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Figure 1: Comparing our quantization result for NVIDIA RocketCar model to the standard API-supported quantizations.
We can achieve a higher compression rate while maintaining higher image quality than other standard methods.

Abstract

We present a vertex compression technique suitable for efficient decompression on graphics hardware. Given a
user-specified number of bits per vertex, we automatically allocate bits to vertex attributes for quantization to
maximize quality, guided by an image-space error metric. This allocation accounts for the constraints of graphics
hardware by packing the quantized attributes into bins associated with the hardware’s vectorized vertex data
elements. We show that this general approach is also applicable if the user specifies a total desired model size.
We present an algorithm that integrally combines vertex decimation and attribute quantization to produce the best
quality model for a user-specified data size. Such models have an appropriate balance between the number of
vertices and the number of bits per vertex.
Vertex data is transmitted to and optionally stored in video memory in the compressed form. The vertices are
decompressed on-the-fly using a vertex program at rendering time. Our algorithms not only work well within the
constraints of current graphics hardware but also generalize to a setting where these constraints are relaxed. They
apply to models with a wide variety of vertex attributes, providing new tools for optimizing space and bandwidth
constraints of interactive graphics applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques – Graphics data structures and data types I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Geometric algorithms, languages, and systems I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism E.4 [Coding and Information Theory]: Data Compaction and Compression

1. Introduction
Interactive graphics applications continue to push the lim-
its of contemporary hardware. Even as that hardware be-
comes more powerful, developers continually strive to im-
prove the quality of their applications to just within the limits

of some appropriate level of interactivity. These quality im-
provements generally require more data and more bandwidth
as well as more computation. The majority of this increased
data is pushed through the graphics pipeline in the form of
more vertices, more per-vertex attributes and more texture
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images. Today’s graphics cards have some native support for
compression of texture data, but only the minimal support
for compression of vertex data.

Although many sophisticated algorithms have been devel-
oped for geometry compression, most are incompatible with
current graphics hardware. Similar to the adoption for tex-
ture compression of fixed-sized, block-based formats such
as S3TC over more sophisticated formats such as JPEG, ver-
tex data compression for graphics hardware requires an ap-
proach that is relatively simple and fast to decompress.

Our approach is based on a combination of attribute quan-
tization and mesh simplification. In terms of quantization,
we abstract the view of vertex attribute data presented by
graphics drivers. In our presentation, each of the driver’s ver-
tex attribute data channels becomes a general-purpose bin,
into which we may arrange bits of vertex attribute data in a
more arbitrary way. This gives us more freedom to determine
the relative bit sizes of the vertices’ attributes.

With this increased flexibility in mind, we develop opti-
mization algorithms for the following problems:
1. Given a desired number of total bits per vertex, determine

an allocation of bits to vertex attributes to maximize ren-
dering quality.

2. Given a desired number of total bits per vertex and a set
of bins to arrange them in, determine an assignment of
attributes to bins and an allocation of bits to attributes to
maximize rendering quality.

3. Given a desired total storage size for a model, compute a
simplification of the mesh vertices as well as an associ-
ated quantization to maximize rendering quality.
Our quality metric for the above optimizations is based

on a comparison of rendered images over a sampled view
space [LT00]. One advantage of this metric over attribute-
space metrics is that it is capable of determining relative bit-
allocations across a wide variety of logical attribute groups.
This is especially important for today’s 3D models, with
their continually evolving, rich set of vertex attributes. An-
other advantage to this metric is that it can account for both
the rendering algorithm applied to the 3D model and the 3D
environment containing the particular model. Thus it is pos-
sible to create custom compressions for particular uses of a
model.

2. Previous Work
Compression of both the topology and the vertex data has
been an active area for research [TR98,AD01,Ise01,SKR01,
KG02]. While much of the vertex compression research fo-
cuses on position data, normal and other attributes are also
sometimes independently considered [Dee95]. Most com-
pression algorithms start by quantizing the original set of
vertices to a fixed point representation with B bits of preci-
sion, usually for some B less than 15. The resulting num-
bers are then compressed further, losslessly. This usually in-
volves a prediction step based on the most recent few ver-
tices decoded, followed by an entropy encoding of the resid-
ual. The prediction may be based on an offset [Dee95], a

parallelogram rule [TG98, Ise02], a Fourier domain recon-
struction [Tau95] or some other complex function. The re-
sults are sometimes as compact as to require only 4-5 bits to
specify each vertex coordinate.

Spectral methods [KG00] consider the n vertices of a
mesh as one element of an n-dimensional space for each co-
ordinate (x, y and z). A projection of the n-dimensional space
is then found and used to represent all the vertices in one
block of bytes. Compression rates can be even higher, but it
implies that all vertices must be decompressed together.

Compression of multi-resolution models may incur an ad-
ditional degree of complexity [KSS00, PR00, AD01] but re-
sults are usually no more or less compact. Not only are most
of these operations too complex for hardware, they usually
require access to several other recently decoded vertices.
Such random access is not conducive to hardware implemen-
tation.

Even though an early algorithm [Dee95,Cho97] was origi-
nally designed for hardware decompression, it still computes
and encodes offsets between successive vertices in the vertex
array. This requires that the vertex array be sequentially pro-
cessed, which may not be necessarily the order implied by
the element array. Furthermore, such sequential processing
constraints are not suitable for parallel processing.

In a different approach, Hao and Varshney [HV01] reduce
the geometry size and the rendering time by determining for
each vertex the maximum precision needed for it. This com-
putation is based on the number of pixels on the screen, the
viewing parameters and the number of numerical operation
performed on the vertex. While this approach reduces the
number of needed bits without introducing noticeable errors,
the generality of the method makes it difficult to implement
on current hardware.

Calver describes basic principles for dealing with quan-
tized vertex attributes in a vertex shader [Cal02, Cal04]. In
addition to the necessary scaling and biasing, he demon-
strates rotational transformation of coordinates to align a
model’s oriented bounding box with the coordinate axes.
Such transformations can often be folded into the standard
modeling transformation with little to no run-time cost.

Our vertex compression technique is suited for efficient
decompression on current hardware. The run-time cost is
higher than that of Calver, but the approach is more flexi-
ble, allowing more fine-tuned choice of quantization levels.
An important constraint for hardware implementation that is
violated by many other approaches is that each vertex must
be decompressed independently. A vertex program operates
on only a single vertex at a time, with no state retained in be-
tween. Like King and Rossignac [KR99], our approach also
combines some degree of mesh simplification with quantiza-
tion, although we consider not only geometry but all vertex
attributes. We demonstrate the effectiveness of our compres-
sion and decompression using a vertex program based im-
plementation. While the details of the implementation would
indeed vary from generation to generation of graphics hard-
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Figure 2: Example quantization with allocation
(x, y, z, nx, ny, nz, u, v) = (16, 16, 17, 9, 8, 9, 10, 11).
Bins 0 and 1 have 4 and 2 16-bit components, respectively

ware, the ideas presented here remain applicable and can be
easily incorporated natively into the hardware architecture.

3. Overview
A primary goal of our compression scheme is to allow the
compressed form of the vertex data to make it all the way to
the graphics hardware, where it is decompressed at rendering
time. Thus it is useful here to start by considering the target
decompressor.

The decompression algorithm runs as a vertex program on
the current generation of graphics hardware. This has several
implications. First, each vertex must be processed indepen-
dently; it cannot produce useful side effects to assist in de-
compression of other vertices. Second, the data channels we
have available for transmitting the compressed vertex data
are limited to the data channels exposed by current APIs.
Furthermore, it is important to take advantage of the oppor-
tunity to store the compressed data in video memory on the
far side of the bus.

Our decompression vertex program accepts as input for
each vertex a sequence of bits which arrive packed into the 4-
way vectorized floating point registers of the vertex unit. For
a given chunk of vertices associated with a 3D model, con-
stant parameters to the program specify a flexible blueprint,
which specifies how the vertex parameters are packed into
the data registers. This blueprint allows each attribute (e.g,
x, y, z, nx, ny, nz, etc.) to have its own size in bits and also al-
lows the individuals attributes of the various attribute groups
(e.g. coordinate, normal, color, etc.) to be arbitrarily inter-
mingled. The program unpacks the bits into the appropriate
attribute variables, and scales and biases them from an in-
teger coordinate system back into the application’s desired
floating point coordinate system. At this point, the vertex
program can pick up whatever processing is required on the
attributes (transformation, per-vertex lighting, etc.).

The implementation of unpacking in the vertex program is
reasonably fast. Thus, if bandwidth is a bottleneck for some
application, we can expect some speedup in rendering per-
formance. This can happen, for example, if the original data
is larger than the portion of video memory we wish to dedi-
cate to geometry (as opposed to textures, etc.).

To generate the compressed data, we perform a bin-
packed quantization procedure. Given a total number of
bits per vertex, our algorithm allocates bits to individual
attributes. These quantized attributes are allocated and ar-
ranged so as to fit in the vectorized data elements provided
by the API. We can effectively think of each vectorized data
element as a single bin, because our vertex program allows

quantized attributes to cross the boundaries of the individual
vector components, as illustrated in Figure 2.

In one variant of our decompressor, a single, general
vertex program is used to unpack any bit arrangement for
a given set of target attributes. This variant seems most
amenable to acceleration by a custom hardware component,
but restricts individual attributes from crossing the bound-
aries between different bins. Another variant eliminates this
restriction efficiently, but employs custom vertex programs
for each bit arrangement. Optionally, the user specifies a to-
tal bit size for the model, and our algorithm combines the
quantization process with a mesh simplification process to
produce an even higher quality model for a given size.

The output of our quantization method provides the vertex
attributes in unsigned integer coordinates, as well as a scale
and bias that may be used to convert these integers back into
their original coordinate system. The quantized attributes are
packed into the standard vectorized data elements accepted
by the graphics driver and ultimately delivered to the ver-
tex program with the blueprint for decompression into their
target attribute groups.

4. Attribute Quantization
We automatically produce quantizations of 3D models us-
ing an optimization process. For this approach, we need
to solve several problems. First, we need an error metric
that can evaluate a proposed allocation of bits to attributes
and produce a scalar error value. This metric should ideally
be monotonic with respect to the number of bits assigned
to each individual attribute. Second, we need an optimiza-
tion process that, given a number of bits and a set of at-
tributes, produces a good allocation of bits to attributes with
respect to the error metric. Finally, we need to accommo-
date the constraints of the graphics hardware and of our ver-
tex decompression program. This is accomplished by using
a binned version of the preceding optimization process. We
next describe these three sub-problems in more detail.

4.1. Image-Space Error Metric
Although a number of metrics have been used to quantify er-
ror for 3D models, few of them are immediately applicable
to models with a variety of vertex attribute groups: coordi-
nates, normals, colors, texture coordinates, blend weights,
etc. Some of these metrics, such as multi-attribute error
quadrics [GH98,Hop99], operate in the attribute space. They
can quantify error appropriately within each attribute group,
but the relative error between attribute groups is subject to
some arbitrary weighting factors.

We have adopted the image-space metric first employed
by Lindstrom and Turk [LT00] in the context of simplify-
ing 3D meshes. This metric employs rendering to generate a
number of images of the altered model, then compares these
images to renderings of the original model. This approach
has a number of benefits. It can handle arbitrary vertex at-
tributes and employ any desired rendering algorithm and
shaders, yet the metric itself is completely independent of
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func ComputeBitAllocation(targetBPV)
initialize attrib bit allocations
while error decreases
// Bit Reduce
minError = MAXFLOAT
for each attrib i

attrib i bits -= 1
error = ComputeError()
if (error < minError)

minError = error
minAttrib = i

attrib i bits += 1
minAttrib bits -= 1

// Bit Increase
minError = MAXFLOAT
for each attrib i

attrib i bits += 1
error = ComputeError()
if (error < minError)

minError = error
minAttrib = i

attrib i bits -= 1
minAttrib bits += 1

return bit allocation

Figure 3: Pseudocode for optimizing bit allocation across
attributes

these factors. One can use a variety of techniques to choose
the parameters of sample renderings, and a variety of meth-
ods to compute the actual image-space error.

In our implementation, we use 20 image samples (placed
on the 20 sides of an icosahedron surrounding the model)
to measure the error of a particular quantization. Given the
renderings of the quantized model and the associated ren-
derings of the original model, we essentially subtract the
two renderings for each image pair and take the root mean
square of the difference image. We then average the rms er-
rors for all the sample images to get the final error value. It
has been shown that for comparing images of 3D models,
rms error performs surprisingly well, although more sophis-
ticated, perceptually-based metrics are possible [Lin00]. In
our tests, we also find that the image resolution used makes
little difference, so long as the triangles do not reach sub-
pixel sizes and no texture minification occurs. For models
intended for viewing across a range of viewing distances, it
may be useful to measure the image error at different scales.

One aspect of this metric that is still left open to tweaking
is the selection of a background color, which plays a signif-
icant role in determining the contribution of silhouette de-
viation to the error. By computing two renderings for the
original objects using different background colors, we can
actually distinguish the foreground (object) pixels from the
background pixels and use this information in the final met-
ric. For example, we can set some maximum error value for
pixels which change between foreground and background in

the two associated samples, or we can choose some medium
error value. We always eliminate the contribution of pixels
which are background in both the original and quantized ren-
derings. This enables us to compare error values for different
objects with different pixel coverages in a more meaningful
way.

Interestingly, it is also possible to render the object in
some larger 3D environment, with the background pixels
coming from this environment. This effectively customizes
the effect of silhouette deviation to the object’s particular
setting.

4.2. Metric Driven Quantization
Using a metric like the one above, we perform a greedy
optimization process to allocate bits to vertex attributes (as
shown in Figure 3).

We start with some initial guess of bit allocation that sums
to the correct bit count. This guess may be a roughly even
distribution of bits, or it may use some heuristics (e.g. as-
sign twice as many bits to coordinate attributes as to normal
attributes, assign each texture coordinate attribute the log of
the texture resolution in bits, etc.). Then our optimization
process repeatedly applies a bit-reduce and bit-increase op-
erators to swap bits between attributes and reduce the error.
When the error is no longer decreasing, the process termi-
nates.

4.3. Adding Bin Constraints
The data paths from the CPU through the graphics API and
to the graphics hardware impose some additional constraints
on the allocation of bits to attributes. Normally, the API
packages vertex attributes into vectorized data elements con-
taining 1, 2, 3, or 4 components. Each such element con-
tains the members of a single attribute group (e.g. x, y, and
z for the coordinate group). Our vertex program relaxes this
constraint, presenting each vectorized data element to us as
a single bin that may contain any set of attributes we like.
These attributes are free to cross the boundaries of the in-
dividual vector components, and attributes from different
groups may be freely intermingled.

The constraints that remain are the following. First, an in-
dividual attribute may not span multiple bins. Although we
eliminate this constraint in one variant of our decompressor,
that variant may be less suitable for custom hardware accel-
eration. Second, the sizes of the bins are restricted according
to the supported vector component types and the supported
data transfer units.

For the current hardware, we restrict our bin sizes to be ei-
ther 64 or 32 bits. In this case, we can always achieve the best
results by using bins as large as possible, because it eases the
constraint of attributes not spanning multiple bins (and can
also increase vertex program performance).

In this binned context presented by the graphics hardware
and our vertex program, we can now restate the quantization
problem as follows. Given a 3D model and a user-specified
number of bits per vertex (which should be a multiple of 32),
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func ComputeBinnedBitAllocation(targetBPV)
for each attribute-to-bin partitioning

for each bin
ComputeBitAllocation(binBPV)

return best partitioning and allocation

Figure 4: Pseudocode for brute-force, binned bit allocation.

Figure 5: Bit allocations for NVIDIA RocketCar model us-
ing 96 bits per vertex.

compute the assignment of attributes to bins and the alloca-
tion of bits to each attribute such that the quality is maxi-
mized. The basic algorithm is shown in Figure 4.

Notice that if we are given a mapping of attributes to bins
as well as the bin sizes, then each bin becomes an instance
of the problem we have solved above in Section 4.2. We cur-
rently use a brute-force algorithm to examine all possible
mappings of attributes to bins, then apply that optimization
process to each bin. Given a attributes and b bins, the num-
ber of such mappings is ba, where b ≤ a. Due to the current
constraints on bin sizes, there is no need to iterate over pos-
sible bin sizes as well; we assign sizes to the bins that are as
large as possible, in decreasing order (e.g. 64, 64, 32 for a
total bit size of 160 bits).

Our metric-optimized quantization process works well in
the presence of the constraints imposed by current graphics
hardware. Relaxing these constraints only improves the re-
sults further. Thus, the approach is quite general and should
remain useful even on future hardware.

4.4. Results
We have tested our algorithm on a variety of models from
NVIDIA demos and several models publicly available. As
shown in Figure 1, we can use 64 bits per vertex (for geom-
etry, normal and texture coordinate) for the NVIDIA Rock-
etCar model compared to the standard quantization methods
that are limited to using 96 bits per vertex (32 bits each for
geometry, normal and texture coordinate). We can achieve
another 33% compression compared to the standard quanti-
zation while producing similar/better image quality than the
DirectX-supported quantization and noticeably better image
quality than the OpenGL-supported quantization.

In Figure 5, our results produce higher image quality for a
given bits per vertex compared to the naïve quantization sup-
ported by either DirectX or OpenGL approach. Our method

Figure 6: Bit allocations for the NVIDIA HateAlien model
using 64 bits per vertex with two different shaders and using
the background from the original environment.

Figure 7: A comparison of our quantization result at 64 bits
per vertex versus the original.

utilizes the entire 96 bits to attributes to maximize image
quality. In Figure 6, we show that different shaders might
generate different bit allocations. Here, we use the original
environment as the background while computing the image
metric. Figure 7 shows that at 64 bits per vertex (66% com-
pression), our quantization result is indistinguishable from
the rendering of the original model.

5. Combining Quantization and Simplification
The quantization algorithms described above perform a
lossy compression of the 3D model while maximizing qual-
ity. It is possible, however, that many of the model’s vertices
do not contribute significantly to that quality. It is useful,
then, to consider combining quantization with some degree
of mesh simplification.

In this context, we redefine our compression problem
statement slightly. Instead of the directly specifying the
number of bits per vertex, the user specifies the total model
output size (i.e. number of vertices times bits per vertex).
Our goal, then, is to compute the simplification and quanti-
zation of the model that maximize the quality for the speci-
fied size.

5.1. Algorithm
Our algorithm for optimizing the simplification level along
with the bit allocation is shown in Figure 8. Notice that we
start with largest number of vertices and the smallest bits per
vertex. At each iteration, we explore the space by increas-
ing the bits per vertex and reducing the number of vertices
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func QuantizeAndSimplifyModel(targetSize)
currentBPV = targetSize/numVertices
ComputeBinnedBitAllocation(currentBPV)
while currentBPV is less than maxBPV

currentBPV += hwCompatibleIncrement
numVertices = targetSize/currentBPV
simplify model to the numVertices
ComputeBinnedBitAllocation(currentBPV)
if (currentError < bestError)
bestBPV = currentBPV
bestError = currentError

return best BPV, error, allocation and model

Figure 8: Pseudocode for combining simplification with bit
allocation

correspondingly. For current hardware, we generally must
guarantee that the bits per vertex is a multiple of 32, but the
algorithm is general enough to work for increments of 8 or
even 1 bit per vertex.

In our implementation, we use a greedy, priority-queue-
based, bottom-up simplification algorithm using a half-edge
collapse operator [LRC∗02]. Ideally, one would use the
same image-space error metric to evaluate every individual
half-edge collapse operation. However, to keep our imple-
mentation simple, we employ a geometric quadric error met-
ric [GH97] during the simplification process, reserving eval-
uation of the image-space metric for the ensuing quantiza-
tion.

The combined simplification and quantization process
provides several benefits. First, it provides better quality ren-
derings for a given storage size than quantization alone. (One
might say that this is the first algorithm that actually uses
mesh simplification to improve the quality of a model, by
allowing a higher bit rate). Second, the reduction in vertex
count eases the computational load on the vertex processing
units. In principle, it should even be possible to design an
optimization scheme that balances this reduction in vertices
with the number of vertex program instructions added for the
decompression process (the instruction count increases with
the number of bins, and thus with the bit rate). We have not
yet explored this last problem, but it seems quite interesting.

5.2. Results
In Figure 9, we show the two extremes of just using quan-
tization and simplification alone versus our method of com-
bining simplification and quantization for a given target size.
The image error of our method is significantly lower than
the two extremes. We illustrate this fact in Figure 10. We
demonstrate results for several models in Figure 12.

As shown in Figure 11, we can find the optimal balance
of quantization and simplification for a given storage size by
choosing the bits per vertex that gives the least error in the
graph. For the bunny model, 57 bits per vertex gives the least
error. Fortunately, the error for the hardware-compatible 64-
bit size is quite similar.

Figure 9: Three methods of compressing to 136KB storage
size for the bunny model.

Figure 10: Comparing the image quality of the combined
quantization and simplification versus quantization alone
and simplification alone. (b)-(d) has the same storage size
of 136KB.

Figure 11: Computing the optimal bits per vertex of a given
target size of 136KB for the bunny model.
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Figure 12: Combined quantization plus simplification for several models with a target size of 1/6 of the original model size.

Figure 13: Shows optimal bits per vertex on various sizes
for the bunny model.

For Figure 13, we performed an experiment to see how
the best bits per vertex changes as a function of the target
storage size.

We show in Figure 12 the quantitative results of applying
our technique to several models, reducing each one to 1/6 of
its original storage size. It is interesting to notice that there
are similarities in bit allocations across models with the same
set of attribute groups. Although each bit allocated differ-
ently is a significant change (each bit naturally doubles the
resolution), it seems there is some hope to develop reason-
able heuristics for bit allocation for some common classes of
models.

6. Decompression in a Vertex Program
The ideal environment for sending packed vertex data to the
video card would be to send a single array of bytes; how-
ever, restrictions from the graphics hardware drivers prevent
this. The conventional method of sending vertex data to the
rendering pipeline is to send a fixed-size array of attribute-
dependent data types. While this allows the pipeline to be
better optimized, it is less useful for sending general data to
the card.

Although current vertex processing units operate only on
floating-point data types, OpenGL provides a method for
defining generic attributes which allows data to be sent to the
card as nearly any OpenGL data type, including unsigned
shorts and unsigned bytes. Using a combination of these
types allows us to effectively emulate that single array of
bytes (i.e. the required number of bits padded up to the near-
est byte or word boundary). Using this method, data is stored
in these integer types and cast into floats by the hardware be-
fore they are transferred to the vertex processor’s registers.
This method allows the finest level of granularity in choice

of total bytes to send for each vertex, and easily allows ev-
ery bit of a byte to be utilized. However, we have had mixed
results in the level of optimization provided by the driver for
these integer types in the context of Vertex Buffer Objects
(VBO). Fortunately, things seem to be improving for both
NVIDIA and ATI drivers. For ATI, in particular, we can now
get fast performance for these integer types using VBO that
matches the performance of floating point data.

6.1. Decompression
The vertex program decompresses the data by performing an
unpacking process. The program receives a group of floats,
pi, that represent the stream of bits, S, that the vertex at-
tributes have been packed into. These pi arrive in the vec-
torized input registers as determined by the bins selected in
Section 4.3. We can think of these floats as containing inte-
gral values of 16 bits or less. In addition the vertex program
uses a blueprint of the data layout that includes a mapping
of attributes to bins and the predigested values, rsi and lsi,
that are used to extract the correct bits of each attribute from
the correct pi.

As GPUs mature we expect that future cards will be able
to perform integer operations natively, and the extraction
will be achieved with a simple bit mask and right shift. How-
ever, on modern graphics cards, extracting a portion of bits
of a particular attribute (the target bits) from a particular pi
is achieved in four steps:

1. Right Shift: Multiply pi by rsi. The value of rsi is pre-
computed so that this operation effectively shifts the tar-
get bits to the immediate right of the decimal point.

2. Frac: The frac operator returns the fractional portion of
a number. Performing a frac on the previous result effec-
tively removes the bits to the left of the target bits.

3. Left Shift: Multiply the previous result by lsi. The value
of lsi is precomputed so that this operation effectively
shifts the target bits so that they are the correct signifi-
cance when combined with bits from another pi.

4. Floor: Perform a floor on the previous results. This step
effectively removes any bits to the right of the target bits.
It may be skipped for the rightmost attribute in a vector
element.

We propose two methods of assembling the unpacked tar-
get bits from above into the final attributes: a general method
that is compatible with all layouts respecting the bin con-
straints, and a customizing method that optimizes for a par-
ticular layout.
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6.1.1. General Decompression
The general decompression uses a single vertex program that
is compatible with any layout. Several uniform parameters
to the program specify how the unpacking should be per-
formed. For each attribute we sum the results of the applica-
tion of the above steps on each of the pi in a target bin. Each
attribute is constrained to be entirely in a single bin so that
this can be vectorized on the graphics hardware. The follow-
ing is a sample of Cg code that will unpack the x attribute:

results = floor(lsx*frac(rsx*current_bin));
results.xy = results.xy+results.zw;
pos.x = results.x+results.y;

The entire unpacking routine requires 6 instructions for
each attribute plus an addition overhead of computing which
bin each attribute uses. Taking each factor into account, the
unpacking process adds 5a + ba + 2b− 2 instructions to a
vertex program where a is the number of attributes and b is
the number of bins.

6.1.2. Customized Decompression
Notice that the value of many of the components of re-
sults from the previous section will simply be zero be-
cause the current attribute has no bits in that particular pi. We
can further optimize by writing a custom vertex program for
a given layout that utilizes each pi. This custom program is
generated during program initialization by analyzing the de-
compression blueprint. Instead of operating on one attribute
at a time, we instead operate on up to four attributes at a
time. Because we are customizing the program for a partic-
ular layout, we know which attribute will accumulate each
component of results. We can also relax the constraint
that each attribute be entirely in a single bin because we do
not have to unpack whole attributes at a time. The following
is a sample of Cg code that will unpack several attributes in
a single extraction pass:

results = floor(ls1*frac(rs1*bin1.xxyy));
pos.x += results.x;
pos.y += results.y;
pos.y += results.z;
pos.z += results.w;
results = floor(ls2*frac(rs2*bin1.zzww));
pos.z += results.x;
norm.x += results.y;
norm.y += results.z;
norm.z += results.w;

In the above example we unpack the position and normal
attribute groups in only 16 instructions, a significant savings
over the general purpose routine. There is also room for fur-
ther optimization, such as elimination of the second call to
floor(). However, this approach may be less conducive
to acceleration by adding special-purpose hardware.

6.2. Timing Results
We have implemented the decompression vertex program
using NVIDIA’s Cg 1.3 compiler and arbvp1 vertex shader
profile. We have run it on both NVIDIA and ATI hardware.

Figure 14: Performance in frame per second of the bunny
model in various configurations. The compressed versions
use a target storage size of 136KB and 64 bits per vertex.

Figure 15: Performance using VBO for one or more copies
of the Thai Statue model (original model versus compressed
to 1/6 the size using quantization only) on a machine with
256 MB video memory. Combining simplification makes the
speedup more dramatic.

In Figure 14, we show the performance of our algorithm
running on an ATI RADEON 9800 PRO graphics card with
256 MB video memory, using a 3.06 Intel Xeon processor
under the Window XP SP2 operating system. We show four
different variants of the bunny model, with different trade-
offs of size and quality, rendered using either standard ver-
tex arrays (VA) or vertex buffer object (VBO). We see that
whether both models are in main memory (VA) or in video
memory (VBO), our model with quantization plus simplifi-
cation provides a fast, high quality alternative to the original
model at one sixth the size. There is a significant speedup
when the custom vertex program is used. Note while the sim-
plification only gives the best performance, its image quality
is much less than the combined version as shown in Figure 9
and Figure 10.

This data provides enough information to reason intelli-
gently about the expected performance of compressed mod-
els for a variety of rendering scenarios. If all the models
to be rendered (including textures) fit into video memory
without compression, then there is no need for quantization
(which could actually slow down performance). However, as
the complexity of the 3D scene grows, compression provides
an actual speedup, as shown in Figure 15. Another important
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case where the benefits of geometry compression becomes
apparent is when video memory must be shared by both tex-
ture and geometry data, effectively reducing the size of video
memory for the geometry cache.

7. Proposed API Support
We envision a few important advantages of incorporating
support for binned quantization directly into the graphics
API:
• Ease of use: Incorporating compression into the API will

simplify the user’s data management both in the CPU pro-
gram and the vertex program.

• Hardware support: Hiding the internals of the manage-
ment of quantized data provides opportunities for opti-
mization, including the application of additional hardware
assistance.
The extended API would have a mechanism for the appli-

cation to specify the mapping of attribute bits into quantiza-
tion bins. When the application issues its vertex arrays, they
are quantized and mapped in the specified way. Before ren-
dering, they should be mapped back from the quantization
bins to the appropriate floating point registers in prepara-
tion for execution of the application’s bound vertex program.
This has the flavor of the transformations currently allowed
for pixel data, which may be transformed at load time from
an external application format to a specific internal format.

For OpenGL, the calls to specify the mapping might look
something like this:

glQuantizationMap( source_array,
attribute_index,
target_bin,
source_start_bit,
target_start_bit,
bit_length )

where source array is the vertex array contain-
ing application data (e.g. GL_VERTEX_ARRAY,
GL_NORMAL_ARRAY, etc. or perhaps a more general
VERTEX_ATTRIB_ARRAY index), attribute index is the
vector index (0-3), target bin is the quantization bin (e.g.
GL_QUANTBIN0 might map to the same data channel as
GL_VERTEX_ATTRIB0, GL_QUANTBIN1 might map to
GL_VERTEX_ATTRIB1, etc.), source start bit refers to a
bit number of the quantized source, length describes how
many bits are mapped, and target start bit describes where
to place the bits in the target bin. Of course, there would
also be an associated enum for glEnable() to activate
the quantization feature.

The information provided by the total set of calls to
glQuantizationMap() by the application provides
enough information for the driver to infer how many bits to
quantize each attribute to and what bin(s) to store them in.
Actually applying the quantization to the data is a relatively
fast and straightforward operation for the driver to perform,
especially if the application program is using the VBO inter-
face to inform the driver when the data is static.

The biggest potential advantage of providing driver sup-
port is the opportunity to optimize the decompression. The
driver could certainly provide a vertex program similar to
ours to be executed before the application’s bound vertex
program (perhaps with some custom microcode optimiza-
tion). Even better would be to add a small unpacking stage
on a separate hardware unit before the vertex processor. This
would allow pipelining of the decompression with the vertex
processing. This unit would ideally comprise some integer
registers to perform the bitwise unpacking instructions, and
possibly to allow the packed data to be passed as full 32-
bit integers. If such a unit is capable of unpacking attributes
spread over multiple bins without significant performance
cost, that will provide the quantization optimizer processor
the opportunity to create even higher quality data quantiza-
tions. The API call we have specified is sufficiently general
to allow individual attributes to be spread over multiple bins,
although each hardware vendor could choose additional se-
mantic restrictions imposed by their implementation.

8. Conclusion
We have proposed and demonstrated a decompressor for
compressed vertex data on current graphics hardware. The
decompressor is implemented as a vertex program which ac-
cepts packed, quantized vertex attributes as input. This flexi-
ble program allows bits to be allocated arbitrarily across the
set of attributes (up to 24 bits per attribute on current hard-
ware).

In support of this decompressor, we have developed an
automatic quantization algorithm using an image-space er-
ror metric. The algorithm effectively allocates appropriate
bit sizes to attributes across a range of different types of at-
tribute groups. In addition, we combine quantization com-
pression with simplification to achieve a good balance of
number of vertices to number of bits per vertex.

Our approach to vertex compression and decompression is
well matched to the capabilities and needs of current graph-
ics hardware, including the needs for independent vertex
processing and binned attribute delivery. Tests have indi-
cated that in situations where data size limits performance,
our decompression is fast enough that our compression in-
deed yields performance speedups. Using our approach, we
can achieve quality comparable to rendering of floating point
data and to rendering of standard API-supported quantiza-
tion, both with significant reductions in data size.

Given the increasing quantities of data being pushed
through the graphics pipeline, compression is an essential
tool. Even with the advent of PCI-Express, bandwidth can be
a serious bottleneck requiring optimization. We have demon-
strated a flexible approach to quantization-based compres-
sion that fits into the pipeline, and which could move into
the graphics API itself with only modest changes.
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