
Modeling Realistic Tool-Tissue Interactions with Haptic Feedback: A
Learning-based Method

Zachary Pezzementi
zap@cs.jhu.edu

Daniel Ursu
dursu1@jhu.edu

Sarthak Misra
sarthak@jhu.edu

Allison M. Okamura ∗

aokamura@jhu.edu

Engineering Research Center for Computer-Integrated Surgical Systems Technology (ERC-CISST)
Laboratory for Computational Science and Robotics (LCSR)

The Johns Hopkins University

ABSTRACT

Surgical simulators present a safe, practical, and ethical method
for surgical training. In order to enhance realism and provide the
user with an immersive training experience, simulators should have
the capability to provide haptic feedback to the user. High-fidelity
surgical simulators also require accurate modeling of the interac-
tion between surgical instruments and organs. Linear elasticity-
based models are commonly used to simulate tool-tissue interaction
due to computational considerations, although real soft tissues ex-
hibit nonlinear viscoelastic behavior. In this paper, we use a learn-
ing algorithm to train a linear 2D mass-spring-damper system that
behaves similarly to a high-fidelity nonlinear finite element (FE)
model. The spring parameters are trained off-line using data from
an FE simulation of brain tissue deformation using simultaneous
perturbation stochastic approximation, a model-free optimization
algorithm. The model is implemented in a real-time soft tissue
simulator with haptic interaction provided through the PHANTOM
Omni haptic device. Our model’s response is significantly closer to
the desired response of the FE model than that of a linear heuristic
model.

Index Terms: I.6.5 [Computing Methodologies]: Simulation and
Modeling—Model Development; H.5.2 [Information Systems]: In-
formation Interfaces and Presentation—User InterfacesHaptic I/O

1 INTRODUCTION

Advances in computer hardware and software have made it possible
for computation to play a vital role in medicine. The use of efficient
and high-fidelity graphics has revolutionized the way medical im-
age data are accessed and reviewed. The same technology makes
it possible to create realistic computer simulations of medical pro-
cedures. The objective of surgical simulators is to provide medical
practitioners with an authentic, immersive virtual or augmented re-
ality environment for the training, practice, and planning of surgical
procedures. Accurate and realistic modeling of the interaction be-
tween surgical instruments and human organs has been recognized
as a key requirement in the development of high-fidelity surgical
simulators. Such advanced simulators should also have the capa-
bility of providing truthful haptic (force and tactile) feedback to the
user.

Continuum mechanics provides a sound physics-based founda-
tion for modeling biological tissues, while Finite Element (FE)
modeling is a general computational technique to simulate re-
sponses of materials to loads and deformations. The current state
of the art for modeling tool-tissue interaction dynamics in surgical

∗This work was supported in part by Johns Hopkins University and NIH
grant # R01 EB002004.

FE
Simulation

Organ Forces

PoseExperiments

Learning
Algorithm

Haptic
Simulator

Stiffness

Damping

User

Forces

Figure 1: An overview of modeling realistic tool-tissue interactions
with haptic feedback using a learning-based method

simulations is given by nonlinear FE models. Implementations of
these models, however, are prohibitively complex or expensive to
compute at haptic update rates (∼ 1 kHz), particularly when inter-
actions involve cutting and tearing of tissue [21, 24], and thus mesh
re-definition. Hence, most of the past studies within the robotics
and haptics communities have assumed linear elastic behavior for
modeling tissues. However, human tissues are in general inhomo-
geneous and anisotropic, and possess nonlinear viscoelastic proper-
ties [8]. Furthermore, the responses of linear and nonlinear models
are significantly different even for simple tool-tissue interactions
[12]. Researchers address the trade-off between accuracy and com-
putational time by either making simplifying assumptions to FE
models to allow them to run at interactive rates [5, 23] or adapting
simpler models to more closely emulate the FE models [16]. Re-
cent work has focused on applying learning methods to this process,
adapting a mass-spring mesh to approximate the reaction observed
in real tissue deformation tests, optimizing both the mesh topol-
ogy [2] and spring stiffnesses [3, 14, 6]. Both simulated annealing
[6, 14] and genetic algorithms [2, 3] have been applied to mesh op-
timization. Since real-world deformation data is not available in
plentiful supply, FE models are sometimes used as an intermedi-
ary. That is, mass-spring-damper meshes are used to replicate FE
model deformation behavior [2, 3, 14]. These approaches are ulti-
mately limited, however, to representing a single linear subspace of
the total deformation space.

In this paper, we propose a novel means of emulating nonlin-
ear tissue behavior using a linear mass-spring-damper mesh with
changing spring constants, designed to approximate the behav-
ior of the tissue at multiple deformations. Figure 1 depicts the
various aspects of our simulation model. We start by extract-
ing FE simulation data based on experimental studies for various
loading/displacement scenarios and provide them to a model-free
stochastic learning algorithm. Multiple sets of tissue stiffness pa-
rameters are then trained on the local tissue deformation data using
the optimization algorithm. Although each individual set of tissue
stiffness parameters is linear, each is optimized to a limited range of
inputs. Dynamically switching between these sets of tissue param-
eters results in a piecewise-linear approximation of the nonlinear
characteristics of the overall actual tissue deformation. The opti-
mized mesh data is applied towards the design of a prototype haptic
tissue deformation simulator, intended to show the striking differ-
ences between the nonlinear and linear tissue deformation models.
To our knowledge, no published work exists that couples nonlin-
ear elasticity-based modeling to a learning algorithm and shows the
feasibility of operation using a haptic device.

The rest of our paper is organized as follows: Section 2 describes
the continuum mechanics theory governing nonlinear tissue defor-
mation and Finite Element (FE) simulations based on real tissue
data. In Section 3, we describe our optimization learning method.
The setup of the haptic simulation follows in Section 4. Finally in
Section 5, we discuss the validity of our method and future work.

2 MODELS FOR SOFT TISSUE DEFORMATION

In this paper, we present a system in which a high-fidelity, offline
deformation model is used to train a lower-fidelity, interactive de-
formation model. Our first step is therefore to acquire realistic tool-
tissue interaction data which can be used by a learning algorithm to
train our interactive model. Ideally, data would be acquired from
experimental studies on human tissue in vivo, recording tool force
and tissue deformation. These tests would be performed at several
locations on the organ with various penetration depths, tool forces,
and loading conditions. Data could also be acquired in vitro, either
through visual tracking of the displacement of markers embedded
in the tissue [7, 10], or through FE simulations. While any such
data extraction method would be appropriate, this work uses pre-
vious FE simulations based on compression tests done on porcine
brain tissue by Miller et al. [11]. In this section, we briefly describe
the theory used for modeling of soft tissues and the FE simulations
done to generate the data used in learning.

2.1 Nonlinear Elasticity
Human organs in general are inhomogeneous, anisotropic, and ex-
hibit nonlinear viscoelastic properties. Though linear elastic mod-
els are frequently used to model tissues for simulating surgical pro-
cedures, such models are only valid for materials undergoing small
strains. In most surgical procedures, organs are being subjected to
large strains. The behavior of materials undergoing large strains
(>1%-2%) is described by the theory of nonlinear elasticity, e.g.
hyperelastic models [8].

A hyperelastic material is characterized by the existence of a
strain energy density function, W (F). The stress in the material
as a result of deformation can be obtained from

P =
∂W (F)

∂F
, (1)

where P is the first Piola-Kirchhoff stress tensor and F is the de-
formation gradient tensor. The Cauchy stress tensor and first Piola-
Kirchhoff stress tensor are related by

PFT = Jσσσ , (2)

where J = det(F). There are several formulations for the strain
energy density function, and we choose to use the Mooney-Rivlin
model, which is widely used to model soft tissues [15]. The
Mooney-Rivlin model is given in terms of the principal invariants,
Ii, for isotropic and incompressible materials as

W = C1 (I1−3)+C2 (I2−3) , (3)

where C1 and C2 are material constants. The principal invariants are
defined in the terms of the right Cauchy-Green tensor, C = FT F, as

I1 = C : I, (4)

I2 =
1
2

(
(C : I)2− (C : C)

)
, (5)

I3 = det C. (6)

A least squares fit to the indentor displacement and force data
for porcine brain in [11] resulted in Mooney-Rivlin parameters
of C1 = 263 Pa and C2 = 491 Pa, which are used in (3). This
hyperelasticity-based nonlinear model is sufficient for the purpose
of comparing simulation results obtained via the FE method and the
learning algorithm.

2.2 Finite Element Simulations
The Mooney-Rivlin hyperelastic model described in (3) was used
in FE simulations. The FE simulations were performed using
ABAQUS [1], and the simulation output data were input to the
learning algorithm. The dimensions of the two-dimensional model
were 10 cm× 10 cm, with the bottom edge fully constrained. The
FE nodes were placed 1 cm apart, which is consistent with the
model that will be used for haptic rendering, as described in Sec-
tion 4. The elements were quadrilateral and a medial axis algorithm
was used for meshing, with quadratic interpolation basis functions
to estimate data between nodes. In order to train the learning al-
gorithm, several static FE simulation cases were conducted. The
displacements were applied at the model nodes, and each of the
nodal forces and displacements were recorded for every simulation
case. Figure 2 depicts contour plots of two of the 18 loading cases
used in this study. These cases consisted of forces applied at the
midpoints and corners of each of the unfixed edges of the square.
At each of the three midpoints, forces were applied perpendicular
to the edge, and at both corners, forces were applied at 3 angles,
horizontally, vertically, and at a 45◦ angle. At each angle, two dif-
ferent force magnitudes were used. These cases were considered to
cover most major deformation modes a user is likely to encounter
through interaction with the mesh.

2.3 Heuristic Model
Van Gelder shows in [22] that exact simulation of an isotropic elas-
tic membrane with a linear mass-spring mesh is impossible, but
proposes a heuristic varying according to the geometry of elements
incident upon that edge. For mesh edge c with length |c|,

kc =
E2 ∑

e
area(Te)

|c|2
(7)

Here E2 is the two-dimensional Young’s modulus and e indexes
each of the model elements (triangles) incident upon edge c. We
extend this model to provide masses as well in the same manner as
in [13], where the mass at point i is given by

mi = ∑
j

1
4

ρ jV j, (8)

where j indexes all model elements containing point i, and ρ j and
V j denote density and volume of element j respectively.

3 LEARNING ALGORITHM FOR SELECTING MODEL PARAM-
ETERS

Mass-spring-damper meshes are by definition linear systems and
are thus unable to describe nonlinear deformations. However, us-
ing the same theory behind local linearization of nonlinear systems
(linearizing a system around a node of interest and estimating the
behavior of the system in the neighborhood of that node as linear),
the nonlinear behavior of tissue deformation can be captured for lo-
cal deformations around a linearized node. That is, a specific set of
spring constant weights should accurately output the forces derived
experimentally via FE analysis, around a small neighborhood of the
displacement.

In order to obtain the optimized mass-spring-damper meshes
for particular forces and displacements of interest, a model-free
stochastic optimization algorithm is used. Model-free optimization
algorithms can be implemented for arbitrarily complex systems and
have been shown to have good convergeance properties [19]. The
use of “model-free” is to be taken literally in the sense that no hid-
den or implicit modeling is required, which eliminates the system
characterization and identification processes, and thus the need to
allocate time and resources to determine an adequate model of the

1 cm

Figure 2: Example FE simulation contour plots used to train the learning algorithm: (left) Displacement of 1 cm magnitude applied horizontally
to a node on the left edge (right) displacement of 1.5 cm magnitude applied to the right-corner node at an angle of 45◦. (center) Legend which
describes the color coding of the figures, which represents the displacement of the elements. Both plots are overlaid on the undeformed model.

underlying system and evaluate its validity. Two major advantages
of the model-free approach over traditional optimization algorithms
are that it (1) tends to better handle changes in the underlying sys-
tem as it is not tied to a prior model, and (2) tends to be more robust
in the case of widely varying control inputs. However, care must
be taken to ensure that the mathematical solution obtained makes
physical sense and does not result in unrealistic system parameters.
Such constraints can be imposed either on the minimization (loss)
function of the optimization algorithm via penalty methods [19],
or by limiting the domain from which the algorithm is allowed to
choose its solution set. In this work, the only parameters optimized
were the spring weights, but the optimization could be extended to
include the node masses or damping constants without difficulty.

Simultaneous Perturbation Stochastic Approximation (SPSA)
was chosen as the model-free optimization algorithm because of
its flexibility. The algorithm is based on the principle of gradi-
ent estimation of a loss function, L (θθθ k), whose evolution in time
is unknown, where θθθ ∈ Rn are the parameters to be optimized.
For a set number of iterations, k, these parameters are perturbed
in random directions using a random symmetric probability mass
function whose value around 0 is 0. Loss functions, L (θθθ+k) and
L (θθθ−k), corresponding to each perturbed parameter state are com-
puted at each iteration. Then a gradient estimate is created by sub-
tracting the two loss functions, L (θθθ+k) and L (θθθ−k), and divid-
ing by the random noise elements used to perturb the system. The
procedure is followed for k iterations or until some minimization
goal, θθθ

∗ ∈ Rn, has been reached. For an in-depth discussion of
SPSA, the reader is referred to [20].

In order to optimize the mass-spring-damper mesh, the elements,
θθθ ∈ R220, were chosen to be the vector of 220 spring constants of
the 11× 11 node 2-D system described in Section 4. The data for
optimization was obtained from FE simulations of brain tissue at
specific displacements in the X and Y directions, u(x,y). The loss
function to be minimized,

L (θθθ k) =

√(
fopt− factk

)T
Q

(
fopt− factk

)
, (9)

was designed as a weighted root mean square (RMS) error func-
tion between factk

and fopt, where factk
is the force output of the

spring matrix, K, with actual spring constants θθθ k at iteration k, at
the specific displacement u(x,y)

factk
= K(θθθ k)u(x,y) . (10)

fopt is the force solved by ABAQUS for that same displacement.
In (9), Q is a diagonal matrix of entries ranging from 0 to 1, repre-
senting the relative importance of some weights in influencing the
output over others. Specifically, the entries of Q were chosen such
that the springs in the neighborhood of the displaced mesh region
are more important than springs farther away from the region. As
such, the 3× 3 grid of springs in the immediate vicinity of the de-
formation were assigned random importance weights between 0.95
and 0.99. The remainder of the grid was assigned random weights
between 0.9 and 0.8. For each training session, the entries of Q
were changed using the rules above, based on location of displace-
ment in the mesh, in order to correspond to the heuristic model.
Thus, the areas of the mesh with the largest resulting displacements
are weighted to most accurately resemble the truth model.

Moreover, constraints were imposed regarding how much the
original spring weights could be perturbed by the SPSA algorithm.
As such, the perturbation magnitudes were limited to a value no
larger than the spring constant picked by the heuristic described in
Section 2.3, 0.75N/m. This was done to ensure that the spring con-
stants picked to approximate fopt would not vary too much from
their original values and lead to noticeable discontinuities in dis-
placement as the user force changed during the haptic rendering.
The gains of the perturbation magnitudes were also designed to de-
crease as a function of the iteration number of the algorithm, but
were limited to a lower bound of 0.001 to ensure the algorithm did
not remain static or find an unstable solution with negative spring
constants. The reason this measure was undertaken was to ensure
that the noisy search algorithm was given a lot of initial freedom to
look for a minimum, limited to 0.75 in the first few iterations of the
algorithm, but would then converge to the solution path chosen.

The maximum and minimum values of the springs were also lim-
ited by the training algorithm. Any negative spring constant was
reverted to its original value and the training process was restarted
once more. In only three of the eighteen cases did the algorithm
have to start over. Therefore, the physical modes of vibration we
were solving for were in almost all cases naturally close to the ini-
tial conditions of the K matrix, and the solution did not have to
be tampered with to get an artificially optimized system. Figure
4 depicts the reduction in error between fact and fopt for locally
trained displacements, with the aforementioned constraints active
on the system. Figure 3 shows the resolved forces resulting from
the displacements depicted in Figure 2 for the three models. The so-

1 1.5 2 2.5
1

2

3

4

5

6

7

8

9

10
x 10

−3

R
es

ol
ve

d
fo

rc
e

m
ag

ni
tu

de
 (

N
)

Penetration depth of Node 100 (cm)

FEM

Linear

SPSA

Figure 3: Displacement mesh node loaded in Figure 2 vs resolved
force for the FE model, the heuristic from Section 2.3, and the mesh
optimized by SPSA.

||
-

||
n
o
rm

f
f

ac
t

o
p
t

2
L

Iterations ()k

Figure 4: The learning curve of the SPSA algorithm; the L2-norm
of the difference of fff act and fff opt shows a sharp decrease in error
in the first 5,000 iterations, and subsequently gravitates below 0.1
for higher iteration values. Error minimization is crucial in these first
couple of thousand iterations in order to maintain a fast-response
learning algorithm.

lution of the SPSA algorithm is physically feasible, i.e. the spring
constants, especially around the neighborhood of the displacement,
differ little from the heuristic described in Section 2.3 and no unre-
alistically high spring weights nor algorithm-altered spring weights
are encountered using the optimized spring model.

In order for the model to deform in a continuous fashion, the
spring constants must also change from training session to training
session in an incrementally increasing/decreasing fashion and do
not over-deviate from the values they are assigned at other training
sessions whose displacements are similar in magnitude or direction.
For example, having an optimized spring constant change from 0.7
to 3.0 to 0.05 N/m for displacements of 1 cm, 2 cm, and 3 cm,
respectively, in homogeneous tissue does not make physical sense,
because if the displacement increases monotonically, so should the
force. This is all the more crucial for spring constants in the neigh-
borhood of the applied force (i.e. the contact point), because as the
user increases the displacement applied, the case described above
would yield an unnatural discontinuity in force, and the simulation
would thus cease to be realistic.

In order to eliminate this problem, the optimization algorithm
was constrained especially for the weights in the neighborhood of
the applied displacement by: (1) using a penalty based weight ma-
trix, Q, to apply a high gain to weights in the neighborhood of the

Figure 5: Flowchart describing the SPSA algorithm used to compute
the spring weights contained in K, and the actual force fed back to
the haptic stylus. The dashed box represents the set of processes
performed by the SPSA algorithm. The ”Stop Criteria” can be any set
of constraints that indicate termination of execution, such as number
of iterations, computation time, or magnitude of error, as represented
by the L2 norm shown in Figure. ??

applied force, thereby making the RMS more heavily influenced by
those optimized values, and, (2) limiting the amount of freedom the

Figure 6: Mass-spring system used where the spring constants were
derived from the learning algorithm.

model-free SPSA algorithm had in choosing a valid optimal solu-
tion for the spring weights. The latter constraint, for the magnitude
of the random perturbation that could be applied to a spring con-
stant during optimization, ensured that the algorithm did not deviate
too much from the overall linear solution of the system, thereby en-
suring a smooth albeit discrete change between the different trained
spring matrices corresponding to the different applied forces to non-
linear tissue. The overall effect of these constraints was to ensure
that in the neighborhood of the force application, the spring con-
stants would behave in a physically relevant way that would create
a continuous, high fidelity haptic rendering; i.e. displacements of
1 cm, 2 cm, and 3 cm would lead to nonlinearly increasing spring
constant weights of 0.05, 0.7, and 3.0, respectively. Other potential
constraints on the algorithm were omitted, to allow for a reasonable
amount of flexibility during training.

4 REAL-TIME HAPTIC RENDERING

Our simulation was written in C++ using the Boost libraries [4] for
fast vector and sparse matrix operations. Our test machine ran Fe-
dora Core 5 Linux and had a dual core 3.0 GHz Pentium 4 proces-
sor and 1 GB of RAM and was able to simultaneously update two
meshes of 121 nodes each at greater than 1 kHz. The display de-
vice was a PHANTOM Omni [18], although any convenient 2-DOF
or higher impedance-type haptic device could be used. Interaction
with the Omni was through SensAble’s OpenHaptics Toolkit [17].

A 2-D mass-spring-damper mesh, as shown in Figure 6, was de-
fined to correspond to the FE model used for the “truth model” by
using the same topology of nodes. These nodes were then con-
nected to all adjacent nodes in a 4-way connected neighborhood,
spaced 1 cm apart. A node could therefore have a maximum of
4 springs, two connected to its initially horizontal neighbors and
two connected to its initially vertical neighbors. Spring constants
were then initialized according to the deformable tissue modeling
heuristic of Section 2.3.

4.1 Deformation

Internally, node positions were stored as vectors (of size 2N), and
node masses M, and spring constants, Kl , as sparse matrices of size
(of size 2N-x-2N and 2M-by-2M respectively), where N is the num-
ber of nodes in the mesh, M the number of springs connecting them,
and l indexes into the set of 18 locally-optimized sets of spring con-
stants available. A damping matrix, B, with very small values, was
also added to maintain stability. Updates to node positions were
calculated as in [9] according to

∆xt = xt −x0, (11)
Mẍt = Kl∆∆∆xt +Bẋt + ft , (12)

where x is the location of mesh nodes at time t, ∆x is the current
displacement of the nodes from their rest position, f is the vector of
exogenous forces being applied to all nodes in the mesh, and ẍ and ẋ
are the resulting node accelerations and velocities respectively. For
the point contact we were simulating, only two entries of f would
ever be non-zero. The system was solved by inverting the diagonal
matrix M and numerically integrating according to

ẍt = M−1 (Kl∆∆∆xt +Bẋt + ft) (13)
ẋt = ẋt−1 +0.5(ẍt−1 + ẍt) (14)
xt = xt−1 +0.5(ẋt−1 + ẋt) . (15)

The selection of l is described in Section 4.3.

4.2 Collision Detection
Our collision detection algorithm made use of a master-proxy
model [25]. For the purpose of detecting collisions, only the nodes
making up the outer boundary of the mesh were considered. The
haptic device was modeled as a point in space located at the center
of rotation of the Omni’s gimbal, henceforth referred to as the mas-
ter position xm. The proxy position xp was the same as the master
position except when contact was made with the mesh, at which
point the proxy remained on the surface of the mesh at the point of
contact. A penetration force was then generated through a virtual
coupling, with constant of proportionality kc, between the master
and the mesh boundary, as f = kc

(
xp−xm

)
, creating the haptic

interaction force.
Collision detection consisted of detecting when the master pene-

trated the mesh and maintaining the proxy position on the boundary
as the mesh moved. The proxy must be prevented from penetrating
the mesh at each time step between updates of the position of the
mesh, even when the mesh boundary moves to contain xp. Interac-
tions were therefore broken into several cases, and the update at a
time step depended on whether xm and xp lay on the interior of the
mesh and whether there was contact with the mesh at the previous
time step.

The nominal interaction case occurred when xp was on the exte-
rior of the mesh and there was no contact at the previous time step.
Then a segment-segment check was performed in which a line seg-
ment smp was constructed from xp to xm and each segment of the
boundary, si was checked for intersection with this segment. For
each segment si intersected by smp, let the endpoints of this seg-
ment be called si(0) and si(1). Then the intersection point inti is
given by

inti = si(0)w(0)+ si(1)w(1) (16)
1 = w(0)+w(1) (17)

xp was set to argmaxi||xm − inti||, the intersection point of largest
penetration distance if one existed, otherwise to xm. The interaction
force fI(j), j = 0,1 was applied to the mesh at the endpoints of the
selected segment si(j) as fI(j) = −w(1− j) f , and w and i were
stored for future reference.

If instead there was contact on the previous time step, but again
xm lay inside and xp outside the mesh, then xp was simply updated
to lie in the same position with respect to the surface of the mesh
as in the last time step: xp = si(0)w(0)+ si(1)w(1). The result is
an infinite friction model which allows no slip along the surface
of the mesh, although this could be modified for whatever surface
properties are desired.

In the case where the proxy was inside the mesh, the master was
on the interior and there was contact during the last time step, then

the mesh moved to contain the proxy while the user was pushing
into the mesh. It is desirable to maintain as consistent a contact as
possible, so the proxy was maintained at the same position on the
surface as before. The remaining cases represented situations where
the mesh has moved to envelop the proxy while the master remained
still or actually moved away from the mesh. In these cases, the
proxy was projected onto the nearest point of each segment of the
boundary n(si), set to the closest one, xp = argmini||xp − n(si) ||,
and w and i updated accordingly.

4.3 Dynamic Selection of Mesh Constants

The variable l in (12) and (13) is selected according to the magni-
tude and direction of f to update the mesh according to the set of
spring constants trained from the most similar input. In our case,
the mesh was trained on forces applied to a few key points on the
mesh. At each point, forces were applied at one or more angles
at two magnitudes. The selection of the most similar input there-
fore consisted of finding the nearest application point on which the
mesh was trained, followed by the angle at that application point
closest to that currently observed, followed finally by the nearest
magnitude force at that application point and angle.

It is possible when using this method to switch between sets of
spring weights with very different values, especially when model-
ing a highly non-linear material with a small number of meshes. If
the mesh is displaced from its rest position, any change to the spring
stiffnesses is likely to result in a change in the potential energy of
the system, and therefore to both its dynamics and to the force ren-
dered to the user. These changes, of course, allow a greater degree
of non-linearity to be modeled, but they may also cause disconti-
nuities in the response at the time of switching between meshes.
Although this effect was not observed in our implementation, we
developed a method to mitigate its effects. Rather than setting
the mesh values at time t to Kl as in (13), one may maintain a a
weighted moving average of spring constants, which we’ll denote
Kt at time t. Then (13)becomes

ẍt = M−1 (
Kt

∆∆∆xt +Bẋt + ft
)

(18)

and we update Kt according to

Kt = γKl +(1− γ)Kt−1 (19)

where the innovation factor, γ , determines the rate at which the
spring stiffnesses change to those of the new mesh. This method
generalizes well to any number of meshes and avoids the overhead
of maintaining a history of meshes selected at each time step.

4.4 Display

The mesh generation algorithm described above gave smooth and
continuous deformation results at nominal (> 1 kHz) haptic ren-
dering rates.

Figure 7 shows a graphical display of the simulation. In
this demonstration, two mass-spring-damper meshes with identical
topologies are displayed, labeled “learned” and “heuristic”. The
heuristic mesh has spring constants set by the heuristic in Section
2.3, while our mesh had various sets of spring constants set by our
learning algorithm and selected in real time according to the inter-
action forces. Haptic interaction was then allowed with either of
the two meshes, with the haptic cursor displayed graphically as a
diamond, so that pushing on either mesh would exert an equivalent
force on the nodes of the other mesh as well. This coupling al-
lowed simultaneous display of the different reactions of each mesh
for comparison. The 3D workspace of the Omni was mapped to
the 2D domain by simply ignoring motion in and out of the image
plane.

Figure 7: Response of our learned elastic model versus that of a
heuristic (linear) elastic model. Using the PHANTOM Omni stylus,
the user applies a load to either of the models and the corresponding
deformation responses of both systems are shown.

5 DISCUSSION

In this paper, we presented a new method for the optimization
and haptic rendering of tissue deformation. We have shown that
a model-free optimization approach to determine spring constants
yields satisfactory results; our optimized mesh is able to match the
force derived from FE analysis about 5 times better than the heuris-
tic described in Section 2.3, where we have considered the experi-
mentally derived FE data as the standard in accuracy for nonlinear
brain tissue deformation behavior. The most crucial aspect of this
work is the physical accuracy of the optimized mass-spring-damper
system.

The future work for this research can be divided into four main
categories. First, additional features can be added to the SPSA
learning method. The learning algorithm can be extended to train
a 3D mesh, and also a formula could describe the optimal learn-
ing gains and entries of the priority weight matrix, Q, as a function
of the displacement applied and mesh size being trained. Moreover,
the SPSA learning method could be implemented with real-time pa-
rameter changes. Since the FEM data obtained from ABAQUS are
generated offline, we allowed the run time of our algorithm to be
fairly high, in order to focus on implementing accurate spring con-
stant solutions, θθθ , for the respective training deformation data sets.
However, inspecting Figure 4, it can be noted that the bulk of the
optimization happens in the first 1000 iterations of the optimization
algorithm, which can be run in fractions of a second on a dedicated
computer. One can investigate how well the model-free training al-
gorithm performs in truly online adaptive settings and once again
develop a heuristic for SPSA gain parameters that trades off be-
tween accuracy and speed of execution. Second, real force data
obtained from tissue deformation via a series of indentation and/or
shear experiments could be used for training data, without the FE
model as an intermediary, thereby providing the SPSA algorithm
with the most accurate brain tissue deformation data. These experi-
ments would also set up the framework for the inclusion of other
tissue types into the simulation (e.g. liver, muscle, etc.). Third,
the system could learn meshes with springs consisting of nonlin-
ear functions of displacement and location in the mesh as well as
the mass matrix. Finally, the system could be extended to 3D ren-
dering. We began with a 2D implementation to demonstrate the
validity of the approach, but most real applications would require a
3D virtual environment. The main difficulty involved in this exten-
sion is the exponential increase in the size of the parameter space
and the resulting computational complexity. However, paralleliza-
tion of the required matrix operations could result in large compu-
tational gains.

REFERENCES

[1] ABAQUS Inc. Rising Sun Mills, 166 Valley Street, Providence, RI
02909 USA.

[2] G. Bianchi, M. Harders, and G. Székely. Mesh topology identification
for mass-spring models. In R. E. Ellis and T. M. Peters, editors, MIC-
CAI (1), volume 2878 of Lecture Notes in Computer Science, pages
50–58. Springer, 2003.

[3] G. Bianchi, B. Solenthaler, G. Székely, and M. Harders. Simultaneous
topology and stiffness identification for mass-spring models based on
fem reference deformations. In C. Barillot, D. R. Haynor, and P. Hel-
lier, editors, MICCAI (2), volume 3217 of Lecture Notes in Computer
Science, pages 293–301. Springer, 2004.

[4] Boost.org. Boost C++ Library Documentation, December 2005.
Available via http://www.boost.org/.

[5] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model for
real-time cutting, deformations, and force feedback for surgery train-
ing and simulation. The Visual Computer, 16(7):437–452, 2000.

[6] O. Deussen, L. Kobbelt, and P. Tucke. Using simulated annealing to
obtain good nodal approximations of deformable objects. In D. Ter-
zopoulos and D. Thalmann, editors, Computer Animation and Simu-
lation ’95, pages 30–43. Springer-Verlag, 1995.

[7] S. P. DiMaio and S. E. Salcudean. Needle insertion modelling and sim-
ulation. IEEE Transactions on Robotics and Automation, 19(5):864–
875, October 2003.

[8] Y. C. Fung. Biomechanics: mechanical properties of living tissues.
Springer-Verlag, second edition, 1993.

[9] S. F. Gibson and B. Mirtich. A survey of deformable modeling in
computer graphics. Technical report, MERL - A Mitsubishi Electric
Research Laboratory, 1997.

[10] A. E. Kerdok, S. M. Cotin, M. P. Ottensmeyer, A. M. Galea, R. D.
Howe, and S. L. Dawson. Truth cube: Establishing physical standard
for soft tissue simulation. Medical Image Analysis, 7:283–291, 2003.

[11] K. Miller, K. Chinzei, G. Orssengo, and P. Bednarz. Mechanical prop-
erties of brain tissue in-vivo: experiment and computer simulation.
Journal of Biomechanics, 33(11):1369 – 1376, 2000.

[12] S. Misra, A. M. Okamura, and K. T. Ramesh. Force feedback is
noticeably different for linear versus nonlinear elastic tissue models.
In Second Joint EuroHaptics Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems (World
Haptics), pages 519–524, March 2007.

[13] W. Mollemans, F. Schutyser, J. Cleynenbreugel, and P. Suetens. Tetra-
hedral mass spring model for fast soft tissue deformation. In Interna-
tional Symposium on Surgery Simulation and Soft Tissue Modeling,
pages 145–154, 2003.

[14] D. Morris. Haptics and Physical Simulation for Virtual Bone Surgery.
PhD thesis, Department of Computer Science, Stanford University,
2006.

[15] R. W. Ogden. Non-linear elastic deformations. Ellis Horwood Ltd.,
Chichester, UK, first edition, 1984.

[16] C. Paloc, F. Bello, R. I. Kitney, and A. Darzi. Online multiresolution
volumetric mass spring model for real time soft tissue deformation.
In Proceedings of the 5th International Conference on Medical Image
Computing and Computer-Assisted Intervention-Part II, pages 219–
226, 2002.

[17] SensAble Technologies. OpenHaptics Toolkit version 2.0 Program-
mer’s Guide, 2005.

[18] SensAble Technologies. Specifications for the PHANTOM Omni(TM)
haptic device, 2005.

[19] J. C. Spall. An overview of the simultaneous perturbation method for
efficient optimization. Technical Report 1, Johns Hopkins APL, 1998.

[20] J. C. Spall. Introduction to stochastic search and optimization: esti-
mation, simulation, and control. Wiley, Hoboken, USA, first edition,
2003.

[21] G. Székely, C. Brechbühler, J. Dual, R. Enzler, J. Hug, R. Hut-
ter, N. Ironmonger, M. Kauer, V. Meier, P. Niederer, A. Rhomberg,
P. Schmid, G. Schweitzer, M. Thaler, V. Vuskovic, G. Tröster,
U. Haller, and M. Bajka. Virtual reality-based simulation of endo-
scopic surgery. Presence: Teleoperators & Virtual Environments,
9(3):310–333, 2000.

[22] A. Van Gelder. Approximate simulation of elastic membranes by
triangulated spring meshes. Journal of Graphics Tools, 3(2):21–41,
1998.

[23] X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. Adaptive non-

linear finite elements for deformable body simulation using dynamic
progressive meshes. In A. Chalmers and T.-M. Rhyne, editors, Com-
puter Graphics Forum, volume 20(3), pages 349–358. Blackwell Pub-
lishing, 2001.

[24] H. Zhong, M. Wachowiak, and T. Peters. A real time finite element
based tissue simulation method incorporating nonlinear elastic behav-
ior. Computer Methods in Biomechanics and Biomedical Engineering,
8(3):177–189, 2005.

[25] C. Zilles and J. Salisbury. A constraint based god-object method for
haptic display. In Proceedings of the IEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Human Robot Interaction,
and Cooperative Robots, volume 3, pages 146–151, 1995.

