: Use a database of previously treated patients to improve radiation therapy planning for new patients

Team:
- **CS:** R. Taylor, M. Kazhdan, P. Simari, A. King
- **BME:** R. Jacques
- **Rad. Oncology:** T. McNutt, J. Wong, B. Wu, G. Sanguinetti (MD)

Support: Paul Maritz, Philips, JHU internal funds
Applications Of Surgical Motion Models

Underlying hypothesis: Learned motion models of experts can be used for teaching, training, and automation of surgical actions.
Example: Automatic Detection and Segmentation of Robot-Assisted Surgical Motions

- **Goals:**
 - Automatic recognition of different surgical motions
 - Comparison of skill level differences between surgeons
- **Method**
 - Extract features from position and velocity traces
 - Linear discriminant analysis with probabilistic Bayesian classifier

Unstructured surgeries: Discovering “teachable” tactics

Septoplasty: “index” surgery

Feedback: Stroke Curvature Consistency: Draw similar-shape curves (instead of straight lines) sequentially
Stroke Duration Consistency: Spend the same amount of time drawing the curves
Coverage Rate: Practice strong enough brushing motions to elevate mucosa

OR Workflow Observation and Analysis

N. Navab et al.
Information-Intensive Interventional Suite

- Data Logging & Summary
- Logistics & scheduling
- PACS, other patient data bases

Imaging systems
- X-ray, US,
 - CT, MRI, etc.

Assistant Workstation

Surgeon Interfaces

OR video

Anesthesia, vital signs, logistics, back table, etc.

Robots

The computer-integrated operating room

- Manipulation assistance
- Intraoperative information support
- Intraoperative analysis
- Preoperative images & other data
- Outcome data
- Complete record information

Patient Loop

"smart tool" sensors

Process Loop

Preoperative analysis & process improvement

Copyright © 2016 R. H. Taylor
The computer-integrated operating room

- Manipulation assistance
- Intraoperative information support
- Intraoperative analysis
- Preoperative images & other data
- Postoperative analysis & process improvement
- Complete record of intervention
- Outcome data

- Video
- "Smart tool" sensors
- Robotic devices

The computer-integrated operating room

- Manipulation assistance
- Intraoperative information support
- Intraoperative analysis
- Preoperative images & other data
- Postoperative analysis & process improvement
- Complete record of intervention
- Outcome data
The computer-integrated operating room

- Preoperative images & other data
- Intraoperative information support
- Intraoperative analysis
- Manipulation assistance
- Postoperative analysis & process improvement
- Complete record of intervention
- Outcome data

cisst libraries and Surgical Assistant Workstation
https://trac.lcsr.jhu.edu/cisst

- Peter Kazanzides, Simon P. D'Malio, Anton Deguet, and many more
Use Case: da Vinci Research Kit

- Mechanical components from da Vinci “classic” systems
- Donated by Intuitive Surgical to selected university labs
- Consortium to provide “open source” engineering and support
 - Software – JHU (CISST/SAW)
 - Controller electronics – JHU
 - Interface electronics – ISI
 - Controller power/packaging – WPI
- Controllers and software also adapted for use with complete recycled da Vinci “classic” systems
- http://research.intusurg.com/dvrkwiki/

General working model

Use clinical applications to provide focus & key problems
- Emphasis on surgery and interventional procedures
- Directly involve clinicians in all stages of research
- Emphasize integration into complete systems
- Point toward clinical deployment

Some current areas include
- Skull base and head-and-neck
- Spine and orthopaedic surgery
- Thoracic surgery
- Abdominal and solid organ procedures (kidney, liver, prostate)
- Vascular & endoluminal
- Microsurgery

Funding models
- NIH, other Government grants
- Collaboration with NIH intramural programs
- Industry partnerships (use master research agreements to facilitate)
The real bottom line: patient care

- Provide new capabilities that **transcend human limitations** in surgery
- Increase **consistency and quality** of surgical treatments
- Promote **better outcomes** and more **cost-effective** processes in surgical practice

Discussion