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Abstract

Cuneiform is the world’s oldest known writing system.
Ancient scribes impressed reed styluses onto damp clay to
write the approximately 900 different logographic, syllabic
and taxographic signs. These clay tablets were preserved in
the ruins of ancient Near Eastern cities for millennia, and
today sit in museum storerooms around the world, where
they are subject to degradation and are available for study
only to scholars who can visit the collections in person.

Cuneiform documents exhibit three dimensional writing
on three dimensional surfaces and we seek to provide accu-
rate, high resolution 3D models of these tablets for schol-
ars’ use in their research and for digital preservation of
these unique historical artifacts. We describe our project
and the requirements for constructing and publishing large
digital libraries of these ancient tablets. We also present
visualization requirements and algorithms for producing
them.

1 Introduction

The earliest cuneiform texts appeared in Mesopotamia
around 3200 B.C., and the last native cuneiform texts
were written around 75 A.D. Over the centuries of its use,
cuneiform script evolved from its more expansive early pic-
torial forms to the later more condensed, abstract forms,
in which the signs bear little resemblance to the original
symbols. Since the decipherment of Babylonian cuneiform
some 150 years ago, museums have accumulated hundreds
of thousands of tablets, written in most of the major lan-
guages of the Ancient Near East - Sumerian, Akkadian
(Babylonian and Assyrian), Eblaite, Hittite, Persian, Hur-
rian, Elamite, and Ugaritic. These texts include genres as
varied as mythology and mathematics, law codes and beer
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Figure 1. 3D Scan of the Obverse and Right Side of a
“micro-tablet” in the Johns Hopkins Archaeological Collec-
tion. This tiny tablet dates to around 2000 BC, and records
rations of beer, bread, garlic, oil and soap supplied to eight
imperial messengers in the service of the Third Dynasty of
Ur. Notice the rounded shape of the tablet, the three dimen-
sional impressions of the wedges in the clay, and the writing
streams extending onto the side of the tablet.

recipes. In most cases these documents are the earliest ex-
emplars of their genres, and cuneiformists have been able to
make unique and valuable contributions to the study of such
modern disciplines as history, linguistics, mathematics and
science.

In spite of continued great interest in mankind’s earli-
est documents, it has been estimated that only about 1/10
of the extant cuneiform texts have been read even once
in modern times. There are various reasons for this: the
complex Sumero/Akkadian script system is inherently dif-
ficult to learn; there is, as yet, no standard computer en-



coding for cuneiform; there are only a few hundred quali-
fied cuneiformists in the world; the pedagogical tools are,
in many cases, non-optimal; and access to the widely dis-
tributed tablets is expensive, time-consuming, and, due to
the vagaries of politics, becoming increasingly difficult. By
creating digital replicas of the tablets we seek to create an
accessible archivethat will not erode.

1.1 Justification

Cuneiform, as written by ancient scribes, is, by its very
nature, a three dimensional writing system:

1. most of the media are three dimensional – rounded clay
tablets;

2. the characters are three dimensional – stylus tracings
and wedge impressions in wet clay;

3. the writing streams are three dimensional – sentences
often run over the edges and onto the backs of tablets.

Figure 2. Photograph and Autograph of an Old Babylo-
nian Text. The highlighted signs on the hand copy run off
the right edge of the tablet and are not visible in the 2D pho-
tographs. “Sargon, the Lion”, Joan Goodnick Westenholz,
1997, Legends of the Kings of Akkade

Heretofore cuneiformists have used two main techniques
to represent and archive cuneiform documents graphically -
2D photography and hand-drawn copies, or autographs.

A photograph of a tablet has the advantage of conveying
a fairly accurate 2D visual representation of a tablet’s lay-
out. However, due to the multi-tiered three dimensionality
of cuneiform documents (wedge impressions, round tablets,
and over-the-edge writing) one photograph is not enough.
Several photographs are needed, taken at different angles,
with different lighting, and at different magnifications, in
order to convey enough useful 2D information to enable the

collation of a single tablet. This is obviously an onerous
burden for research and publication. Furthermore, even if
done successfully, these photographs of a single tablet do
not contain views fromeverydirection, something that can
be generated from a high resolution 3D scan.

The primary advantage of a hand copy, or autograph,
is also its primary disadvantage – it provides a represen-
tation of an author’s interpretation of what signs are on a
tablet. Manually drawing autographs is a laborious, time
consuming, error-prone, and highly subjective process re-
quiring direct access to the tablets. Cuneiformists must ap-
ply for travel grants to visit the tablet collections in London,
Berlin, Istanbul, etc. And, though the resulting autographs
have the advantage of recording a scholar’s interpretation of
difficult to read signs, both the quality of the interpretation
and the quality of the drawing vary widely, and disputed
readings are common. In order to verify disputed readings,
cuneiformists must apply for additional travel grants to in-
spect the tablets once again. The entire process is obviously
slow, delicate, expensive, tedious, and, in the end, unpro-
ductive. Moreover, unlike photographs, autographs, by def-
inition, are useless for collation, and are practically useless
for paleography.

In order to compensate for the deficiencies inherent
in both techniques, lately we are seeing more and more
cuneiform publications using both 2D photographs and au-
tographs. But the combination is still inadequate for tablet
collation. It is no wonder then that we are also see-
ing a number of recent forays into 3D surface scanning
of cuneiform tablets, including by our Digital Hammurabi
project introduced by Lee and Snyder [30].

Accurate, detailed, and efficient 3D visualization will
enable the virtual “autopsy” of cuneiform tablets and will
revolutionize cuneiform studies, not only by making the
world’s tablet collections broadly available, but also by lim-
iting physical contact with these valuable and unique an-
cient artifacts, while at the same time providing redundant
archival copies of the originals. It will have the happy side
effect of dramatically reducing the need for expensive travel
grants.

1.2 Previous work

Image-based re-lighting [17, 18] is an interesting ap-
proach to generate novel views of a tablet from only a few
photographic images. However these are only ‘interpolated’
views and lose much of the accuracy. Furthermore, know-
ing the real geometry can help us do geometric analysis and
fragment matching.

Levoy and Anderson [4] developed a parametrization of
the 3D tablet scans onto planes and used it to “unwrap” the
tablets on a sheet of paper. This has great potential for
cuneiform print publication. They used 3D data acquired



by the NRC technology [7, 23].
The problem of model reconstruction from scanned data

is well addressed in the literature. Mencl et. al. [21] catego-
rize the methods into those usingsurface warping, spatial
subdivision, distance fields, or front growing.

Warping-based reconstruction methods deform a known
initial surface to fit the input point set [27, 25]. Spatial
subdivision based techniques partition the data into cells.
For each cell that the surface (or the enclosed volume)
passes, these techniques approximate or interpolate a sur-
face [14, 11, 6]. Guo et. al. [13] use visibility algo-
rithms and Teichmann et. al. [26] use density scaling and
anisotropic shaping to improve the results of reconstruction
usingα-shapes. Volume subdivision schemes decompose
space into volumetric cells and remove ones that are found
to be ‘outside’ the sampled surface. The final surface is
reconstructed from the remaining cells [10, 29, 1]. In par-
ticular, Amenta et. al. [1, 2] use Voronoi filtering approach
in 3D to construct thecrust [3] of the sample points. They
provide theoretical guarantees on the topology of their re-
constructed mesh assuming “sufficiently dense” sampling.
These algorithms are too CPU and memory intensive, how-
ever.

Another class of algorithms use a distance field that gives
the shortest distance from any point to the surface. The sur-
face passes through the zeroes of this distance field [15, 5].
These schemes are able to process large data, albeit some-
times at the cost of accuracy. Surface growing algorithms
[10, 19, 20, 8, 12] construct the surface incrementally by
connecting more samples to the set of triangles generated
so far. Among the more accurate and efficient methods in
this class is the the Ball pivoting algorithm [8]. Given an
unstructured point set and a radiusρ, it finds triangles en-
suring that a ball of radiusρ containing its vertices does not
contain any other.

None of these algorithms take advantage of the struc-
ture in the scanned data, which [28] does by triangulating
each scan separately and zippering the overlapping scans in
a post-processing step. Our scheme is similar in spirit, but
much simpler and hence more efficient.

2 Scanning Requirements

Cuneiform tablets are precious artifacts and require safe
and minimal handling. In addition, they typically cannot be
removed from their collections to be brought to a scanning
facility. Therefore a cuneiform scanner must be portable
and easily calibrated in the field (a non-controlled environ-
ment).

Apart from the usual requirements for precision, stabil-
ity, and repeatability, the speed and automation of scanning
is paramount. There are more than approximately 300,000,
mostly palm-sized, tablets in various collections around the

Figure 3. This enlargement from one of the tablet in our
collection gives some indication of the current resolutions
attainable with laser triangulation - ca. 50 micrometers, or
500 dpi. In a 2mm long wedge one can count approximately
40 data points; this yields about a 50 micrometers. We es-
timate our resolution requirement to be approximately 25
micrometers to capture all details.

world. A scan time of even 2 to 3 minutes per tablet implies
that it will take several scanner-years to scan all of them.

Related to scan times, we must ensure that the scan and
model reconstruction process is not labor-intensive. Due to
the requirement of limited handling and high automation we
must implementconclusive scanning: it is crucial to collect
all the required data in the first attempt in order to reduce
scan time, overhead, and tablet re-handling. Lastly, in order
to truly preserve the characteristics of the tablets, we require
high resolution and accuracy.

In order to perform virtual tablet autopsy, cuneiformists
must be able to differentiate stylus marks from erosion,
damage, and stray marks. They must also be able to dis-
tinguish fine markings of rolled seals and even detect un-
ambiguously the “damming” that results when one wedge,
overwriting another, pushes up a little of the clay. Although
we are still actively engaged in the requirements establish-
ing phase of the project, preliminary tests suggest a target
of at least 25 micrometer (or ca. 1000 dpi) resolution will
be adequate for our application.

3 Scanning Procedure

We have used laser triangulation based scanners in our
experiments. All images presented in this paper have been
generated from models scanned using the Canadian Na-
tional Research Council scanner [23]. A conceptual dia-
gram of this scanner is shown in figure 4. The object is



Figure 4. Canadian National Research Council RGB
scanner conceptual diagram (reproduced from [22])

illuminated with red, green, and blue lines from a laser (2)
that is directed to the pointP via a scanning galvanometer
mirror (4) and turning flat (10) at the top of the figure. The
imaging system (10) views the pointP through the back of
the scanning galvanometer mirror and the other turning flat
(10) at the bottom of the figure. An image of the spotP
forms on the linear array detector (18). The dispersive ele-
ment (16) produces three such separate images correspond-
ing to the red, green, and blue wavelengths from the laser.
In operation, the galvanometer mirror dithers back and forth
producing a spot that scans across the object. First consider
a flat object located at the reference plane. After the twin
offsetting reflections of the light from the front and back of
the galvanometer mirror, as the spot moves across the ref-
erence plane, the image on the detector remains stationary.
For object heights departing from the reference plane, the
position of the image moves in proportion to these heights.
Thus, determination of the position of the focused spots on
the detector array allows estimation of the height of the ob-
ject above the reference plane.

This scanner has a nominal resolution of 50 micrometers.

3.1 Scan-planning

Even though the topology of Cuneiform tablets is sim-
ple, there are ample variations in the height to cause under-
sampling in many regions. Most reconstruction algorithms
generate holes or incorrect triangles in the under-sampled
areas. Others fill the holes with interpolated geometry. We
must avoid under-sampling in the first place in order to
truly preserve the tablets and allow full “autopsy”. Hence,
we perform automatic detection of holes to help guide the
operator in planning the next scan. This requires that we
merge multiple scans quickly, online, to detect the remain-
ing holes. We use a fast and automatic registration process
as described in the next subsection to detect these holes.

3.2 Registration

Since not all of a tablet is visible from any single po-
sition, multiple scans are required, each producing a range
image. These images must be combined to produce the fi-
nal 3D model. We assume that the range image is specified
as depth values on anXY grid. Although not all scanners
directly produce grids, they can be rearranged in a 2D array,
based upon the order of scanning or simply by resampling.
We exploit this information in our system. One important
aspect of our application is the large number of tablets that
require scanning. As a result, the common strategy of regis-
tering scans by first manually aligning the individual range
images is too labor intensive. At the same time, to eliminate
the risk of damage, we must not apply any physical fiducial
marks on the objects, nor may we use any clamping devices
to hold these priceless artifacts. Objects must be carefully
handled by hand only.

Hence we have devised a scheme of approximate fiducial
markers near the object using pointing pins attached to flex-
ible arms. In this scheme we allow both the scanner and the
object to move, but limit the number object re-positioning.
The fiducial pins are not attached to the tablet but are moved
with it. Each pin is associated with a point on the rim of the
tablet by the operator and each time the object is moved, the
pins are repositioned to stay close to their associated points.
If a pin occludes the object from the scanner, it is removed
for that scan. For scanning tablets, it can be shown that
a set of fifteen pins is sufficient to see at least eight non-
occluding pins from any view around a cube. These eight
pins provide sufficient redundant equations to obtain a close
registration between scans. Only a few further iterations of
the modified iterated closest points (ICP) algorithm [9, 28]
achieves excellent registration.

We are further investigating methods for accurate reg-
istration using only the surface geometry. We need to run
the registration algorithm only in instances when the tablet
needs to be physically lifted and repositioned. Since we
scan at a high resolution, it is inefficient and unnecessary to
consider all points for registration of individual range im-
ages. It is enough to identify edges and pass the points on an
edge and those in their immediate neighborhood to the ICP
algorithm. Furthermore, like [28], we prevent the boundary
points as well as geometrically distant points from matching
and use normal estimates to assign weights to each point.
Formally, using a technique similar to [28], we minimize

E =
n∑

i=1

w[i]|M [i] −R(M ′[i]C ′) −T|2,

where M [i] and M ′[i] are corresponding samples from
meshM andM ′. C ′ is the centroid of meshM ′. w[i] is
the accuracy of pointM ′[i]. We usew[i] = Average{ 1

dik
},



Figure 5. Detection of under-sampled areas dues to slope
(as in A to B) or due to occlusion (as in D to E)

wheredik is the distance between pointM [i] and neighbor
M [k]. We consider a non-boundary point that is closer to its
neighbors more reliable. In practice, the distance may sim-
ply be approximated by the difference in the depth values.
Note that high depth disparity implies large slope or missing
data, both sources of error.T is the difference of centroids
of M andM ′: C − C ′ [16]. R is derived from the cross-
covariance matrix of centroid-adjusted pairs of points.R as
a quaternion is the eigenvector corresponding to the largest
eigenvalue of the element matrix of this cross-covariance
matrix [16].

3.3 Under-sampling detection

Recall that a scanner may scan at a fixed lateral reso-
lution in the range space, call itµ. We do not have the
same density of samples on the manifold. For example, in
Figure 5 points may be arbitrarily far apart on the surface,
either due to a large inclination of the surface (e.g., points
A andB) or due to occlusion (e.g., pointsD andE). We
require that the samples on the surface be close. We conser-
vatively determine that more samples are needed in any part
of the surface where inter-sample distance on the surface is
larger than3µ, thus discarding data when the slope of the
surface is larger than70◦. We compute and mark all points
bounding an under-sampled region. Currently this data is
visualized with the marked points highlighted (as shown in
Figure 6). This allows the operator to determine where to
place the scanner next. In the future, we plan to use direct
robot-controlled placement of the scanner (e.g., directions
d1 andd2 in Figure 5) to minimize the number of scans.

Since under-sampling is a scan time operation, it is im-
portant to detect it efficiently. Triangular topology recon-
struction can aid this detection but triangulation needs time
in the order of a minute. Hence, we have chosen to deter-
mine under-sampling directly using the sample points. Al-
though, it is straightforward to perform this in the scanner

Figure 6. Highlighting areas of unreliable data (See the
electronic version for color.)

space, one must find holes not simply in each scan but the
combined set of samples found so far. This requires reg-
istration of the scans with each other. our registration al-
gorithm takes only a few seconds and hence this is possi-
ble. In fact, our under-sampling detection algorithm is ro-
bust enough to work well even with imprecise registration.
The algorithm works iteratively, processing each scan as it
is generated:

1. Compute holes within the new range image. This
step simply considers the neighboringX andY pixels,
and compares their depth values to determine the dis-
tances. A pixel with any adjacent pixel missing or hav-
ing depth disparity is markedpotentially sparse(see
Figure 7).

2. A statistical approach is needed. If there is true under-
sampling in a region (not simply scanner noise), sev-
eral points must be marked potentially sparse. If more
than half the adjacent points of a point are potentially
sparse, we mark the pointsparse.

3. As new range images are generated, we register them
to the rest of the registered model, matching points
from different scans based on their distances. If a
sparse point,P , matchesP ′ that is non-flagged, the
sparse flag ofP is removed.

4. We generate a visualization of holes to help plan sub-
sequent scanning by coloring the sparse vertices in red
(Figure 6). The goal of our ‘conclusive scanning’ is
that every sparse point in a given range image must
correspond to a non-sparse point in some other range
image.

4 Triangulation

Unorganized point triangulation has been a popular re-
search area. Most algorithms are either too memory in-
tensive to enable the triangulation of many million points;



Figure 7. Sparse points are locally discovered. For a point
to be marked sparse, it must be a part of a sparse region.

others do not guarantee triangle quality. Another common
assumption in most algorithms is that the underlying sur-
face is smooth, which is untrue in our application. We need
to capture the normal discontinuities, i.e., cuneiform wedge
boundaries with high fidelity. In our algorithm, we take ad-
vantage of the fact that scanners do indeed produce “orga-
nized” points at mostly regular spacing. We also exploit the
knowledge that our models are 2-manifolds.

Triangulations related to Delaunay triangulations are
commonly applied for constructing the topology. Some op-
erate volumetrically [1] but are impractical for large data
size. Others [12] operate in some 2D projection of the
points but must find the correct plane to project to. De-
launay triangulations are known to minimize the integral of
square of gradient across the surface [24]. This is appropri-
ate for smooth surfaces, but not for our case, when wedges
should not be smoothed.

Due to our high resolution scans, it is sufficient to use the
plane of the range image to perform triangulations most of
the time, when sufficient data is available. We only employ
the more expensive topology construction at the boundaries
of the images and in sparse regions. At the same time we
avoid the geometric complexities of zippering [28]. Our
main premise is that any given point on the surface has a
primary scan: the scanner view that corresponds to the an-
gle of view closest to that point’s normal. This view is used
for the triangulation. Any other views of the point are only
used to refine the triangulation based on the primary view.

We start by noting that the 2D Delaunay triangulation of
a uniform grid of points is simply the quadrilaterals formed
by joining the adjacent points as shown in Figure 8. Al-
though, our grids are not necessarily rectilinear or uniform,
they are close to it. (We only join non-sparse points to their
neighbors in this step.) There are two choices for the diago-
nal. We choose the one that represents the underlying ridge
or valley on the surface the most. In other words, ifCD has
a larger gradient change fromC to D thanAB does from
A to B (see Figure 8), we chooseAB.

Figure 8. Range image triangulation respecting ridges

Triangulating each range image thus takes time propor-
tional to the number of samples. Moreover, multiple scans
do not need to be in the memory together. We do require
any overlapping scans to be together in the memory for the
stitching step.

We stitch the triangulation of overlapping range images
as follows: Recall that every sparse point in range image
must have a corresponding point in some other image that
is non sparse.

We describe here the algorithm for stitching only two
meshes, although the same process is repeated for merging
more than two meshes together. In order to stitch meshM
andM ′, we must determine the location of each resulting
3D point and its topology, i.e., other points it is joined to by
the triangulation. Assume pointP in meshM corresponds
to pointP ′ in meshM ′. Call them apair. In general, many
points in a meshM are too far from their closest point in
meshM ′ and hence do not have a pair. These points and
their triangles are retained in the final model.

To determine the final location of a pointP that is more
reliable than its pairP ′, we use a weighted average. We
first compute the projectionPp of P on meshM ′. The final

location ofP is given byP R[P ]
R[P ]+R[P ′] + Pp

R[P ′]
R[P ]+R[P ′]

To find the topology of a point,P , we need to determine
its link, {Pi}: the ordered list of vertices around it (and
connected to it). In the example in Figure 9, the link of
point P is the listABDE. If the pointP is more reliable
thanP ′, we start with the topology ofP and merge with it
the topology ofP ′ andvice-versa. (If P is a boundary point,
we always chooseP ′. Note that theconclusive scanning
condition requires that bothP andP ′ may not be boundary
points.)

For the example in Figure 9(a), consider point pairsP
andP ′, P being the more reliable of the two. We call a
pointP conforming, if the link of P matches the link ofP ′.
In other words, if the list of points{Pi} form the link ofP ,
{P ′

i} form the link ofP ′.
If the links of P andP ′ are conforming, we just retain

the link of P in the final mesh. Otherwise, there are two



Figure 9. Triangulation stitching:M is shown in black,
M ′ in red (gray). (a) shows the two meshes, (b) shows them
merged.

cases to consider:

1. PointF ′ is in the link ofP ′ but,F is not in the link of
P : If F ′ is more reliable thanF , we designatePF a
weakedge, otherwiseP andF are not connected. The
edgePF is associatedwith meshM (in whichP and
F are not connected).

2. PointA is in the link ofP butA′ is not in the link ofP ′:
If A′ is the more reliable vertex,PA′ is markedweak,
otherwiseAP is connected. EdgePA′ is associated
with M ′ (in whichA′ andP ′ are not connected).

In the second pass we process weak edges. If edgePF is
listed as a weak edge, we project all the edges connected to
P andF on the scanner plane of the associated mesh. Due
to our distance restriction, this turns out to be a single edge:
the edge that forms the base of two triangles that haveP and
F as their apexes. In our example, the projected edges are,
respectively,B′F ′ for weak edgeAP andAE for edgePF .
If a weak edge intersects a non-weak edge (asAP intersects
B′F ′, it is deleted. If a weak edge intersects only another
weak edge, we choose the one that has a lower change of
gradient between its end points.

Recall that the scanner data usually has gaps we choose
to not flag as holes in thepotentially sparseareas, where
only few data items are missing. We currently fill those
values by interpolation if no other scan covers the area. If
larger holes still remain in the data, our triangulation will
leave holes in these areas also, as one of its basic assump-
tions fails. Due to our efficient algorithm, more than a mil-
lion samples can be triangulated in about a minute. With
further enhancements, we believe it can be performed on-
line and thus improve the on-line registration without fidu-
cials.

5 Conclusion

We have embarked on an ambitious project to enable
in-the-field, highly accurate and high-resolution scanning
of hundreds of thousand cuneiform tablets. This requires
that the scanner be light, fast and largely automatic. As
a part of this project, we are also developing methods for
scan-planning and automated scanner placement. Accurate
and automatic registration of separate range images and fi-
nal model reconstruction is also important. We have de-
veloped early versions of these algorithms and continue to
improve them. Efficient, high quality visualization of the
resulting models, while not addressed in this paper, is also
important. We have found so far that conclusive scanning is
a tough challenge. Interpolating neighboring values to fill
small holes works to an extent. We are developing statisti-
cal algorithms to determine when the missing samples may,
in fact, not be necessary and hence ignored.
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