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Abstract. Many Vision-Based Human-Computer Interaction (VB-HCI)
systems are based on the tracking of user actions. Examples include gaze-
tracking, head-tracking, finger-tracking, and so forth. In this paper, we
present a framework that employs no user-tracking; instead, all interface
components continuously observe and react to changes within a local
image neighborhood. More specifically, components expect a pre-defined
sequence of visual events called Visual Interface Cues (VICs). VICs in-
clude color, texture, motion and geometric elements, arranged to maxi-
mize the veridicality of the resulting interface element. A component is
executed when this stream of cues has been satisfied.

We present a general architecture for an interface system operating un-
der the VIC-Based HCI paradigm, and then focus specifically on an
appearance-based system in which a Hidden Markov Model (HMM) is
employed to learn the gesture dynamics. Our implementation of the sys-
tem successfully recognizes a button-push with a 96% success rate. The
system operates at frame-rate on standard PCs.

1 Introduction

The promise of computer vision for human-computer interaction (HCI) is great:
vision-based interfaces would allow unencumbered, large-scale spatial motion.
They could make use of hand gestures, movements or other similar input means;
and video itself is passive, (now) cheap, and (soon) nearly universally available.
In the simplest case, tracked hand motion and gesture recognition could replace
the mouse in traditional applications. But, computer vision offers the additional
possibility of defining new forms of interaction that make use of whole body
motion, for example, interaction with a virtual character [17].

A brief survey of the literature (see Section 1.1) reveals that most reported
work on vision-based HCI relies heavily on visual tracking and visual template

recognition algorithms as its core technology. While tracking and recognition are,
in some sense, sufficient for developing general vision-based HCI, one might ask
if they are always necessary and if so, in what form. For example, complete,
constant tracking of human body motion, while difficult because of complex
kinematics [21], might be a convenient abstraction for detecting that a user’s
hand has touched a virtual “button,” but what if that contact can be detected
using simple motion or color segmentation? What if the user is not in a state



where he or she is interacting at all? Clearly, we don’t want to perform these
operations except when needed, and then hopefully within a context that renders
them reliable.

1.1 Related Work

The Pfinder system [29] and related applications [17] is a commonly cited exam-
ple of a vision-based interface. Pfinder uses a statistically-based segmentation
technique to detect and track a human user as a set of connected “blobs.” A va-
riety of filtering and estimation algorithms use the information from these blobs
to produce a running state estimate of body configuration and motion [28]. Most
applications make use of body motion estimates to animate a character or allow
a user to interact with virtual objects.

More broadly, from the point of view of vision, there has been a great deal
of interest in tracking of human body motion, faces, facial expression, and ges-
ture, e.g. [2,10,23,5,30,8,3,19,16,7,4], with the general goal of supporting human-
computer interaction.

From the HCI perspective, there have also been a wide class of “demonstra-
tion systems” that make use of vision as their input. The ZombiBoard [18] and
BrightBoard [24] are examples of extensions of classical 2-D “point-and-click”
style user interfaces to desktop/blackboard style interactions. They allow, for ex-
ample, the selection, capture, or manipulation of items viewed by a video camera
on a whiteboard or desktop. Input is usually via special written tokens; vision
processing is based on simple background subtraction or thresholding followed
by binary image processing, much as with Pfinder. More extensive proposals
for mixing virtual and physical documents on the desktop include work on the
Digital Desk [27] and on the “office of the future” [20]. A good example of a
gesture-based interface is GestureVR [23].

It is clear that general-purpose vision tools for HCI is a nascent technology
– systems are quite limited in scope, slow, or lack flexibility and robustness.
In our work, we present a general architecture for an interface system operating
under the VIC-Based HCI paradigm (Section 2). To the best of our knowledge, it
is the first proposed general-purpose framework for vision-based HCI. We then
focus on an appearance-based system using a Hidden Markov Model to learn
user-input dynamics. This system operates under the VIC paradigm.

2 The VIC Paradigm

2.1 Modeling Interaction

Current interface technology, Windows-Icons-Menus-Pointers (WIMP) [26], is
modeled with a simple state-machine (Figure 1). The dominant interface com-
ponent in these third-generation interfaces is the icon. Typically, these icons have
one pre-defined action associated with them that is triggered upon a mouse click.

We extend the functionality of a traditional icon by increasing its number
of associated actions that can be triggered by the user. For standard WIMP
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Fig. 1. The icon state model for a WIMP interface.

interfaces the size of this set is 1: point-and-click. For super-WIMP1 interfaces,
the size of this set is larger, but still relatively small; it is limited by the coarse
nature of mouse input. Our vision-based extension greatly increases the set of
possible user inputs. To allow for such an extension, the notion of the icon must
change: we define a VIC-based interface component (VICon) to be composed of
three parts. First, it contains a visual processing engine. This engine is the core
of the VICon as it replaces the current point-and-click nature of third-generation
interfaces. Second, it has the ability to display itself to the user, and lastly, it
has some application specific functionality.

As mentioned earlier in Section 1, the VICon does not rely on tracking al-
gorithms to monitor the user and detect actions. Instead, the VICon watches
a region-of-interest (ROI) in the video stream and waits for recognizable user-
input. For instance, if we model a simple push-button, the VICon might watch
for something that resembles a human-finger in its ROI.

The obvious approach to detect user interaction is one of template-matching
in which the VICon is aware of a set of possible gestures and uses image process-
ing techniques to analyze the ROI in every frame of video. However, in practice,
such a method is prone to false-positives by spurious template matches. Also,
a template matching approach, alone, is potentially wasteful because it is more
expensive than other simpler tasks like motion detection and color segmentation
that may easily indicate a negative match.

If one observes the sequence of cues that precede a button-push, for instance,
one notices that there are distinct stages preceding the actual button push:
motion, color-blob, rough edges. This sequence of cues, ordered from simple
to complex, can be used to facilitate efficient, accurate user-input detection.
Define a selector to be a vision component that computes some measure on a
local region of an image, and returns either nothing, indicating the absence of
a cue or feature, or values describing a detected feature [11]. For example, a
motion selector might return nothing if there is no apparent image motion or a
description of the size and magnitude of a region of detected motion. Thus, at

1 We call a super-WIMP interface any interface that extends the traditional function-
ality of the mouse to include multi-button input or mouse-gesture input. One such
example is the SKETCH framework [31].



its core, the visual processing engine of the VICon is a sequence of selectors: we
call it a visual interaction cue parser or just a parser.

0 1
Cue 1

Idle

. . . N N +1

. . . N N +1

i

j

i

j

i

j

. .
 . 

. .
 

Action

Cue Drop−Out

Cue i

Fig. 2. The state model for a VIC-based interface component.

Formally, we define a visual interaction cue parser (Figure 2). It is a compo-
nent with the following structure:

1 A finite set of discrete states s1, s2, ...sn.
2 A distinguished initial state s1.
3 Associated with each state si, a function fi on the incoming input stream

that defines a continuous state variable x.
4 For each state si, a set of transition rules that associates an event ei,j , j =

1 . . .m ≤ n (informally, the output of a selector) with either a state of
higher index, or s1. By convention, the first transition event to fire defines
the transition for that state.

We return to the example of a button push from above. Using a parser, we
create a possible sequence of selectors: (1) a simple motion selector, (2) a coarse
color and motion selector, (3) a selector for color and cessation of motion, and
(4) gesture recognition. It is easy to see that processing under this framework is
efficient because of the selector ordering from simple to complex wherein parsing
halts as soon as one selector in the sequence is not satisfied. More powerful
and sophisticated parsing models are plausible under this paradigm: an example
showing the use of a Hidden Markov Model is presented in Section 3.

The intent of the framework is that a parser will not only accept certain
input, but might return other relevant information: location, duration. The key
factor differentiating the VIC paradigm from traditional interface components is
that there may be multiple exit cases for a given VICon determined by different
streams through the parser each triggering a different event. The lexicon of
possible triggers is an order of magnitude larger than WIMP and super-WIMP
interfaces.

2.2 Interaction Modes

The notion of a VIC-based interface is broad and extensible to varying applica-
tion domains. In this section we enumerate the set of interaction modes in which
a VICon may be used.



1. 2D-2D Projection - Here, one camera is pointed at a workspace, e.g. table-
top. One or many projectors are used to project interface components onto
this surface while the video-stream is processed under the VIC paradigm.
This mode has been proposed in [32]. We feel incorporating VIC-based in-
terface components will increase is effectiveness and broaden the domain of
applications.

2. 2D-2D Mirror - In this mode of interaction, one camera is aimed directly
at the user and the image stream is displayed in the background of the user-
interface for the user. Interface components are then composited into the
video stream and presented to the user. This interface mode could also be
used in a projection style display to allow for a group to collaborate in the
shared space.

3. 3D-2D Projection - This mode is similar to the first (2D-2D Projection)
except that 2 or more cameras will be aimed at the workspace and the set
of possible selectors is increased to include more robust 3d geometry.

4. 2.5D Augmented Reality - Both video-see-through and optical-see-through
augmented reality are possible if the user(s) wear stereo head-mounted dis-
plays (HMD) [1]. With stereo cameras mounted atop the HMD, knowledge
of a governing surface can be extracted from the view, e.g. planar surface
[6]. All VICons can then be defined to rest on this governing surface and
interaction is defined with respect to this surface. One possible application
is a piano where each key is a separate VICon.

5. 3D Augmented Reality - In this case, we remove the constraint that the
interface is tied to one governing surface and allow the VICons to be fully
3D. An example application would be a motor-function training program for
young-children in which they would have to organize a set of blocks whose
shapes and colors differ according to some rubric.

2.3 Prior State of the Art in VIC Technology

In this section we show a small set of example interfaces built under the VIC
paradigm: interaction through a stream of local-based selectors. First, we show
a simple button-based VICon in a calculator setting (Figure 3-left). In this case,
the VICon used a motion-based cue, a color-segmentation cue, and enforced
that the color remain present for a static time-interval. Next, we show multiple
triggers based on user-input (Figure 3-middle). Here, the user can select the ball,
drag it, and release. The parser incorporates a simple-gesture recognition stage;
it’s state-model follows Figure 2. As mentioned earlier, motion and dynamics
can be added to the VICons. Figure 3-right shows a BreakoutTM like program
where the ball is a VICon. During play, the ball, the VICon, travels through
the workspace. The user attempts to prevent the ball from falling through the
bottom of the workspace while deflecting it toward the colored bricks at the top
of the workspace; notice the VICon is not anchored.

The previous three VIC-based interface examples employ the 2D-2D Mirror
mode of operation. Our current focus is the 2.5D Augmented Reality mode
of operation. We have developed a set of fast surface recovery techniques [6]



Fig. 3. (left) A VIC-based calculator using a motion-color parser. (middle) Gesture-
based demonstration of multiple interaction triggers for a single VICon. (right) VIC-
Based 2D-2D mirror mode interface for a BreakoutTM style game.

allowing us to anchor the interface to a planar surface. In the next section, we
present an extension of the parsers presented above through the incorporation
of background-foreground modeling and stochastic parsing.

3 Focus: A Stochastic VICon via HMM

We designed and implemented a real-time VICs-based interaction system to
identify a button-pushing action. This module can be easily incorporated into a
larger system that allows the user to interact with the computer through gesture
and finger movement. We use a static camera to supervise a virtual button, which
is represented by a graphical icon. The user is expected to move his finger toward
the button and stay on the button for a short period of time to trigger it. The
system will decide whether the user has triggered the button. Thus, fast and
robust foreground segmentation and action recognition are two key elements of
our system.

3.1 Background Modeling and Image Segmentation Based on Hue

Histogram

Background subtraction, gray-scale background modeling [12], color appearance
modeling [25], color histogram [15] and combining of multiple cues [22] are among
the most widely used methods to model the background and perform foreground
segmentation. We propose to use a hue histogram for two reasons: speed and rel-
ative color invariance. This scheme employs a very fast on-line learning process,
which is an advantage for this specific application since the area surrounding the
button may change between sessions. Furthermore, hue is a good color invariant
model that is relatively invariable to translation and rotation about the viewing
axis, and changes slowly under change of angle of view, scale and occlusion [9].

We assume that the background is static for a given session. We split the
background image into an array of equal-sized sub-images. For each sub-image,
we build a hue histogram to model it. We process the foreground image in a



similar way and perform pairwise histogram matching between background and
foreground image histograms. Here, we employ histogram intersection [25] as the
comparison criterion.

H(I, M) =

∑n

j=1
min(Ij , Mj)

∑n

j=1
Mj

(1)

Here I and M refer to model and measure histogram respectively. If the
matching value is below the threshold, which is determined empirically, the cor-
responding image region is classified as foreground; otherwise, it is background.
Our experiments show that combining hue color model and histogram inter-
section can achieve relative invariance to illumination changes and obtain good
segmentation results. After employing a median filter on this binary image to re-
duce possible noise, we perform the segmentation on the original image according
to the identity of each region. Figure 1 shows an example.

Fig. 4. An example of background image, unsegmented image and segmentation result.
The leftmost image is the background. The second image shows when the hand has
entered the scene. The final segmentation result is shown in the third image. The last
image demonstrates our feature space definition.

3.2 HMM-based Human Activity Recognition

In our experiment, we employ a simple HMM [13] [14] to train and recognize
the button-pushing action. The basic idea is to define a finite feature space onto
which the image is mapped. Then based on captured training image sequences,
we can construct HMMs for each class of actions and train them using the Baum-
Welch[14] algorithm. The probability that each HMM generates the given feature
sequence is the criterion of recognition.

We propose a computationally efficient and robust feature extraction scheme.
This feature indicates the direction and distance of the finger from the center of
the button. In principle, we split the contiguous region of the button into a 5 by
5 grid. According to the segmentation result, we can tell whether a certain cell
is foreground or background. By comparing the number of cells touched by the
hand in each direction, we know from which direction the hand is coming. It’s
also easy to tell the distance of the finger to the button by checking the nearest



cell covered by the hand. Combination of all possible direction and distance
forms our feature space.

For each feature state, we define a basic HMM to represent it. And for each
of the four classes of actions (i.e., pushing from up, down, left and right, respec-
tively), we will find a representative sequence. Based on this standard sequence,
we build the HMM for this class by concatenating, with null transitions, all the
basic HMMs corresponding to each symbol in the sequence.

Since it is difficult to capture all possible patterns of non-pushing actions,
we use a threshold on the highest possibility of the classes to perform rejection.
However, the duration of the action may vary significantly and thus the possibil-
ities that each class generates such a sequence, even though the action pattern
is still the same. To overcome this time variation, we perform sequence aligning
in training and recognition. That is, we choose a fixed length, for example, 20
frames, to be the standard duration. For any sequence longer than this, we re-
sample the sequence to get a new sequence with standard length. We will discard
those sequences that are shorter than standard length.

4 Experiment Results

In our current experiment, we use a color camera with image size of 640 × 480
as the imaging sensor. The system can achieve a frame rate of about 10 fps on
a Pentium III PC. If we reduce the resolution to 320× 240, the system can run
at over 20 fps.

4.1 Background Modeling and Segmentation Result

To test our segmentation scheme, we captured image pairs of the background
and foreground. By comparing the segmentation result and the ground-truth
classification image, which is generated by manually marking the foreground
part of the scene, we are able to evaluate this algorithm. We captured more than
20 pairs of background/foreground images with different background scenes and
carried out the experiment on these images. The test set also includes 6 pairs of
images that undergo illumination changes. As a result, the average correct ratio
is 98.16%, with average false positive ratio of 1.55% and false negative ratio of
0.29%.

We also compare the segmentation result with different sub-window size and
with different number of bins of the hue histogram. The result shows that his-
tograms with at least 8 bins perform better than those with less, while increasing
the bins to 16 or more does not bring any performance enhancement. Figure 5
shows the relationship between segmentation result and size of sub-images. It
can be seen that for a histogram with only 4 bins, the more samples, the better
the result. While with 8 bins, the correct ratio and false positive doesn’t change
much. For both cases, false negative ratio increases with the tile size.
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4.2 Action Recognition Result

For training and testing of our HMMs, we recorded over 300 action sequences by
6 different people, 76 of them used for training. An offline procedure is carried out
to find the best characteristic sequence for each class. After training, the system
can achieve a correct ratio of 100% on the training set. We tested the system on
a set of 277 well-segmented sequences, including both valid and invalid button-
triggering actions. The length of these sequences varies significantly, ranging
from 30 to over 220. Our test set includes some sequences with illumination
changes, which are also segmented successfully. The overall correct ratio on this
test set is 96.8%. The result demonstrates the robustness and correctness of our
system.

The standard length of the category characteristic sequence will influence the
system performance and speed. Along with the increase of the size of primary
sequence, the time needed to carry out the recognition will also grow linearly.
However, since a longer sequence contains more information and thus, has a
larger HMM, the total system performance will improve. The following table
shows the experimental results with category primary sequences of different sizes.

Table 1. Experiment results with different length of characteristic sequence

L Average fps Accuracy of Training Set Accuracy of Test Set

10 10.3 100.0% 86.8%

20 10.0 100.0% 94.2%

30 9.8 100.0% 96.8%



5 Conclusion

We have introduced the VICs approach to vision-based interaction. VICs stems
from our experience using locally activated iconic cues to develop simple vision-
driven interfaces. In particular, we have identified two central problems to be
solved: developing reliable foreground-background disambiguation, and incorpo-
rating dynamics into gestures. We have shown that, given good solutions to the
former problem, the latter can be addressed using standard HMM techniques.

Our immediate goal for the VICs project is to create 2.5D surface-anchored
interfaces. To this end, we have developed a set of fast surface recovery tech-
niques to place two rectified images in correspondence [6], and we are currently
extending the results reported in this paper to a two-camera system. In the lat-
ter case, the HMM input will be data from both images, and the goal will be to
recognize that the user is pressing a button as if it appears on the underlying
surface.
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