Goal is to find this
Optical tracker (on tripod) \(F_D \)

EM tracker base (fixed in workspace)

\[d = F_D \cdot D_i \]

Solve for \(F_d \) as point cloud to point cloud registration problem from \(D_i = F_d \cdot D_j \)

Workspace

Calibration object (moves in workspace)

\[\tilde{C}_i = F_d \cdot \tilde{a}_i \]

LEDs

EM markers

Solve for \(F_d \) as point cloud to point cloud registration problem from \(\tilde{D}_i = F_d \cdot \tilde{a}_i \)

\[F_D = F_d \cdot F_{D_d} \cdot \tilde{C}_i \]

Optical tracker (on tripod) \(F_D \)

EM tracker base (fixed in workspace)

\[\tilde{C}_i^{(expected)} = F_D \cdot F_{D_d} \cdot \tilde{C}_i \]

LEDs

EM markers

Calibration object (moves in workspace)
Defining the EM rigid body

\[\vec{g}_j = \vec{G}_j - \vec{G}_0 \]

\[\vec{g}_0 = \frac{1}{N_g} \sum \vec{G}_j \]

Calibrating the EM Pointer (pivot calibration)

Solve for \(F_G[k] \) such that

\[\hat{G}_j^{(i)} = F_G[k] \cdot \vec{g}_j \]

Then solve least squares problem

\[\hat{P}_{\text{dimple}} = F_G[k] \cdot \vec{t}_d \]

Calibrating optical pointer is similar except use \(P_i = F_G \cdot H_i \) instead of \(\hat{G}_j \)
Goal is to find this