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Abstract

In this paper, we make a comparative review of a variety of \intermediate-level" robot languages
that have emerged in recent years. We also describe a robot programming language called FROB (for
Functional ROBotics). FROB is an example of an embedded, domain-speci�c language, hosted by the
Haskell programming language.

We present the basic concepts of the language, discuss the ability of FROB to model other programming
architectures, and we compare it's capabilities to other extant languages that are reviewed.

1 Introduction

The appropriate languages, language structures, and software architectures for developing robot software
has been the topic of debate and discussion since the earliest, computer-controlled robot systems. The fact
that no uniform consensus (at least in terms of a \universal" robot programming system) is not surprising,
given the range of issues such a language would need to address.

One set of issues relates to the simple fact that an autonomous robot must inhabit an unstructured, dynamic,
changing world, and therefore must be able to e�ectively react to that world using sensor information and
physical e�ectors. At a very basic level, this implies that the language needs to facilitate the description
of sensor-based control algorithms. However, unpredictability implies that any such algorithm might be
interrupted at any time, or may suddenly be faced with inputs that are inconsistent or incomprehensible
with the current control context. Methods such as prioritization of control [2] or monitors [15] have been
used in the past to deal with such issues. Ideally, a good robot programming language should provide a
simple, clean set of abstractions for describing and combining control behaviors.

A second set of issues arises from the nature of the tasks that autonomous robots would (ideally) perform.
Many of these tasks are easily speci�ed at an abstract level (e.g. deliver the mail, give a tour, or collect these
objects), but their execution ultimately entails a complex interaction and sequencing of low-level behaviors.
This has led to the notion of a layered system [24] [23], where there is a logical separation between high-level
planning, mid-level execution and monitoring of the steps of a tasks, and low-level execution of a set of
behaviors. Ideally, a robot programming language should span these layers, thereby providing a uniform

means for creating abstractions and relating them to one another.

Finally, a third set of issues arises due to the practical problems of developing robot system software. One
fundamental fact is that robot system programming is highly experimental in nature: we often do not know
at the outset how best to use sensors, control actuators, set thresholds, and so forth. Thus, there is often a
long cycle of development, testing, redevelopment, and re�nement until a system reaches the point where it
operates reliably. As a result, rapid, correct prototyping and software reuse are of paramount importance.
Likewise, the ability to combine many system components quickly and correctly is essential. A closely related
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issue is the desire to develop \hardware independent" algorithms, so that code may be easily transferred
from application to application.

A more subtle practical problem is the fact that, at any given time, the computation needed to allow a robot
to achieve its objectives is highly dynamic. More precisely, from one time interval to the next, there may be
a large shift in the sensors employed, the algorithms used to process that information, the control algorithms
currently operating, and the surrounding system monitoring that may be taking place. A good language
should spare the programmer the details of explictly managing the ow of computation, while keeping code
execution to the minimum necessary to perform the currently active computations.

In this article, we introduce a new robot programming language called FROB (Functional ROBotics). FROB
was motivated, in part, by a desire to create a \broad spectrum" approach to robot programming | that is,
an approach that can be readily adapted to the needs and requirements of all types of robot programming
problems. FROB achieves goal by taking advantage of the fact that it is an embedded language hosted by
a lazy, higher-order, strongly typed language called Haskell [21]. As such, it is possible to express many
di�erent programming architectures within the same system. At the same time, FROB makes use of a lazy
execution model, thereby achieving the aims of minimizing computation.

In the remainder of this article, we describe FROB and perform a comparative analysis of its capabilities.
In the next section, we review several recent programming systems and discuss how they address the issues
outlined above. We then describe FROB and compare its capabilities to these languages using a set of
examples. Finally, we conclude with a discussion of current and future directions of the FROB project.

2 A Review of Programming Languages

The term \robot programming language" encompasses a broad, disparate collection of work. At one end
of the spectrum are languages1 speci�cally designed for joint-level or Cartesian motion, e.g. RCCL [10] or
Saphira [16]. At the other end of the spectrum are languages that have been motivated by the needs of AI
planning or, more generally, \high-level" goal-based speci�cation of behavior, e.g. RPL or PRS.

In this review, we will generally focus to a variety of \intermediate-level" languages have emerged in recent
years, e.g. TDL [24] or Colbert [15]. These languages attempt to strike a compromise, o�ering the ability
to program low-level behavior in some detail, while at the same time providing language abstractions that
facilitate the description of higher-level system behavior. Although our review is focussed on these systems,
we also discuss a variety of other architectures in Section 3.

2.1 Colbert

Colbert is called as a sequencer language by its developers [15]. It is part of the Saphira architecture [16].
The Saphira architecture is an integrated sensing and control system for robotics applications. Complex
operations like visual tracking of humans, coordination of motor controls, planning are integrated in the
architecture using the concepts of coordination of behavior, coherence of modeling, and communication with
other agents. The motion control layer of Saphira consists of a fuzzy controller and Colbert is used for the
middle execution level between the motion control layer and planning.

Colbert programs are activities whose semantics is based on FSAs and are written in a subset of ANSI C.
The behavior of the robot is controlled by activities like :

1Here and in the following text, we will use the term \language" to broadly denote all types of programming systems, from

embedded languages using libraries to full-blown architectures with complete, stand-alone programming languages.
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� Sequencing the basic actions that the robot will perfom.

� Monitoring the execution of basic actions and other activities.

� Executing activity subroutines.

� Checking and setting the values of internal variables.

Robot control in Colbert means de�ning such activities as activity schema each of which corresponds to a
�nite state automaton. The activity executive interprets the statements in an activity schema according to
the associated FSA. The statements of a schema do not correspond directly to the states of the FSA. For
instance, conditional and looping statements will be probably represented as a set of nodes.

Actions at the nodes are typically primitive robot actions and internal state changes. When an activity is
�nished, a transition is done to a new node according to the success or failure of that activity. There is an
implicit wait condition, a transition to itself, in the nodes but this can be overwritten to have concurrent
activities. The action executive updates concurrent activities in a round-robin fashion. In each clock cycle,
every executing activity will progress through at least one state of its associated FSA.

Communication between activities is possible directly by sending signals, or indirectly by accessing and
modifying a global database consisting of internal variables. There are some prede�ned states of an activity
which can be checked or changed by other activities. Such states include :

� initial state of an activity.

� termination states (success, failure or timeout)

� suspend or interrupted states

� resumed state

These special states enable activities to signal other activities (possibly including some subactivities spawned
by the parent) for coordination or for handling dynamic changes in the environment. It is also possible to
de�ne an activity's life span depending on other activities by querying these prede�ned states.

To summarize, when an activity is executed, it can either invoke new activities or result in some primitive
actions (i.e commands send to the robot). Activities can communicate and a�ect each other. The internal
database is used for storing related information coming from the sensors (but this part is not Colbert's
responsibility in the Sapphira architecture) and also to enable activities to share information.

Figure 1 shows an approach activity example from Colbert. In the �rst simple patrol example the robot
moves back and forth n times between two points 1 meter apart. There will be a FSM corresponding to this
activity and the activity's name, patrol, can be referred in others. turnto and move are built-in primitive
robot actions.

In the approach activity the robot patrols for a speci�ed amount of time. While patrolling if it detects an
object at less than 2 meters, it moves to within 20 cm. of the object. The subtask patrol is spawned with
an additional timeout constraint. ObjInFront is part of the global database. Its distance is checked in a
loop, and if it is further then 2 meters the loop restarts by checking the sub activity patrol, and checking
whether a global error occured. Otherwise the loop terminates, suspends the patrol subactivity and the
robot moves to the object.
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act patrol(int n)

{

while (n!=0)

{ n=n-1;

turnto(180);

move(1000);

turnto(0);

move(1000): }

}

act approach()

{

int x;

start patrol(-1) timeout 300 noblock;

checking :

if (timedout(patrol) || sfStalledMotor(sfLEFT))

fail;

x = ObjInFront();

if (x>2000) goto checking;

suspend patrol;

move (x-200);

succeed;

}

Figure 1: A Colbert Approach Activity

In �gure 2, patrol2 de�nes an activity where the robot patrols n times but patrolling may be interrupted by
other activities. In that case the robot waits for any forward motion �nished (by the help of sfDonePosition)
and then stops. When the activity is resumed the robot continues patrolling by going to the code point
(node of the FSM) marked by start.

2.2 Animate Agent Architecture (Firby)

The Animate Agent Architecture aims to building an agent control system that integrates reactive plan
execution, behavioral control, and active vision within a single software framework [6]. The basic datatype
of the system are RAPs which are reactive plans de�ned in a Lisp-like syntax.

At the low level there are soft real-time routines which are called skills. Skills are both used to get information
from the world and to e�ect the world. Skills can communicate with each other and the RAPs by asynchrous
signals carried through global channels.

The RAP system's responsibility is to get a set of task goals, which can be a plan from the planner or a
top-level goal and then to expand each goal seperately until primitive actions are reached. These primitive
actions can disable or enable the skills. Each RAP can generate a set of concurrent skills which will help to
reach the goal associated with the RAP and then waits for the skills' success or failure signals.

Some of the basic clauses and methods in a RAP are :

� tests about some condition, queries of the memory. These may be used as prede�ned conditions to
determine whether to execute the RAP in the �rst place or testing success and failure.
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act patrol2(int n)

{

start:

while (n!=0)

{ n=n-1;

turnto(180);

move(1000);

turnto(0);

move(1000): }

succeed;

onInterrupt:

waitfor (sfDonePosition());

suspend;

onResume:

n=n+1;

goto start;

}

Figure 2: A Colbert Patrol Activity

� the tasks in a RAP (called task-net) can be ordered sequentially or in parallel and they can even be
unordered. The life-span of subtasks can be de�ned depending on others.

� monitors are used to synchronize RAP execution with changes in the world. The execution can be
suspended until some state becomes true, until some event happens, or for a speci�c period of time by
using the monitors.

� it is possible to have di�erent methods to execute depending on di�erent contexts (i.e state of the
world or other on going tasks).

� estimated execution time can be given to help the RAP interpreter to satisfy task deadlines.

� the execution time of a RAP can be limited by adding a timeout clause.

� internal variables.

Since there is a mechanism (wait-for clause) for de�ning the starting time of a task relative to the success of
another one, the same mechanism can be used to handle exceptions. In fact a task sends a speci�c signal via
the global channels when it succeeds, not just a success signal. So a speci�c signal describing the exception
can be sent similarly and handled by a responsible RAP. For example:

(task-net

(t0 (camera-on (wait-for :success t1) (for t2))

(t1 (approach-target ?target)

(wait-for (at-target) t3)

(wait-for (stuck) t3)

(until-start t3))

(t2 (track-target ?target)

(wait-for (lost-target) t3)

(wait-for (camera-problem) :terminate)

(until-start t3))

(t3 (camera-off)))
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(define-rap (move-object ?container)

...

(on-event (lost-object) :fail

(sequence

(t1 (pickup-object))

(t2 (go-to ?container))

(t3 (drop-off-object)))))

(define-rap (pickup-object)

...

(sequence

(t1 (start-pickup))

(t2 (grasp))

(t3 (spawn (monitor-hand ?task))

(mem-add (monitoring-hand ?task))

(t4 (finish-pickup))))

(define-rap (drop-off-object)

...

(method

(context (monitor-hand ?task))

(task-net

(sequence

(t1 (start-drop-off))

(t2 (ungrasp))

(t3 (terminate ?task))

(t4 (finish-drop-off)))))

(method

(context (not (monitor-hand ?task)))

(task-net

(sequence

(t1 (start-drop-off))

(t2 (ungrasp))

(t4 (finish-drop-off))))))

Figure 3: RAP Example

This task net de�nes a task where a target is approached and simultaneously tracked. The camera is turned
on at the start of the task and turned o� at the task completion or some error occurs. Firby gives this
example in [7] to illustrate how the di�erent subtasks can be sequenced and how the result of a task can
result in di�erent continuations. wait-for checks for the asynchrous signals carried through global channels.
until-start determines whether a task is started.

Firby gives the example in �gure 3 to show that spawning independent tasks can be useful not to give up
modularity. Note how the monitor-hand task is spawned in the subtask pickup-object and added to the
memory and then terminated in the subtask drop-off-object. context is used to check a condition to
determine which methods will be activated.
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2.3 Behavior Language

Brooks is one of the �rst advocates of reactive behavior-based methods for robot programming. So not
surprisingly, his subsumption architecture is based on di�erent layers, each of which work concurrently and
asynchronously to achieve individual goals [2] [3]. In the earlier designs, the behaviors were represented
by augmented �nite state machines (AFSMs), thus the Behavior Language still includes AFSMs as the
low level building blocks. The Behavior Language has a Lisp-like syntax and compilers available even into
programmable-array logic circuits.

An AFSM encapsulates a behavioral transformation function where the input to the function can be sup-
pressed or the output can be inhibited by other components of the system. It is also possible to reset an
AFSM to its initial state. Each layer in the subsumption architecture has a speci�c goal. The higher layers
can use the output of the lower levels and also a�ect their input and output to achieve their goals which
are generally more abstract then the goals of the lower layers. It is argued that this kind of hierarchical
interaction between layers prohibits designing higher levels independently.

When an AFSM is started, it waits for a speci�ed triggering event and then its body is executed. Such
events can depend on time (i.e. periodically activate the AFSM), a predicate about the state of the system,
a message deposited to a speci�ed internal register, or other components' being enabled or disabled. In the
body it is possible to perform primitive actions or to put messages in order to interact with other AFSMs.

In the Behavior Language behaviors are represented by a set of rules which are compiled to AFSM repre-
sentations and these can be compiled for the target processors. By grouping AFSMs into behaviors, it is
possible to share registers, outputs, monitoring actions and more importantly have a more abstract com-
ponent. It is possible to explicitly connect isolated ASFMs and behaviors together by using the connect

clause. These connect clauses are also used to suppress an input port or to inhibit an output port. There
are no components like plans or procedures but it is possible to de�ne macros and use them in the de�nition
of behaviors.

2.4 PRS

Procedural Reasoning System (PRS) is a general framework designed as a so-called situated reasoning system
[14]. Such systems are used for diagnosing and taking necessary measures to handle plant and process
malfunctions in real time. This requires reasoning about management of tasks which includes reasoning
about the criticality or urgency of tasks, potential interactions between tasks, the execution order of tasks,
the need for resuming and suspending tasks depending on the state of the system, and �nally which tasks
to execute to reach the goals of other tasks. As argued in [13] PRS can be also adapted to robot control.
Plans can be de�ned in a Lisp-like language or by using a graphical tool.

The basic elements of the system are :

� a database containing the system's current beliefs about the world. These are automatically updated
as new events appear. It is also possible to compute values on demand.

� a library of plans (or procedures, or scripts) which describe a particular sequence of actions and tests
that may be performed to achieve given goals or to react to certain situations. These plans are also
called Knowledge Areas and they are application dependent.

� a task graph which is a dynamical set of tasks currently executing.

The PRS interpreter checks new goals and new events which can be triggered by the outside world or by
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active tasks, selects appropriate plans to handle these new goals and events based on the database, places
these selected procedures to the task graph and then �nally executes one step of the active procedure. This
can result in a command about the real world or a new goal.

A plan generally includes :

� achieve goal statements, which will add new tasks to the task graph to satisfy this new subgoal,

� tests for some condition, iterations and possible continuations depending on tests,

� waiting for some condition to become true,

� preserving some conditions, which are used as guarding actions (i.e. adding a constraint to a task. If
the constraint fails then the action is suspended),

� maintaining some criteria (i.e. maintain battery-level 0.2 will result in checking battery level
during the task, interrupting the goal if the battery level falls under 0.2 and trying to reestablish it to
the desired level and then returning to the interrupted task(s)).

There is a di�erence in how the PRS interpreter adds new procedures depending on the new goals and new
events. For a goal, each uni�able procedure is tried one after another, so each procedure has a context (a
test depending on the state of the system) to run. The goal is declared fail if all the related procedures fail.
In the notion of event, the invoked procedures do not pursue an explicit goal, e.g. a monitor. So they are
like a response to an event and their success or failure is not analyzed.

2.5 TDL

As discussed earlier, the robot control architectures can be developed as 3 interacting layers. The behavior
level interacts with the physical world. The planning layer is used for de�ning how to achieve goals. The
executible layer connects these two layers issuing commands to the behavior level which are results of the
plans and passing sensory data taken from the behavior level to the planning layer to enable planning reactive
to the real world. So the executive layer is responsible for expanding abstract goals into low-level commands,
executing them and handling exceptions.

The main motivation behind developing Task Description Language (TDL) [24] is that using conventional
programming languages for de�ning such task-level control functions results in highly non-linear code which
is also diÆcult to understand, debug and maintain. TDL extends C++ with a syntactic support for task-
level control. A compiler is available to translate TDL code into C++ code that will use the Task Control
Management (TCM) libraries.

The basic datatype of TDL is the task tree. The leaves of a task tree are generally commands which will
perform some physical action in the world. Other types of nodes are goals, representing higher level tasks,
monitors and exceptions. An action associated with such nodes can perform computations, and change the
structure of the task tree (i.e. goals will add child nodes to the tree which can be viewed as subgoals).
The nodes of a task tree can be executed sequentially or in parallel. It is also possible to expand a subtree
but wait for some synchronization constraints to hold before beginning executing it. This is achieved by
having di�erent modes for nodes which are called the state of the node. There is a well de�ned semantics
for expanding and executing nodes of a task tree. Briey a node is disabled when there are synchronization
constraints that are not satis�ed, enabled otherwise, active if it is enabled and there are suÆcient resources
(both computational and physical), and �nally completed if the action related to that node succeeds or fails.
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Goal deliverMail(int room)

{

double x,y;

getRoomCoordinates(room, &x, &y);

spawn navigateToLocn(x, y);

spawn centerOnDoor(x,y)

with sequential execution previous,

terminate in 0:0:30.0;

spawn speak("Xavier here with your mail.")

with sequential execution centerOnDoor,

terminate at monitorPickup completed;

spawn monitorPickUp()

with sequential execution centerOnDoor;

}

Goal centerOnDoor(double x, double y)

delay expansion

{

int whichSide;

spawn lookforDoor(&whichSide) with wait;

if (whichSide !=0) {

if (whichSide<0)

spawn move(-10); // move left

else

spawn move(10); // move right

spawn centerOnDoor(x,y)

with disable execution until

previous execution completed;

}

}

Figure 4: A Task Tree for Mail Delivery

A goal's termination or disabling criteria may be de�ned relative to time or starting or �nishing time of an
event which is typically triggered by other goals' termination, expansion, or starting to execute. Explicit
labels may be used to di�erentiate multiple spawning of the same task. Monitors have the same structure
of goals with some additional implicit constraints like max trigger, max activations or period of activity.
Exceptions can be thrown when a goal fails and they can be handled in the goal body by spawning appropriate
exception handling tasks.

The goal de�nitions in �gure 4 will result in a task tree where the robot will goto a speci�c location to
deliver mail. Note how the nodes are de�ned to be executed sequentially or the expansion of the tree and
execution is delayed in centerOnDoor since it is recursively spawns itself until the robot has a position at
the center of the door. The main goal de�nition will terminate centerOnDoor after a speci�c amount of
time, namely 30 seconds.

2.6 SIGNAL

SIGNAL is a language designed for safe real-time system programming [8]. It is based on a semantics de�ned
by mathematical modeling of multiple-clocked ows of data and events. Relations can be de�ned on such
data and event signals to describe arbitrary dynamical systems and then constraints may be used to develop
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real time applications. There are operators to relate the clocks (according to some clock calculus) and values
of the signals. SIGNAL can be also described as a synchronous data-ow language.

Although SIGNAL is not designed speci�cally for robotics, the characteristics of robot programming and
SIGNAL's mentioned functionalities makes it possible to use it for active vision-based robotics systems [4].
Since the vision data have a synchronous and continuous nature, it can be captured in signals and then the
control functions between the sensory data and control outputs can be de�ned. The SIGNAL-GTi extension
of SIGNAL can be used for task sequencing at the discrete level.

SIGNAL-GTi enables the de�nition of time-intervals related to the signals and also provides methods to
specify hierarchical preemtive tasks. Combining the data-ow and multitasking paradigms results in having
the advantages of both the automata (determinism, task sequencing) and concurrent programming (par-
allelism between tasks). using these advantages a hierarchy of parallel automata can be designed. The
planning level of robot control does not have a counterpart in SIGNAL but the task level can be used for
this purpose.

process MOUSE = (integer DELTA)

{ ? event TICK, CLICK

! event SINGLE, DOUBLE }

(| (| START := NOT_IN_INTERVAL {CLICK, START, RELAX}

| (| N := COUNT_IN_INTERVAL {TICK, START, RELAX} cell event N

| ZN := N $1

| N ^= CLICK default TICK

| RELAX := TICK when (ZN = (DELTA-1)) |)

| (| DOUBLE_CLICK := ((not START) default IN_INTERVAL {CLICK,START,RELAX})

cell RELAX

| SINGLE := RELAX when (not DOUBLE_CLICK)

| DOUBLE := RELAX when DOUBLE_CLICK |)

|)

where event START, RELAX; integer N, ZN init 0; logical DOUBLE_CLICK

end

This example is taken from [8]. The output signals SINGLE and DOUBLE occurs after DELTA time steps each
time the mouse button is pressed. If during that interval another mouse click occurs then DOUBLE is signaled,
otherwise SINGLE is signaled. Each equality de�nes a new signal from existing ones in a number of ways like
delaying the original one (ZN := N $1) or �ltering by when.

2.7 Charon

Charon is a language for modular speci�cation of interacting hybrid systems and can be also used for de�ning
robot control strategies [1]. The building blocks of the system are agents and modes.

An agent can communicate with its environment via shared variables and also communication channels. The
language supports the operations of composition of agents for concurrency, hiding of variables for information
encapsulation, and instantiation of agents for reuse. Therefore complex agents can be built from other agents
to de�ne hierarchical architectures.

Each atomic agent has a mode which represents a ow of control. Modes can contain submodes and
transitions between them so it is possible to connect modes to others with well-de�ned entry and exit
points. There are some speci�c entry and exit points. The former is used for supporting history retention,
i.e. default entry transitions are allowed to restore the local state from the most recent exit. A default exit
point can be used for group transitions which apply to the all submodes to support exceptions.
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Anim.A.A. Beh. L. Charon Colbert PRS Signal TDL FROB

Sync/Async. Async. Async. Sync. Sync. Async. Sync. Sync. Sync.

Language RAP Beh. L. Charon Ext.(C) PRS Signal Ext.(C++) Haskell

Style of Prog. Spec. Spec. Spec. Imp. Spec. Spec. Imp. Functional

Values NA D,E C,D NA NA C,D,E NA C,D,E

Formalism Task-Net AFSM Modes Activities Task Data-ow Task Streams
(FSM) (FSA) Graph Language Trees Tasks(FSA)

Concurrency Yes Yes Yes Yes Yes Yes Yes Yes

Scheduling Yes No No Yes Yes No Yes Yes

Veri�cation Unclear No Suitable Unclear No Yes Suitable Suitable

Signaling Yes No Yes Yes Yes No No No

Figure 5: Language Comparison

Transitions can be labeled by guarded actions to allow discrete updates. In a discrete round only one atomic
agent will be executed and the execution will continue as long as there are enabled transitions. Since a
mode can contain submodes group transitions are examined only when there are no enabled transitions in
the submodes.

Another update happens for the variables declared as analog. This time, it is called continuous update as
these variables represent continuous ow. The evolution of analog variables can be constrainted in three
ways: di�erential constraints, algebraic constraints, and invariants which limit the allowed durations of ows.
Each agent has its own clock and it is assumed that the di�erences between these local cloacks are bounded.
In any time round, only one agent's analog variables are updated and the state of the others are frozen since
the guards and invariants of an agent can depend on these updated values.

2.8 Summary

The table shows some of the di�erent capabilities and design choices of the languages and FROB which
will be introduced in the next section. Since some of these languages are components of a larger system
and dedicated to one aspect it is not possible to compare them in overall. Some of them are more general
frameworks which are used also for robot programming (i.e. Signal, Charon), while some of them are used
for a certain part of the system (like TDL for task scheduling, PRS for planning and execution).

The most common feature of these languages is the mechanisms for de�ning some components, building
blocks which correspond to the notion of tasks and/or behaviors. They all support modularity through
hierarchical composition of these components and instantiation. As required by the nature of robot pro-
gramming, some form of concurrency is also available in all of them (i.e. multiple tasking in a single
process or distributed processes). Except Behavior Language which is used for implementing subsumption
architecture, they all have reactive and planning parts.

Colbert, TDL, Animate Agents Arhitecture and PRS are mostly focused on task scheduling. Colbert uses
signaling to achieve this end (i.e tasks can interrupt and resume other ones by using their names). Others
have special semantics to coordinate the spawning and end time of tasks. One can specify the termination
criteria or the beginning time of a task depending on the lifespan of others. We assume that languages in
which the tasks can read and write to ports (channels) with a speci�c name also have the signalling ability
since it is possible to change the control ow indirectly through these ports.

Robot programming may require three kind of values to be speci�ed and used. First one is the ability to
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encode and compute continuous speci�cations like di�erential equations. These will generally depend on
regularly sampled values which will probably come from the world through sensors. Another datatype is the
asynchronous discrete events which will generally correspond to the chaotic nature of the environment. We
denote these values by C(ontinuous), D(iscrete) and E(vents) respectively. The languages focused on the
task scheduling mainly does not need to include such values.

Error handling is another common feature of the languages. Exceptions and error related signals can change
the control ow of the tasks. First of the two general approaches to this problem can be best observed in
RAPs. A wait-for statement can check an error signal just like a termination criteria and determines the
continuation. Alternatively, like TDL's exceptions, the de�nition of a task can include an exception statement
with an exception name and the related exception handler. In this approach, handling an exception can be
throw up where an ancestor task will determine how to handle the excpetion.

Formal veri�cation of the robot programs are also desirable in the robot control domain. More formal
languages like Charon and Signal have an advantage for this purpose. The need for simulation, debugging,
testing and formal veri�cation is recognized by the language developers and future work generally includes
plans to develop such visualization and analysis tools.

TDL and Colbert are the languages which can be described as extensions and C being their base language
they have an imperative style. Other languages have their own syntax in which -with the exception of Signal,
Charon- the speci�cation of a component and its relations to the other componenets (tasks or behaviors)
has a very LISP-like avor.

3 FROB

3.1 FRP

Functional Reactive Programming (FRP) is a general framework for hybrid systems which employs behaviors
and events as its basic building blocks [25]. Behaviors are continuous sequences that vary over time while
events represent discrete asynchronous or synchronous event occurences. FRP's declarative style enables
rapidly developing modular, reusable high-level programs. The principles underlying current FRP framework
were �rst introduced in Fran [5], a domain-speci�c language for programming reactive animations. The host
language for Fran was Haskell which gives FRP the avor of declarative programming [21] [11]. FROB
(for Functional Robotics) is another domain-speci�c language embedded in Haskell based on FRP which is
designed for robot control [19] [20] [9]. FRP is now also used for vision and other control systems applications
[22] [12]. Haskell, the host language of FRP, is a higher-order, polymorphic, typed, lazy and purely functional
language. The lazyness and type systems of Haskell were exploited in FRP's implementation.

Both behaviors and events, which are the fundamental data types of FRP, are based on streams. A behavior
of type a can be de�ned as a mapping from time and some type of input (again which can be represented
by a stream) to a stream of values of type a. Behaviors have continuous semantics in the sense that they
always have a value whenever they are sampled (i.e. an animation of a ball rotating around a point, sonar
readings of a robot, mouse position, velocity of a robot during some navigation related task). In contrast
events represent discrete-time event occurences which means they only have values at particular points of
time (i.e. left button pressed, robot bumped to an obstacle). Since events are also represented by streams,
the related event occurences are time-ordered.

type Behavior inp a = Stream inp -> Stream Time -> Stream a

type Event inp a = Stream inp -> Stream Time -> Stream (Maybe a)
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These simpli�ed type declarations show that both behaviors and events are time dependent mappings from
an input stream (i.e. an in�nite list) to an output stream. The values of the event stream are either Nothing
denoting no occurence or Just a which means the event occured and its value is a. This characteristic is
captured by the Haskell Maybe type. We will drop the inp type variable from types of behaviors and events
from now on for the sake of simplicity (i.e. so possible types of the example behaviors above will be :
Behavior Graphic for animation of a ball, Behavior Image for sonar readings, Behavor Point2 for mouse
position, and Behavior Real for velocity).

There is a rich library of combinators and transformers in FROB to produce new events and behaviors from
existing ones. Here are some of the most basic ones.

(-=>) :: Event a -> b -> Event b

e -=> x is a new event with the constant value x, occuring only (and always) when e occurs.

(==>) :: Event a -> (a -> b) -> Event b

Similar to -=> above but this time the function argument is applied to the original event's value to get the
new value.

till :: Behavior a -> Event (Behavior a) -> Behavior a

switch :: Behavior a -> Event (Behavior a) -> Behavior a

These switchers can be used to transform behaviors with the help of events. b1 `till` e-=>b2 is the
behavior with values from b1 until the �rst occurence of e and then behaves like b2. switch works similarly
but this time at every occurence of e the overall behavior changes to the behavior produced by the event e.
For instance :

b1 `switch` ( (lbp -=> b2) .|. (key ==> \x -> if x='A' then b3 else b4) )

is a new behavior starting like b1, switching to b2 everytime when left mouse button is pressed (lbp is a
prede�ned event returning () ) or to b3 or b4 depending on the key pressed (key is also a prede�ned event
which returns the key pressed). Note that all behaviors b1, b2, b3, and b4 must have the same type to
ensure the type of the resultant behavior. If till were used instead of switch, after the �rst occurence
of lbp or key, the �nal behavior will remain as b2, b3 or b4 depending on the event, ignoring other event
occurences after that point.

(.|.) :: Event a -> Event a -> Event a

mergeE :: (a -> a -> a) -> Event a -> Event a -> Event a

.|. is used for the disjunction of events as seen in the previous example. e1 .|. e2 occurs everytime either
e1 or e2 occurs and the value is preserved. If both events occur at the same time, the implementation favors
value of the the leftmost event to be the value of the composed event. mergeE can be used to apply a merger
function to get the value when both events occur at the same type.

snapshotE :: Event a -> Behavior b -> Event (a,b)

snapshotE_ :: Event a -> Behavior b -> Event b
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snapshotE is used to capture the value of a behavior when an event occurs. snapshotE_ can be used to
disregard the event's value. These are useful to de�ne switching behaviors where the switching time is
determined by an event and the new behavior depends on the behaviors current value.

color = red `switch` (lbp `snapshotE_` color ==> changeColor)

where

changeColor oldColor = if oldColor = Red then yellow

else if oldcolor = Yellow then green

else red

In this example red, green and yellow are prede�ned constant color behaviors. The value of behavior color
at the event occurence is captured by snapshotE_ and then compared to Red and Yellow (in uppercase)
to determine the next color behavior. Red and Yellow are prede�ned color values composing the constant
color streams red and yellow.

stepB :: a -> Event a -> Behavior a

stepAccumB :: a -> Event (a -> a) -> Behavior a

Step functions are like switchers but this time the �nal behavior's values are directly determined by the
event. So a stepB e1 is a behavior which starts as a and then switches to e1's value every time e1 occurs.

e : __ __ a1 __ a2 __ __ __ __ a3 a4 __ a5 __ __ ...

a0 step e : a0 a0 a1 a1 a2 a2 a2 a2 a2 a3 a4 a4 a5 a5 a5 ...

In the case of stepAccumB the value of the event (which is a function) is applied to the current value of the
behavior to determine the next values of the behavior which will be constant until event occurs again. For
instance :

counter = 0 `stepAccumB` lbp -=> (+1)

lbp : _ _ | _ | | _ _ _ | _ _ | _ _ ...

counter : 0 0 1 1 2 3 3 3 3 4 4 4 5 5 5 ...

is a counter of the left mouse buttons pressed.

whenE :: Behavior Bool -> Event ()

b : F F F T T F T F T T T F F T F ....

whenE b : _ _ _ | _ _ | _ | _ _ _ _ | _ ....

whenE can be used to turn a boolean behavior to an event. The event occurs everytime the behavior changes
from False to True.

($*) :: Behavior (a->b) -> Behavior a -> Behavior b

lift0 :: a -> Behavior a

lift1 :: (a->b) -> Behavior a -> Behavior b

lift2 :: (a->b->c) -> Behavior a -> Behavior b -> Behavior c

lift3 :: (a->b->c->d) -> Behavior a -> Behavior b -> Behavior c -> Behavior d

....
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The lift operators are used for transforming behaviors (in fact they can also be used for events by the help
of overloading and type classes). lift0 returns an constant behavior with the value of its argument. lift1
maps its �rst function argument to its second behavior argument. lift2 zips two behaviors by applying
its function argument to the corresponding values of the behaviors. The operator $* can be used to de�ne
the family of lift functions by the help of lift functionss at the below level. $* applies the values of its �rst
argument (a behavior of functions) to its second argument to get the �nal behavior. So for example :

lift3 f b1 b2 b3 = lift2 f b1 b2 $* b3

Because of the function currying of Haskell lift2 f b2 b2 will return a behavior of type c->d which by
the help of $* will be applied to b3 of type Behavior c to return the �nal behavior of type Behavior d.

There are also clocked events of type CEvent clock inp a. The clock type of a clocked event determines
the occurence pattern of the event. So if two events, e1 and e2 have the same clock, then they are guaranteed
to be synchronous which means e1 occurs whenever e2 occurs. Therefore one can safely apply lifted functions
to synchronous events since the Haskell's type system prevents events with di�erent clocks to be mixed.

3.2 FROB

FROB is the extension of FRP for robot controlling. The Task monad of FRP is used to de�ne tasks and
sequence them for modular programming. A task combines a behavior with a terminating event.

The basic type used in FROB is RController which de�nes a behavior mapping from stimulus to a control
value :

(Sense1 i, Sense2 i, ..., Effect1 o, Effect2 o, ...) => RController i o

Here the type constraints restrict the input and output of the behavior to a speci�c class. Each sensor input
class de�nes some set of behaviors or events which can be used for de�ning the controller. Similarly for each
e�ector class there are functions which will be used for controlling the robot.

position :: Odometry i => Behavior i Point2

heading :: Odometry i => Behavior i Angle

stuck :: StuckDetection i => Event i ()

robotDiameter :: RobotProperties i => Behavior i Length

These are some of the signals related to the input classes. If the input of the controller is constrained as
having Odometry, the position and heading behaviors, which give the current position and heading of the
robot, can be directly used for de�ning the controller.

setWheelSpeeds :: WheelControl o => Behavior i (Speed, Speed) ->

RController i o

setHeading :: HeadingControl o => Behavior i (Speed, Speed) ->

RController i o

setBuzzer :: Buzzer o => Event i (Frequency, DeltaTime) ->

RController i o
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For output type classes, there are functions which de�ne a robot controller depending on behaviors or events.
These functions can be viewed as the commands that robot understands. Let's see an example how these
are used for de�ning controllers:

gotoPoint :: (Odometry i, WheelControl o) => Point2 -> RController i o

gotoPoint p = setWheelSpeeds (pairZ fwdSpeed rotSpeed)

where

fwdSpeed = .... -- position and heading behaviors of

rotSpeed = .... -- Odometry can be used to define these

The important point is that gotoPoint is independent of the hardware of the robot. For using a robot with
FROB one has to de�ne only speci�c behaviors and functions related to input and output classes. Then
robots having same sensors and actuators can use the same controllers without changing their code. pairZ
gets two behaviors and returns behavior of pairs composed by these two behaviors.

Tasks can be used to generate complex robot behavior. A robot task is a behavior (robot controller) combined
with a terminating event and a state:

type RobotTask s i o e = ...

Here, s denotes the type of the internal state of the robot. i is used for the input robot senses, o speci�es
the e�ectors and �nally e shows the type of the terminating event which also determines the exit value of
the task.

The Task monad can be used to sequence tasks. For example in :

t = do t1

t2

t is a new task combining tasks t1 and t2 where the overall behavior of t is the combination of behaviors
of t1 and t2. When t1 �nishes, the behavior is switched to t2.

t = do x <- t1

t2

In this type of binding the result of the task t1 is stored in the variable x and can be used while de�ning
t2. return x results in a task which exits immediately with the value x.

mkTask :: Behavior i o -> Event i x -> RobotTask s i o x

liftT :: Behavior i o -> RobotTask s i o x

liftT b = mkTask b neverE

The basic building block for tasks is the mkTask function. liftT can be used to lift behaviors to tasks which
never terminate.

bmapT :: (Behavior i a -> Behavior i b) -> RobotTask s i a x ->

RobotTask s i b x

fmap :: (x -> y) -> RobotTask s i b x ->

RobotTask s i b y
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bmapT and fmap can be used to change the associated behavior and event value of a task respectively.

snapshotT :: Behavior i a -> RobotTask s i o x ->

RobotTask s i o (x,a)

snapshotNowT :: Behavior i b -> RobotTask s i a b

snapshotT runs a behavior parallel to the task and adds the value of the behavior to task's exit value.
snapshotNowT results in a task which immediately returns with the current behavior value.

tillT :: RobotTask s i b x -> (Behavior i b -> Event i x) ->

RobotTask s i b x

tillT_ :: RobotTask s i b x -> Event i x -> RobotTask s i b x

tillT_ is used for adding a termination event to an existing task. The new task terminates either the old
or the new termination event occurs. It is generally used for adding termination criteria to non-terminating
tasks like the ones generated by liftT. By using tillT, the behavior of the task can be used to de�ne the
new terminating event.

timeLimitT :: DeltaTime -> RobotTask s i a e -> RobotTask s i a (Maybe e)

timeLimitT_ :: DeltaTime -> RobotTask s i a e -> RobotTask s i a ()

These are used for limiting the time a task can run. timeLimitT returns the normal task exit value if it
terminates before the time given. Otherwise the new task returns Nothing. timeLimitT_ returns () for
both cases.

(|.|) :: RobotTask s i o e -> RobotTask s i o e -> RobotTask s i o e

To run tasks in parallel |.| is used. In current implementation of FROB the two parallel tasks can try to
control the same e�ectors and the type system does not warn the programmer. In such a case, one of the
tasks controller will be ignored.

getState :: RobotTask s i o x

setState :: (s -> s) -> RobotTask s i o x

sendT :: Message -> RobotTask s i o ()

If the task has an internal state, getState can be used to access it and setState can be used to modify
it. Here the output task of getState is a task which immediately exits with a value. sendT is another
instantaneous task which sends a message.

4 Comparative Analysis

In this section we will try to �nd out the strengths and weaknesses of FRP and FROB. For this purpose, �rst
we will look at how some common architectures can be expressed in FROB's framework, how much exible
FROB is to di�erent design choices (i.e. behavior coordination strategies, planner and reactor integrations)
and then we will rewrite examples from some of the languages given in the previous section.
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4.1 Finite State Automata
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Figure 6: FSA representation of tasks

Finite state automata can be used to represent the sequences and aggregations of behaviors which de�ne
a complex task. They are not powerful enough to show how a behavior is encoded but a FSA diagram
intuitively represents the transitions between the behaviors. In robot control language domain, a node of a
FSA denotes the active behavior and a transition to a new node means switching to a new behavior.

In FROB, the task abstraction pairs a behavior with a terminating event. The task monad de�nes how
to bind two tasks. By using the monadic do notation, it is pretty straightforward to express the FSA of
�gure 6:

t = do t1

t2 `tillT_` stuck -=> handleStuck

x <- t3 `tillT_` stuck -=> handleStuck

if x=0 then t

else t6

where

handleStuck = do t4

y <- t5

if y then t

else t6

The result of the previous task (i.e. the terminating event value) can be used to choose from di�erent
continuations. The loops can be expressed by recursive de�nitions or recursive task functions like repeatT
or foreverT.

The nodes can be both primitive actions or complex behaviors. So we can use t as a simple task node
where its �nal subtask t6's value and termination time will determine its own. The transitions between the
subnodes will be hidden to the new FSA but it is possible to modify the behavior or the result of t by bmapT

and fmap respectively. One can also add new termination criteria to the composite node and this will apply
to all the subtasks. For example if a time limit criteria were added to t, the timeout transition will be taken
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when the time exceeds a speci�ed time amountwithout considering which subtask was active at that point.
In fact, we can use this property of FROB to de�ne t alternatively as:

t = do t1

x <- do {t2; t3} `tillT_` stuck -=> handleStuck

if x=0 then t

else t6

....

Although it is not common in FSA diagrams, in FROB, the result of a task can be also used to instantiate
the next task as in �gure 6:

do (x,y) <- findObject

goto (x,y)

The basic weakness of FSA diagrams is the diÆculty of representing concurrency and interactions between
concurrent tasks.

4.2 Robot Schema (RS)

Lyons and Arbib de�ne Robot Schemas as a special model of computation appropriate for sensory-based
robot controlling [18]. By using these schemas both the plan and the environment can be represented. A
basic schema consists of a schema name, input port list, output port list, a variable list for the internal
variables, and �nally a behavior which the schema represents.

Lyons later de�ne robot action plans as networks of concurrent processes [17]. Process combination operators
are used for building networks of processes. In FROB these operators can be expressed by using the task
monad:

Sequential P;Q do fP;Qg
Concurrent P j Q P jjj Q
Conditional P < v > @ : Qv do f v  P ; Q v g
Disabling P#Q P j : j Q

Here the operator ||| is di�erent than |.| the parallel operator de�ned earlier in the sense that the parallel
tasks can observe each others behaviors:

(|||) :: (Behavior i o -> RobotTask s i o e) ->

(Behavior i o -> RobotTask s i o e) ->

RobotTask s i o e

So instead of connecting input and output ports of concurrent behaviors one should pass the behaviors
between the tasks. This is still somehow limiting in current FROB since the behavior encoded in a robot
task should be of type RController but the processes can share any information via their ports. For the
examples where these ports are used for connecting sensors and e�ectors, these are handled by FROB's
own mechanisms for getting sensory data and sending commands to the robot. The other two composition
operators can be de�ned using the above ones.

The mixed-batch knitting problem [17] which Lyons used to show how to compose processes can be solved
in FROB as :
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part1 = do (p,t) <- locate tray

placeTray p t

(p,m) <- locate m1 |.| locate m2

placeMotor p m

part2 = do (p,s) <- locate sc |.| locate sds

case objType s of

sds -> placeSDS p s

sc -> do placeSC p s

(p,s) <- locate s1 |.| locate s2

placeSwitch p s

plan = do part1

part2

Lyons also gives an example how the environment can be modelled by using these process composition
operators. FRP's behaviors, events and combinators are very useful for this purpose. Haskell's abstraction
mechanisms and the functional programming style also makes these kind of environment modelling relatively
easier and more intuitive in FROB. For example the cars in the traÆc world of [17] can be de�ned as:

type Car = Behavior Point2

type Velocity = Behavior Real

datatype CarType = Avoid | Hit | Ignore

car :: CarType -> Velocity -> Car

car type vel = case type of

Avoid -> ...

Hit -> ...

Ignore -> ...

chooseVel :: Time -> Velocity

cars :: Behavior [Car]

cars = nilZ `switch` (key `snapshot` timeB ==>

(\(ch,t) = let vel = chooseVel t

c = case ch of

'a' -> car Avoid vel

'h' -> car Hit vel

'i' -> car Ignore vel

in

consZ cars c)) .|.

lbp -=> consZ cars (car Hit Fast) .|.

rbp -=> consZ cars (car Avoid Slow)

Here the function chooseVel returns a velocity behavior depending on the time. cars start as an empty
list and then each time a key, left mouse button or right mouse button pressed, a car is added to the list.

4.3 Subsumption Architectures

The coordination process in subsumption architecture results from two basic mechanisms, namely inhibition
and suppression. Inhibition means a signal is prohibited reaching the actuators and supression means the
signal is replaced with another suppressing message.
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We can have the similar e�ect in FROB by adding priorities to behaviors and using them for coordination
of the behaviors.

type RealB = Behavior RealVal

type Stimulus a = Stimulus {value = Behavior a, priority = RealB)

priorityB :: Stimulus a -> RealB

priorityB = lift1 priority

valueB :: Stimulus a -> Behavior a

valueB = lift1 value

withPriorityB :: Behavior a -> RealB -> StimulusB a

withPriorityB b p = Stimulus {value=b, priority=p}

subsumes :: StimulusB a -> StimulusB a -> StimulusB a

subsumes x y = ifZ (priorityB x >=* priorityB y) x y

The basic subsumption combinator is subsumes where the behavior with the higher priority is returned as
the function value.

Let's give an example to show how these can be used. We want to de�ne a robot task where the robot
will wander randomly while avoiding objects, pick up objects when it sees one and travels to home once all
pickups are complete.

homing :: WheelControl o => BoolB -> Stimulus (RController i o)

homing r allDone = travelTo home `withPriorityB` ifB allDone 2 0

pickup :: (Sonars i, WheelControl o) => [Point2] ->

Behavior (Stimulus WheelControl, Bool)

pickup [] = pairZ (noCommandT `withPriorityB` 0) trueZ

pickup (p::ps) = ....

wandering :: WheelControl o => Stimulus (RController i o)

wandering = randomWalk `withPriorityB` 1

avoiding :: (Sonars i, WheelControl o) => Stimulus (RController i o)

avoiding = ....

system :: (Sonars i, WheelControl o) => RController i o

system = valueB $ -- strips off the priority from the output

let p = pickup [point2XY 200 200, point2XY 100 100]

pickupB = fstZ p -- unpackage the pickup behavior

pickupDone = sndZ p -- and the "done" flag

in

homing pickupDone `subsumes`

pickupB `subsumes`

wandering r `subsumes`

avoiding r

The homing behavior takes a boolean behavior to check if all the pickups are done. Until that is true the
priority is 0 (i.e. the behavior is not active), after it becomes true the priority is 2. The wandering behavior
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has a constant priority of 1. So once homing is started it is inhibited. Pickup behavior's priority is 0 until a
goal is seen. Once a goal is seen it raises to 5 until the goal is visited. The priority of avoiding is determined
by the sonar readings. The sonar readings are combined into a force that pushes robot. So depending on
the closeness of the obstacles avoiding can supress all other three navigation tasks but once the obstacle is
avoided, the priority of avoiding will drop and the previous taks can continue whatever it was doing.

Pickup is initialized with a set of points representing the goals to visit. Its result is attached with a boolean
behavior to specify whether all the goals are visited. This behavior is passed to homing to make it determine
when to start going to home position. Note that system has constraints Sonars i and WheelControl o since
the two of its building blocks (pickup and avoiding) are using sonars and all four of them are robot controllers
that send commands to the wheel of the robot.

4.4 Assembling Behaviors

There are many behavior coordination mechanism. Since FROB is embedded in a functional language, one
can easily develop the abstractions to de�ne the coordination mechanism which is more appropriate to the
problem domain.

One coordination method is making behaviors cast votes for di�erent actions. The action receiving most
votes is chosen as the control behavior. For instance:

type Vote = FRPReal

datatype Plan = Avoid | Goto_Goal

choose :: [(Plan,Vote)] -> RController i o

choose votes = let add = foldl 0 +

avoidV = add (map (\(p,v)->if p=Avoid then v else 0) votes)

goalV = add (map (\(p,v)->if p=Goto_Goal then v else 0) votes)

in

if avoidV>goalV then avoid

else goto_Goal

Another competitive approach is to couple behaviors with situations and choose the highest priority behavior
whose constraint become true. For example, a control strategy for the goalkeeper of a robot soccer team
can compose of kicking the ball when it is too close, retreating to goal when necessary and blocking the goal
by moving to between the goal and the ball.

type SC i o = (Behavior i Bool, RController i o)

.+. :: SC i o -> SC i o -> SC i o

(r1, c1) .+. (r2, c2) = (r1 || r2 , ifB r1 c1 c2)

goalkeeper :: (Vision i, Odometry i, WheelControl o) => SC i o

goalkeeper = stayNear .+. kickIt .+. blockIt

where

stayNear = (distance position goal > maxGoal,

travelTo goalCenter)

kickIt = (distance position ballPosition < maxK &&

abs (vector2angle (ballPosition .-. position)) < pi/2,

travelTo ball)

blockIt = (trueZ, blocker)
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blocker = let v1 = ballPosition .-. position

v2 = ballPosition .-. goalCenter

vec = normV v1 - normV v2

in pushRobot vec

Here the highest priority is stayNear's. So if robot is away from the goal by maxGoal it returns to the
goalCenter immediately. If this predicate is not true then the closeness of the ball is checked. If it is near
then maxK the robot goes to ball to kick it. If both of these constraints are false the robot always tries to
position between the ball and the goal.

Most of the cooperative coordination methods based on behavioral fusion with vector summation. FRP
modules VectorSpace and Geometry can be used for this purpose.

4.5 Colbert examples

iterateT 1 t = do t

iterateT n t = do { t; iterateT (n-1) t }

turn angle = do initAngle <- snapshotNowT heading

mkTask $ setHeading (lift0 (initAngle + angle, 0.5))

whenE (heading ==@ lift0 (initAngle + angle))

move dist vel = let dist2 = f dist in -- convert dist from meters to a vector

do initPos <- snapshotNowT position

mkTask $ setWheelSpeeds (lift0 (vel,0))

whenE (initPos .-. position >@ dist2)

patrol1 = do move 1000 20

turn 180

move 1000 20

patrol n = iterateT n patrol1

To express the Colbert example, where robot patrols between two points for a speci�ed number of times, in
FROB we �rst de�ne a function to iterate a task for a given number of times. For de�ning turn �rst the
heading angle is stored at the task initiation. setHeading is used to control the robot's heading by giving
a desired angle and a turning rate. The robot turns slowly until the desired heading is achieved. move is
de�ned similarly.

approach = do x <- timeLimitT 30 $ snapshotT_ frontSonar $

(foreverT patrol1) 'tillT_' whenE (frontSonar <@ 2000)

case x of

Nothing -> error "failed due to timeout"

Just d -> move (d-200) 20

'tillT_' stuck -=> error "failed due to an obstacle"

In this example the robot patrols for 30 seconds or until an object is detected in less than 2 meters. If an
object is detected, the distance to object is returned by using snapshotT_ and the robot moves to within
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20 cm. of the object. Note that how the non-terminating patrol task is constrained by a terminating event
and a time limit. Similarly the overall approach task is terminated if the robot stucks at some point.

In the next Colbert example the robot patrols n times but patroling may be interrupted by other actions.
There is no interruption mechanism in the current FROB but sending and receiving messages can be used
to implements kind of task interaction. If the input stream is an instance of Messaged type class then we
can assume that there is a signals events stream for this purpose.

The Colbert example is designed such that if the robot is interrupted while there are n more patrols to �nish
including the current one then when it is resumed it makes n more patrols. So �rst we change our patrol
de�nition to get our hands on this value. We will use the internal state of a task to accomplish this.

patrol n = do res <- loop

if res=Success then

return ()

else

do stopT `tillT_` (whenE signals =@ lift0 (Resume "patrol"))

m <- getState

patrol m+1

where loop = do setState (+1)

patrol1

m <- getState

if m=n then return Success

else loop

`tillT_` (whenE signals =@ lift0 (Interrupt "patrol")

-=> Failure)

4.6 RAP system

First we will look at the RAP example where a tracking and approaching task was de�ned to illustrate the
capabilities of di�erent task continuations, control ow between tasks, lifespan of tasks depending on others.

approach = do camera ON

res <- moveTo target |.| track target

`tillT_` lost-target -=> LostTarget

`tillT_` camera-problem -=> Fail

`tillT_` stuck -=> Stuck

camera OFF

case res of

LostTarget -> ...

Stuck -> ...

Fail -> ...

Success -> ...

In this example moveTo and track are de�ned as parallel tasks. Then terminating events are added to this
composite task. The camera is shutdown regardless of how this task ends and then di�erent continuations
can be taken depending on the result of these two parallel tasks. Firby gives this example to show that only
success and failure as a task result is not enough for complex behaviors. In FROB the task results can be
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any value and the existent tasks' results can be modi�ed in a number of ways. The task monad enables to
sequence tasks in a exible way and also to choose from di�erent continuations depending on the results of
the previous tasks.

The second example from RAP system shows how to handle spawning tasks in subtasks. Unfortunately in
current FROB this kind of spawning tasks in a subtask and then terminating them in another subtask is
not possible. The monitorHand task must be active during all the move-object task:

move-object container = do pickup-object

goto container

drop-off-object)

|.|

monitorHand

This results in using the computational power unnecessarily in some part of the subtasks but if the added
task is a monitor like in this example, Haskell's laziness prevents computing anything that will not be used.
The Task monad can be extended having an environment which will be passed to the next task. Then it
may be possible to carry this monitoring task in the environment. In that case the code will possibly look
like:

move-object container = do pickup-object

goto container

drop-off-object

pickup-object = do start-pickup

addEnv monitorHand

grasp

finish-pickup

drop-off-object = do start-drop-off

ungrasp

if (inEnv monitorHand) then delEnv monitorHand

else return ()

finish-drop-off

4.7 TDL

The TDL example given at the previous section de�nes a task where a mail delivary robot navigates to a
room and tries to deliver the mail. This task can be de�ned in FROB as:

deliverMail room = do (x,y) <- getRoomCoordinates room

navigateToLocn (x,y)

timeLimitT 30 centerOnDoor

monitorPickup |.| speak "Xavier here with your mail"

centerOnDoor = do whichSide <- lookForDoor

if (whichSide != 0 ) then

if (whichSide<0) then

move -10

else

move 10
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centerOnDoor

else stop

It is not possible in FROB to expand future task trees while executing previous ones as in TDL since
spawning means function call in FROB but much of the functionality in this TDL example can be captured.
Expanding future task trees does not gain too much computation time but can be useful for building complex
plans. TDL's sequential execution is the default for FROB in task monad and while TDL spawns tasks
in parallel by default, in FROB |.| combinator is used as seen in the example where speaking activity and
monitorPickup runs in parallel.

4.8 Signal

mouse = loopOut lbp

where

loopOut (Nothing 'consS' es) = Nothing 'consS' loopOut es

loopOut (Just () 'consS' es) = Nothing 'consS' loopIn delta False es

loopIn 0 clicked (_ 'consS' es) = Just y 'consS' loopOut es

where

y = if clicked then Double

else Single

loopIn n x (Nothing 'consS' es) = Nothing 'consS' loopIn (n-1) x es

loopIn n x (Just () 'consS' es) = Nothing 'consS' loopIn (n-1) True es

delta = 10

In this SIGNAL example rather than following the de�ning signals in terms of existing signals approach we
found it more convenient to get the desired e�ect by going into the signals, i.e. checking the stream values.
The lazy evaluation feature of Haskell enables us to deal with in�nite datatypes like streams.

In this example, lbp is the prede�ned event stream related to left mouse button and consS is used for
constructing streams by giving the head and tail of the stream. The de�nition depends on the values of
the lbp event stream. When an click is detected which means a Just () value in the event stream, the
loopIn function is called. The �rst input value denotes how many more clock cycles are there to exit from
the interval. It is reset as 10 and decreased by each loopIn call. The second boolean value denotes whether
another mouse click occured inside the interval. It starts as False and set to True if an click is observed.
The next input value is the rest of the stream, since the head is processed in this call. When the �rst input
value of loopIn hits 0, meaning the interval has ended, the boolean value is checked and a Double or Single
value is �red according to this value. The loopOut function is called with the rest of the stream which again
starts to wait for a click to initiate loopIn. This example shows how the Haskell's functional style can be
incorporated into what we want to de�ne in FRP as pattern matching and recursion helped a lot to de�ne
mouse in this more intuitive way.

5 Conclusions

After the review of the robot control languages and comparing examples in FROB and in these, the strengths
of FROB emerge as:

� FROB is an embedded language in Haskell. So all the power of the functional language Haskell can
be used in robot programming. Since the functional paradigm depends on seperating the what-to part
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from how-to, the FROB de�nitions are more intuitive and formal de�nitions of tasks can be almost
directly coded in FROB. This makes FROB a good choice for rapid prototyping which is important in
the robot domain because of its experimental program development nature.

� FROB does not have a �xed approach to robot programmimg. So one can use whatever architecture
best suits her needs. For example using both the FSM depended task de�nitions or subsumption
architecture is possible and easy in FROB. Since developing abstractions is easier in Haskell, the
programmer has more exibility, like using the task arbitration method which suits best the goal of
the task.

� Similarly most of the languages reviewed gives one a set of possible things which can be done and
methods to do these. For the end-user of these languages it is impossible to extend or improve these
languages. Since FROB is basically just Haskell code, one has more options and feels exible in FROB
from this point of view.

� It is easier to adapt FROB to di�erent type of robots and again one does not have to be the lan-
guage's developer to do this. Also since the low level details are hidden under abstractions, program
development can be done independently from the speci�c hardware.

� FROB is based on FRP and FRP has a rich set of operators to de�ne events and behaviors. This can
be useful at behavior-based robotics since de�ning more complex behaviors from existing ones is more
straight forward and can be done more intuitively.

� The basic building blocks of robotic systems and general control strategies of robot programming are
available in FROB and these can be used in a modular and reusable way. As the examples show the
monadic de�nition of tasks gives FROB enough strentgh for scheduling tasks, constructing plans and
building more complex tasks from simpler ones.

� The mathematical nature of FROB and Haskell makes it easier to reason about programs and program
tranformations.

� Other systems like FVision which also depend on FRP can be easily integrated into the FROB frame-
work.

The weaknesses of FROB are :

� Using a functional language also has its drawbacks like garbage collection can decrease the performance
in real-time applications. In fact there is on going work to have FRP-like constructs in C++ and
transforming FRP programs into languages like C++ or Java. So the ideal solution can be to develop
programs in FROB by all the advantages of functional programming and then directly encoding or
automatically translating these into a more low-level language like C or C++.

� The concurrency in FROB is based on having two or more tasks which control the di�erent e�ectors
run simultaneously. The type system of Haskell does not allow at this point to detect two conccurrent
tasks which try to use the same e�ector. This kind of concurrency also is not powerful enough to model
interactions between tasks. Interruptions and sending messages between tasks are generally indirectly
expressed in the current FROB or impossible for some cases.

� There is not any seperate exception abstraction in FROB but the termination criteria of a task can
be modi�ed by adding events. This is generally adequate for most of the cases but the continuation
should be coded seperately and this can be in conict with the modularity.
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� Similarly sometimes having a global database shared by tasks or ability to refer tasks with its names
are useful in other languages. FROB's functional style results in slightly more complicated code.
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