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models become commonplace, many applications desire high quality simpli�cations,with error bounds of various types across the surface being simpli�ed.Most of the literature on simpli�cation has focused purely on surface approxima-tion. Many of these techniques give guaranteed error bounds on the deviation of thesimpli�ed surface from the original surface. Such bounds are useful for providing ameasure of the screen-space deviation from the original surface. A few techniqueshave been proposed to preserve other attributes such as color or overall appearance.However, they are not able to give tight error bounds on these parameters. At timesthe errors accumulated in all these domains may cause visible artifacts, even thoughthe surface deviation itself is properly constrained. We believe the most promisingapproach to measuring and bounding these attribute errors is to have a mappingbetween the original surface and the simpli�ed surface. With such a mapping inhand, we are free to devise suitable methods for measuring and bounding each typeof error.Main Contribution: In this paper we present a new simpli�cation algorithm,which computes a piece-wise linear mapping between the original surface and thesimpli�ed surface (portions of this work appear in 10 and extensions appear in 8).The algorithm uses the edge collapse operation due to its simplicity, local control,and suitability for generating smooth transitions between levels of detail. We alsopresent rigorous and complete algorithms for collapsing an edge to a vertex suchthat there are no local self-intersections and a one-to-one mapping is guaranteed.The algorithm keeps track of both incremental surface deviation from the currentlevel of detail and total deviation from the original surface. The main features ofour approach are:1. Successive Mapping: This mapping between the levels of detail is a usefultool. We currently use the mapping in several ways: to measure the distancebetween the levels of detail before and after an edge collapse, to choose alocation for the generated vertex that minimizes this distance, to accumulatean upper bound on the distance between the new level of detail and the originalsurface, and to map surface attributes to the simpli�ed surface.2. Guaranteed Error Bounds: Our approach can measure and minimize theincremental error for surface deviation (ultimately bounding the total surfacedeviation) and is extendible to other attributes. These error bounds giveguarantees on the shape of the simpli�ed object and screen-space deviation.3. Generality: The algorithm for collapsing an edge into a vertex is rather gen-eral and does not restrict the vertex to lie on the original edge. Furthermore,portions of our approach can be easily combined with other algorithms, suchas simpli�cation envelopes9.4. Surface Attributes: Given an original surface with texture coordinates,our algorithm uses the successive mapping to compute appropriate texturecoordinates for the simpli�ed mesh. We have recently extended our approachto provide guarantees on the �nal shaded appearance of the simpli�ed mesh2



by maintaining colors and normals in texture and normal maps and boundingthe deviation of texture coordinates8. Our approach can also be used to boundthe error of any associated scalar �elds44.5. Continuum of Levels of Details: The algorithm incrementally producesan entire spectrum of levels-of-details as opposed to a few discrete levels; thealgorithm incrementally stores the error bounds for each level. Thus, thesimpli�ed model can be stored as a progressive mesh28 if desired.The algorithm has been successfully applied to a number of models. These modelsconsist of hundreds of parts and millions of polygons, including a Ford Bronco with300 parts, textured models of a lion and a wrinkled torus, and highly-tessellatedscanned models such as a Buddha statue, a dragon, and a toy armadillo.Organization: The rest of the paper is organized as follows. In Section 2, wesurvey related work on model simpli�cation. We give an overview of our algorithmin Section 3. Section 4 discusses the creation of local mappings for the purposeof collapsing edges. Using these mappings, we minimize the incremental surfacedeviation error and bound the total deviation in Section 5. Section 6 describes howto compute new texture coordinates for the new mesh vertices. The implementationis discussed in Section 7 and its performance in Section 8. In Section 9 we compareour approach to some other algorithms, and we conclude with some directions forfuture research in Section 10. Appendix A provides more detail on the mathematicalunderpinings of our projection-based mapping algorithms.2. Previous WorkAutomatic simpli�cation has been studied in both the computational geometry1;3;7;12;39and computer graphics literature2;5;9;13;14;16;21;24;28;27;42;43;44;45;46;48;49;51 for severalyears. Several informative surveys are available on the subject17;25.It has been shown that computing the minimum-complexity simpli�cation for agiven error bound is NP-hard for both convex polytopes12 and polyhedral terrains1.Thus, simpli�cation algorithms have evolved around �nding polynomial-time ap-proximations that are close to optimal or employ e�cient, greedy heuristics.Some of the earlier work in computer graphics by Turk49 and Schroeder46 em-ploys heuristics based on curvature to determine which parts of the surface to sim-plify to achieve a model with the desired polygon count. One interesting aspect ofTurk's presentation is the description of the topological constraints on a vertex forits removal to preserve the local topology of a mesh. More recently, Dey et al.15provide a formal mathematical description of the topological constraints on an edgefor its collapse to similarly preserve the local mesh topology.Other early work includes that of Rossignac and Borrel43, where vertices close toeach other are clustered and a vertex is generated to represent them. This algorithmhas been used in the Brush walkthrough system45.Hoppe et al.27;28 posed the model simpli�cation problem into a global opti-mization framework, minimizing the least-squares error from a set of point-sampleson the original surface. Later, Hoppe extended this framework to handle other3



scalar attributes, explicitly recognizing the distinction between smooth gradientsand sharp discontinuities. He also introduced the progressive mesh28, which is es-sentially a stored sequence of simpli�cation operations, allowing quick constructionof any desired level of detail along the continuum of simpli�cations. However, thisalgorithm provides no guaranteed error bounds. The process measures the distancefrom a set of points on the original surface to the resulting simpli�ed surface, butnot from the entire original surface to the simpli�ed surface.An e�cient approach to measuring error as the distance between the simpli�edvertices and the planes of the original surface is presented in 42 and further re�nedin 19 to represent the error as a quadratic form. Although this error measure alsodoes not bound the surface-to-surface distance from the original to the simpli�edmodel, it provides a fast metric to guide the simpli�cation process. Lindstrom andTurk36;37 have experimented with a purely local variant of this approach, incorpo-rating volume preservation as well, demonstrating favorable results. The demon-stration involves a post-simpli�cation measure of the actual error in the simpli�edmodels. The error quadric approach has also been extended to measure the errorof other attributes, such as vertex colors and normals.20;29.There is considerable literature on model simpli�cation providing guaranteedsurface-to-surface error bounds, which is an important component of this paper.Cohen and Varshney et al.9;50 have used envelopes to preserve the model topologyand obtain tight error bounds for a single simpli�cation (within about 2 percent6),but they do not produce an entire spectrum of levels of detail. Klein32;31 andKobbelt et al. 33 measure a one-sided Hausdor� distance between the original andsimpli�ed surfaces. This measure can produce tighter bounds than the mapping-based measure we present, but the one-sided formulation does not provide a trueguarantee of surface-to-surface distance. Gu�eziec21;22 has presented an algorithm forcomputing local error bounds inside the simpli�cation process by maintaining toler-ance volumes. This approach optimizes the simpli�ed vertices to preserve volume.However, the approach described does not generate a mapping between levels of de-tail. Bajaj and Schikore2;44 have presented an algorithm for producing a mappingbetween approximations and measure the error of scalar �elds across the surfacebased on vertex-removals. Some of the results presented in this paper extend thiswork non-trivially to the edge collapse operation. A detailed comparison with someof these approaches is presented in Section 9.An elegant solution to the polygon simpli�cationproblem has been presented14;16in which arbitrary polygonal meshes are �rst subdivided into patches with subdivi-sion connectivity and then multiresolution wavelet analysis is used over each patch.These methods preserve global topology, give error bounds on the simpli�ed objectand provide a mapping between levels of detail. They have been further extended5to handle colored meshes. However, the initial mesh is not contained in the level ofdetail hierarchy, but can only be recovered to within an �-tolerance. In some casesthis is undesirable. Furthermore, the wavelet based approach can be somewhatconservative and for a given error bound; algorithms based on vertex removal andedge collapses9;28 have been empirically able to simplify more (in terms of reducing4



the polygon count). This problem has recently been alleviated somewhat by Lee etal.35. Their approach allows the speci�cation of feature constraints, such as sharpedges, before the simpli�cation begins. These constraints a�ect the initial shape ofthe subdivision patches. Still, the simpli�cation process is locked into a fairly rigidoptimization path from this point onward.The �eld of simpli�cation has grown to be quite diverse, including research ar-eas which are beyond the scope of this paper. In particular, several simpli�cationalgorithms allow dynamic, view-dependent simpli�cation of objects or scenes dur-ing an interactive visualization session.18;26;30;38;52 Recently, Guskov et al.23 haveeven described simpli�cation as a member of a suite of signal processing operationsdesigned for operation on meshes.3. OverviewOur simpli�cation approach may be seen as a high-level algorithmwhich controlsthe simpli�cation process with a lower-level cost function based on local mappings.Next we describe this high-level control algorithm and the idea of using local map-pings for cost evaluation.3.1. High-level AlgorithmAt a broad level, our simpli�cation algorithm is a generic greedy algorithm.Our simpli�cation operation is the edge collapse. We initialize the algorithm bymeasuring the cost of all possible edge collapses, then we perform the edge collapsesin order of increasing cost. The cost function represents local error bounds onsurface deviation and other attributes. After performing each edge collapse, welocally re-compute the cost functions of all edges whose neighborhoods were a�ectedby the collapse. This process continues until none of the remaining edges can becollapsed.The output of our algorithm is the original model plus an ordered list of edgecollapses and their associated cost functions. This progressive mesh28 represents anentire continuum of levels of detail for the surface. Section 7.2 discusses how we usethese levels of detail to render the model with the desired quality or speed-up.3.2. Local MappingsThe edge collapse operation we perform to simplify the surface contracts an edge(the collapsed edge, e) to a single, new vertex (the generated vertex, vgen). Mostof the earlier algorithms position the generated vertex to one of the end vertices ormid-point of the collapse edge. These choices for the generated vertex position arereasonable heuristics, and may reduce storage overhead. However, these choices maynot minimize the surface deviation or other attribute error bound and can resultin a local self-intersection. We choose a vertex position in two dimensions to avoidlocal self-intersections and optimize in the third dimension to minimize incrementalerror. This optimization of the generated vertex position and measurement of theerror are the keys to simplifying the surface without introducing signi�cant error.5



Figure 1: The natural mapping primarily maps triangles to triangles. The two greytriangles map to edges, and the collapsed edge maps to the generated vertexFor each edge collapse, we consider only the neighborhood of the surface thatis modi�ed by the operation (i.e. those faces, edges and vertices adjacent to thecollapsed edge). There is a natural mapping between the neighborhood of the col-lapsed edge and the neighborhood of the generated vertex (see Figure 1). Most ofthe triangles incident to the collapsed edge are stretched into corresponding trian-gles incident to the generated vertex. However, the two triangles that share thecollapsed edge are themselves collapsed to edges. These natural correspondencesare one form of mapping.This natural mapping has two weaknesses.1. The degeneracy of the triangles mapping to edges prevents us from mappingpoints of the simpli�ed surface back to unique points on the original surface.This also implies that if we have any sort of attribute �eld across the surface,a portion of it disappears as a result of the operation.2. The error implied by this mapping may be larger than necessary.We measure the surface deviation error of the edge collapse operation as thedistances between corresponding points of our mapping. Using the natural mapping,the maximum distance between any pair of corresponding points is de�ned as:E = max(distance(v1; vgen); distance(v2; vgen)); (1)where v1 and v2 are the vertices of e.If we place the generated vertex at the midpoint of the collapsed edge, thisdistance error will be half the length of the edge. If we place the vertex at anyother location, the error will be even greater.We can create mappings that are free of degeneracies and often imply lesserror than the natural mapping. For simplicity, and to guarantee no local self-intersections, we perform our mappings using orthogonal projections of our localneighborhood to the plane. Because they are applied one after another as we sim-plify the mesh, we refer to them as successive mappings.6



4. Successive MappingIn this section we present an algorithm to compute the mappings we use tocompute error bounds and to guide the simpli�cation process. We present e�cientand complete algorithms for computing a planar projection, �nding a generatedvertex in the plane, and creating a mapping in the plane. These algorithms employwell-known techniques from computational geometry and are e�cient in practice.The correctness of these algorithms is proven in Appendix A.4.1. Computing a Planar ProjectionGiven a set of triangles in 3D, we present an e�cient algorithm to compute aplanar projection which is fold-free. Such a fold-free projection contains no pairof edge-adjacent triangles which overlap in the plane. This fold-free characteristicis a necessary, but not su�cient, condition for a projection to provide a one-to-one mapping between the set of triangles and a portion of the plane. In practice,most fold-free projections provide such a one-to-one mapping. We later performan additional test to verify that our fold-free projection is indeed one-to-one (seeSection 4.3).The projection we seek should be one-to-one to guarantee that the operations weperform in the plane are meaningful. For example, suppose we project a connectedset of triangles onto a plane and then re-triangulate the polygon described by theirboundary. The resulting set of triangles will contain no self-intersections, so longas the projection is one-to-one. Many other simpli�cation algorithms, such as thoseby Turk49, and Schroeder46 also use such projections for vertex removal. However,they simply choose a likely direction, such as the average of the normal vectors ofthe triangles of interest. To test the validity of the resulting projection, these earlieralgorithms project all the triangles onto the plane and check for self-intersections.This process can be relatively expensive and does not provide a robust method for�nding a one-to-one projecting plane.We improve on earlier brute-force approaches in two ways. First, we present asimple, linear-time algorithm for testing the validity of a given direction, ensuringthat it produces a fold-free projection. Second, we present a slightly more complex,but still expected linear-time, algorithm which will �nd a valid direction if oneexists, or report that no such direction exists for the given set of triangles. We deferuntil Section 4.3 a �nal, linear-time test to guarantee that our fold-free projectionprovides a one-to-one mapping.4.1.1. Validity Test for Planar ProjectionIn this section, we brie
y describe the algorithm which determines whether agiven set of triangles has a fold-free planar projection. (Note that this fold-freeprojection may not be one-to-one in rare cases - see Appendix A for a more detaileddiscussion). Assume that we can calculate a consistent set of normal vectors forthe set of triangles in question (if we cannot, the local surface is non-orientable andcannot be mapped onto a plane in a one-to-one fashion). If the angle between a given7
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Not one-to-one on this intervalFigure 2: A 2D example of an invalid projection due to folding.direction of projection and the normal vector of each of the triangles is less than 90o,then the direction of projection is valid and de�nes a fold-free mapping from the3D triangles to a set of triangles in the plane of projection (any plane perpendicularto the direction of projection). Note that for a given direction of projection and agiven set of triangles, this test involves only a single dot product and a sign test foreach triangle in the set. The correctness of this test is demonstrated in AppendixA. To develop some intuition, we examine a 2D version of our problem, shown inFigure 2. We would like to determine if the projection of the curve onto the lineis fold-free. Without loss of generality, assume the direction of projection is the y-axis. Each point on the curve projects to its x-coordinate on the line. If we traversethe curve from its left-most endpoint, we will project onto a previously projectedlocation if and only if we reverse our direction along the x-axis. This can only occurwhen the y-component of the curve's normal vector goes from a positive value to anegative value. This is equivalent to our statement that the invalid normal will bemore than 90o from the direction of projection.4.1.2. Finding a valid directionThe validity test in the previous section provides a quick method of testing thevalidity of a likely direction as a fold-free projection (such as the average normalof the local triangles). Unfortunately, the wider the spread of the normal vectorsof our set of triangles, the less likely we are to �nd a valid direction by using anysort of heuristic. It is possible, in fact, to compute the set of all valid directions ofprojection for a given set of triangles. However, to achieve greater e�ciency and toreduce the complexity of the software system, we choose to �nd only a single validdirection, which is typically all we require.The Gaussian sphere4 is the unit sphere on which each point corresponds to aunit normal vector with the same coordinates. Given a triangle, we de�ne a planethrough the origin with the same normal as the triangle. For a direction of projectionto be valid with respect to this triangle, its point on the Gaussian sphere must lie onthe correct side of this plane (i.e. within the correct hemisphere). If we consider twotriangles simultaneously (shown in 2D in Figure 3) the direction of projection must8
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(a) (b)Figure 3: A 2D example of the valid projection space. (a) Two line segmentsand their normals. (b) The 2D Gaussian circle, the planes corresponding to eachsegment, and the space of valid projection directions (shaded in grey).lie on the correct side of each of the two planes determined by the normal vectorsof the triangles. This is equivalent to saying that the valid directions lie within theintersection of half-spaces de�ned by these two planes. Thus, the valid directionsof projection for a set of N triangles lie within the intersection of N half-spaces.This intersection of half-spaces forms a convex polyhedron. This polyhedron isa cone, with its apex at the origin and an unbounded base (shown as a shaded,triangular region in Figure 3). We can force this polyhedron to be bounded byadding more half-spaces (we use the six faces of a cube containing the origin). By�nding a point on the interior of this cone and normalizing its coordinates, we shallconstruct a unit vector in a valid direction of projection.Rather than explicitly calculating the boundary of the cone, we simply �nd afew corners (vertices) and average them to �nd a point that is strictly inside. Byconstruction, the origin is de�nitely such a corner, so we just need to �nd three moreunique (and linearly independent) corners to calculate an interior point. We can�nd each of these corners by solving a 3D linear programming problem (describedbelow). Linear programming allows us to �nd a point that maximizes a linearobjective function subject to a collection of linear constraints34. The equations ofthe half-spaces serve as our linear constraints. We maximize in the direction of avector to �nd the corner of our cone that lies the farthest in that direction.As stated above, the origin is our �rst corner. To �nd the second corner, wetry maximizing in the positive-x direction. If the resulting point is the origin, weinstead maximize in the negative-x direction. To �nd the third corner, we maximizein a direction orthogonal to the line containing the �rst two corners. If the resultingpoint is one of the �rst two corners, we maximize in the opposite direction. Finally,we maximize in a direction orthogonal to the plane containing the �rst three corners.Once again, we may need to maximize in the opposite direction instead. Note thatit is possible to reduce the worst-case number of optimizations from six to four byusing the triangle normals to guide the selection of optimization vectors.We used Seidel's linear time randomized algorithm47 to solve each linear pro-9
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edgeFigure 4: The neighborhood of an edge as projected into 2Dgrammingproblem. A public domain implementationof this algorithmby Hohmeyeris available. It is very fast in practice.4.2. Placing the Vertex in the PlaneIn the previous section, we presented an algorithm to compute a valid plane.The edge collapse, which we use as our simpli�cation operation, merges the twovertices of a particular edge into a single vertex. The topology of the resultingmesh is completely determined, but we are free to choose the position of the vertex,which will determine the geometry of the resulting mesh.When we project the triangles neighboring the given edge onto a valid plane ofprojection, we get a triangulated polygon with two interior vertices, as shown inFigure 4. The edge collapse will reduce this edge to a single vertex. There willbe edges connecting this generated vertex to each of the vertices of the polygon.We would like the set of triangles around the generated vertex to have a one-to-one mapping with our chosen plane of projection, and thus to have a one-to- onemapping with the original edge neighborhood as well.In this section, we present linear time algorithms both to test a candidate vertexposition for validity, and to �nd a valid vertex position, if one exists.4.2.1. Validity test for Vertex PositionThe edge collapse operation leaves the boundary of the polygon in the planeunchanged. For the neighborhood of the generated vertex to have a one-to-onemapping with the plane, its edges must lie entirely within the polygon, ensuringthat no edge crossings occur.This 2D visibility problem has been well-studied in the computational geometryliterature40. The generated vertex must have an unobstructed line of sight to eachof the surrounding polygon vertices (unlike the vertex shown in Figure 5(a)). Thiscondition holds if and only if the generated vertex lies within the polygon's kernel,shown in Figure 5(b). This kernel is the intersection of inward-facing half-planesde�ned by the polygon's edges.Given a candidate position for the generated vertex in 2D, we test its validityby plugging it into the implicit-form equation of each of the lines containing the10



(a) (b)Figure 5: (a) An invalid 2D vertex position. (b) The kernel of a polygon is the setof valid positions for a single, interior vertex to be placed. It is the intersection ofa set of inward half-spaces.polygon's edges. If the position is on the interior with respect to each line, theposition is valid; otherwise it is invalid.4.2.2. Finding a Valid PositionThe validity test described above is useful if we wish to test out a likely candidatefor the generated vertex position, such as the midpoint of the edge being collapsed.If such a heuristic choice succeeds, we can avoid the work necessary to compute avalid position directly.Given the kernel de�nition for valid points, it is straightforward to �nd a validvertex position using 2D linear programming. Each of the lines provides one ofthe constraints for the linear programming problem. Using the same methods as inSection 4.1.2, we can �nd a point in the kernel with no more than four calls to thelinear programming routine. The �rst and second corners are found by maximizingin the positive- and negative-x directions. The �nal corner is found using a vectororthogonal to the �rst two corners.4.3. Guaranteeing a One-to-One ProjectionWhile rare in practice, it is possible in theory for us to �nd both a fold-freeprojection and a vertex position within the planar polygon's kernel, yet still have aprojection which is not one-to-one. Figure A.5 shows an example of such a projec-tion.As proved in Appendix A, we can verify that both the neighborhoods of thegenerated vertex and the collapsed edge have one-to-one projections with the planewith a simple, linear-time test. Given our edge, e, its two vertices, v1 and v2,and the generated vertex, vgen, these projections are one-to-one if and only if theorientations of the triangles surrounding the vgen are consistent and the trianglessurrounding v1, v2, and vgen each cover angular ranges in the plane which sum to2�. 11
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(a) (b)Figure 6: (a) Edge neighborhood and generated vertex neighborhood superimposed.(b) A mapping in the plane, composed of 25 polygonal cells (each cell contains adot). Each cell maps between a pair of planar elements in 3D.We can verify the orientations of vgen's triangles by performing a single crossproduct for each triangle. If the signed areas of all the triangles have the same sign,they are consistently oriented, and the projections are one-to-one. We verify theangular sums of triangles surrounding v1, v2, and vgen using a vector normalization,dot product, and arccos operation for each triangle to compute its angular range.Each 
oating point sum will be within some small tolerance of an integer multipleof 2�, with 1 being the valid multiplier.4.4. Creating a Mapping in the PlaneAfter mapping the edge neighborhood to a valid plane and choosing a valid posi-tion for the generated vertex, we de�ne a mapping between the edge neighborhoodand the generated vertex neighborhood. We shall map to each other the pairs of3D points which project to identical points on the plane. These correspondencesare shown in Figure 6(a) by superimposing these two sets of triangles in the plane.We can represent the mapping by a set of map cells, shown in Figure 6(b).Each cell is a convex polygon in the plane and maps a piece of a triangle fromthe edge neighborhood to a similar piece of a triangle from the generated vertexneighborhood. The mapping represented by each cell is linear.The vertices of the polygonal cells fall into four categories: vertices of the overallpolygon in the plane, vertices of the collapsed edge, the generated vertex itself, andedge-edge intersection points. We already know the locations of the �rst threecategories of cell vertices, but we must calculate the edge-edge intersection pointsexplicitly. Each such point is the intersection of an edge adjacent to the collapsededge with an edge adjacent to the generated vertex. The number of such points canbe quadratic (in the worst case) in the number of neighborhood edges. If we chooseto construct the actual cells, we may do so by sorting the intersection points alongeach neighborhood edge and then walking the boundary of each cell. However, thisis not necessary for computing the surface deviation.5. Measuring Surface Deviation Error12



Up to this point, we have projected the collapsed edge neighborhood onto aplane, collapsed the edge to the generated vertex in this plane, and computed amapping in the plane between these two local meshes. The generated vertex has notyet been placed in 3D. We will choose its 3D position to minimize the incrementalerror in surface deviation.Given the overlay in the plane of the collapsed edge neighborhood, Mi�1, andthe generated vertex neighborhood,Mi, we de�ne the incremental surface deviationbetween them: Ei;i�1(x) = kF�1i (x)� F�1i�1(x)k (2)The function, Fi :Mi ! P, maps points on the 3D mesh,Mi, to points, x, in theplane. Fi�1 : Mi�1 ! P acts similarly for the points on Mi�1. Ei;i�1 measuresthe distance between the pair of 3D points corresponding to each point, x, in theplanar overlay.Within each of our polygonal mapping cells in the plane, the incremental devi-ation function is linear, so the maximum incremental deviation for each cell occursat one of its boundary points. Thus, we bound the incremental deviation using onlythe deviation at the cell vertices, V :Ei;i�1(P) = maxx2P Ei;i�1(x) = maxvk2V Ei;i�1(vk) (3)5.1. Distance Functions of the Cell VerticesTo preserve our one-to-one mapping, it is necessary that all the points of thegenerated vertex neighborhood, including the generated vertex itself, project backinto 3D along the direction of projection (the normal to the plane of projection).This restricts the 3D position of the generated vertex to the line parallel to thedirection of projection and passing through the generated vertex's 2D position inthe plane. We choose the vertex's position along this line such that it minimizesthe incremental surface deviation.We parameterize the position of the generated vertex along its line of projectionby a single parameter, t. As t varies, the distance between the corresponding cellvertices in 3D varies linearly. Notice that these distances will always be along thedirection of projection, because the distance between corresponding cell vertices iszero in the other two dimensions (those of the plane of projection). The distancefunction for each cell vertex, vk, has the form (see Figure 7):Ei;i�1(vk) = jmkt+ bkj; (4)where mk and bk are the slope and y-intercept of the signed distance function forvk as t varies.5.2. Minimizing the Incremental Surface DeviationGiven the distance function, we would like to choose the parameter t that min-imizes the maximum distance between any pair of mapped points. This point is13
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tminFigure 7: We parameterize the position of the generated vertex along the directionof projection by t. The incremental surface deviation at each cell vertex varieslinearly with t, so the minimum of maximum deviations over all the cell verticesoccurs at tmin, the value of t at the minimum of the upper envelope.the minimum of the so-called upper envelope, shown in Figure 7. For a set of kfunctions, we de�ne the upper envelope function as follows:U (t) = ffi(t) j fi(t) � fj(t) 8 i; j 1 � i; j � k; i 6= jg: (5)For linear functions with no boundary conditions, this function is convex. Weconvert the distance function for each cell vertex to two linear functions, then uselinear programming to �nd the t value at which the minimum occurs. We use thisvalue of t to calculate the 3D position for the generated vertex which minimizes themaximum incremental surface deviation.5.3. Bounding Total Surface DeviationWhile it is straightforward to measure the incremental surface deviation andchoose the position of the generated vertex to minimize it, this is not the error weeventually store with the edge collapse. To know how much error the simpli�cationprocess has created, we need to measure the total surface deviation of the meshMi:Si(X) = Ei;0(Fi(X)) = kX � F�10 (Fi(X))k (6)Unfortunately, our projection formulation of the mapping functions providesonly F�1i�1 and F�1i when we are performing edge collapse i; it is more di�cult toconstruct F�10 , and the complexity of this mapping is at least as complex as theoriginal surface.We approximate Ei;0 by using a set of axis-aligned boxes (other possible choicesfor these approximation volumes include triangle-aligned prisms and spheres). Thisprovides a convenient representation of a bound on Si(X) that we can update fromone simpli�ed mesh to the next without having to refer to the original mesh. Eachtriangle, 4k, in Mi, has its own axis-aligned box, bi;k such that at every point on14
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�Figure 8: 2D illustration of the box approximation to total surface deviation. (a)A curve has been simpli�ed to two segments, each with an associated box to boundthe deviation. (b) As we simplify one more step, the approximation is propagatedto the newly created segment.the triangle, the Minkowski sum of the 3D point with the box gives a region thatcontains the corresponding point on the original surface.8X 2 4k; F�10 (Fi(X)) 2 X � bi;k (7)Figure 8(a) shows an original surface (curve) and a simpli�cation of it, consistingof two thick lines. Each line has an associated box. As the box slides over the lineit is applied to each point along the way; the corresponding point on the originalmesh is contained within the translated box. One such correspondence is shownhalfway along the left line.From (6) and (7), we produce ~Si(X), a bound on the total surface deviation,Si(X). This is the surface deviation error reported with each edge collapse.~Si(X) = maxX02X�bi;k kX �X 0k � Si(X) (8)~Si(X) is the distance from X to the farthest corner of the box at X. This willalways bound the distance from X to F�10 (Fi(X)). The maximum deviation overan edge collapse neighborhood is the maximum ~Si(X) for any cell vertex.The boxes, bi;k, are the only information we keep about the position of theoriginal mesh as we simplify. We create a new set of boxes, bi+1;k, for mesh Mi+1using an incremental computation (described in Figure 9). Figure 8(b) shows thepropagation from Mi to Mi+1. The two lines from Figure 8(a) have now been15



PropagateError():foreach cell vertex, vforeach triangle, 4i�1, in Mi�1 touching vforeach triangle, 4i, in Mi touching vPropagateBox(v, 4i�1, 4i)PropagateBox(v, 4i�1, 4i):Xi�1 = F�1i�1(v); Xi = F�1i (v)Expand 4i's box so that 4i's box applied at Xi contains4i�1's box applied at Xi�1Figure 9: Pseudo-code to propagate the total deviation from mesh Mi�1 to Mi.simpli�ed to a single line. The new box, bi+1;0, is constant as it slides across thenew line. The size and o�set is chosen so that, at every point of application, bi+1;0contains the box bi;0 or bi;1, as appropriate.If X is a point onMi in triangle k, and Y is the corresponding point on Mi+1,the containment property of (7) holds:F�10 (Fi+1(Y )) 2 X � bi;k � Y � bi+1;k0 (9)For example, all three dots in Figure 8(b) correspond to each other. The dot onoriginal surface, M0 is contained in a small box, X � bi;0, which is contained in thelarger box, Y � bi+1;0.Because each mapping cell in the overlay between Mi and Mi+1 is linear, wecompute the sizes of the boxes, bi+1;k0, by considering only the box correspondencesat cell vertices. In Figure 8(b), there are three places we must consider. If bi+1;0contains bi;0 and/or bi;1 at all three places, it will contain them everywhere.Together, the propagation rules, which are simple to implement, and the box-based approximation to the total surface deviation, provide the tools we need toe�ciently provide a surface deviation for the simpli�cation process.5.4. Accommodating Bordered SurfacesBordered surface are those containing edges adjacent to only a single triangle,as opposed to two triangles. Such surfaces are quite common in practice. Borderscreate some complications for the creation of a mapping in the plane. The problemis that the total shape of the neighborhood projected into the plane changes as aresult of the edge collapse.Bajaj and Schikore2, who employ a vertex-removal approach, deal with thisproblem by mapping the removed vertex to a length-parameterized position alongthe border. We employ this technique for the edge-collapse operation by a simpleextension. In their case, a single vertex maps to a point on an edge. In ours, threevertices map to points on a chain of edges.6. Computing Texture Coordinates16



The use of texture maps has become common over the last several years, as thehardware support for texture mapping has increased. Texture maps provide visualrichness to computer-rendered models without adding more polygons to the scene.Texture mapping requires 2D texture coordinates at every vertex of the model.These coordinates provide a parameterization of the texture map over the sur-face. Surfaces with complex geometric structure may be decomposed into polygo-nal patches, each with its own parameterization. Our system can simplify surfacescomposed of a connected network of such polygonal patches, treating the patchboundaries as common borders which are simpli�ed consistently to avoid cracks.As we collapse an edge, we must compute texture coordinates for the generatedvertex. These coordinates should re
ect the original parameterization of the textureover the surface. We use linear interpolation to �nd texture coordinates for thecorresponding point on the old surface, and assign these coordinates to the generatedvertex.This approach works well in many cases, as demonstrated in Section 8. However,there can still be some sliding of the texture across the surface. We have recentlyextended our mapping approach to also measure and bound the deviation of thetexture coordinates8. In this approach, the texture coordinates produce a new setof pointwise correspondences between simpli�cations, and the deviation measuredusing these correspondences measures the deviation of the texture. This exten-sion allows us to make guarantees about the complete appearance of the simpli�edmeshes, measuring not only the surface deviation (seen at the silhouettes), but thetexture coordinate deviation of all the interior pixels.As we add more error measures to our system, it becomes necessary to decidehow to weight these errors to determine the overall cost of an edge collapse. Eachtype of error at an edge mandates a particular viewing distance based on a user-speci�ed screen-space tolerance (e.g. number of allowable pixels of surface or texturedeviation). We conservatively choose the farthest of these. At run-time, the usercan still adjust an overall screen-space tolerance, but the relationships between thetypes of error are �xed at the time of the simpli�cation pre-process.7. System ImplementationWe divide our software system into two major components: the simpli�cationpre-process, which performs the automatic simpli�cation described previously inthis article, and the interactive visualization application, which employs the result-ing levels of detail to perform high-speed, high-quality rendering.7.1. Simpli�cation Pre-ProcessAll the algorithms described in this paper have been implemented and appliedto various models. While the simpli�cation process itself is only a pre-process withrespect to the graphics application, we would still like it to be as e�cient as possible.The most time-consuming part of our implementation is the re-computation ofedge costs as the surface is simpli�ed, as described in Section 3.1. To reduce this17



Model Method # Evals # Collapses #E/#C CPU TimeBunny complete 1,372,122 34,819 39.4 5:01lazy 436,817 34,819 12.5 1:56Torus complete 1,494,625 39,982 37.4 5:27lazy 589,839 39,987 14.8 2:44Table 1: E�ect of lazy cost evaluation on simpli�cation speed. The lazy methodreduces the number of edge cost evaluations performed per edge collapse operationperformed, speeding up the simpli�cation process. Time is in minutes:seconds on a195 MHz MIPS R10000 processor.computation time, we allow our approach to be slightly less greedy by performinga lazy evaluation of edge costs as the simpli�cation proceeds.Rather than recompute all the local edge costs after a collapse, we simply set adirty 
ag for these edges. When we pick the next edge to collapse o� the priorityqueue, we check to see if the edge is dirty. If so, we re-compute it's cost, place itback in the queue, and pick again. We repeat this until the lowest cost edge inthe queue is clean. This clean edge has a lower cost than the known costs of allthe other edges, be they clean or dirty. If the recent edge collapses cause an edge'scost to increase signi�cantly, we will �nd out about it before actually choosing tocollapse it. The potentially negative e�ect is that if the cost of a dirty edge hasdecreased, we may not �nd out about it immediately, so we will not collapse theedge until later in the simpli�cation process.This lazy evaluation of edge costs signi�cantly speeds up the algorithm withoutmuch e�ect on the error growth of the progressive mesh. Table 1 shows the numberof edge cost evaluations and running times for simpli�cations of the bunny and torusmodels with the complete and lazy evaluation schemes. Figures 10 and 11 show thee�ect of lazy evaluation on error growth for these models. The lazy evaluation hasa minimal e�ect on error. In fact in some cases, the error of the simpli�cation usingthe lazy evaluation is actually smaller. This is not surprising, because a strictlygreedy choice of edge collapses does not guarantee optimal error growth.Given that the lazy evaluation is so successful at speeding up the simpli�cationprocess with little impact on the error growth, we still have room to be moreaggressive in speeding up the process. For instance, it may be possible to includea cost estimation method in our prioritization scheme. If we have a way to quicklyestimate the cost of an edge collapse, we can use these estimates in our prioritization.Of course, we must still record the guaranteed error bound when we �nally performa collapse operation. If our guaranteed bound is too far o� from our initial estimate,we may choose to put the edge back on the queue, prioritized by its true cost.7.2. Interactive Visualization ApplicationMore important than the speed of the simpli�cation itself is the speed at whichour graphics application runs. The simpli�cation algorithm outputs a list of edgecollapses and associated error bounds. While it is possible to use this output to18
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Figure 10: Error growth for simpli�cation of the bunny model.
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Figure 11: Error growth for simpli�cation of the wrinkled torus model.19



create view-dependent simpli�cations on the 
y in the visualization application (asdescribed by Hoppe26), such a system is fairly complex, requiring computationalresources to adapt the simpli�cations and immediate-mode rendering of the �naltriangles.Our application is written to be simple and e�cient. We �rst sample the pro-gressive mesh to generate a static set of levels of detail. These are chosen to havetriangle counts which decrease by a factor of two from level to level. This limits thetotal memory usage to twice the size of the input model.We next load these levels of detail into our visualization application, which storethem as display lists (often referred to as retained mode). On machines with high-performance graphics acceleration, such display lists are retained in a cache on theaccelerator and do not need to be sent by the CPU over a bus to the acceleratorevery frame. On an SGI Onyx with In�niteReality graphics, we have seen a speedupof 2-3 times, just due to the use of display lists.Our interactive application is written on top of SGI's Iris Performer library41,which provides a software pipeline designed to achieve high graphics performance.The geometry of our model, which may be composed of many individual objects atseveral levels of detail, is stored in a scene graph. One of the scene graph structures,the LODNode, is used to store the levels of detail of an object. This LODNode alsostores a list of switching distances, which indicate at what viewing distance eachlevel of detail should be used (the viewing distance is the 3D distance from the eyepoint to the center of the object's bounding sphere). We compute these switchingdistances based on the 3D surface deviation error we have measured for each levelof detail (using the total surface deviation, �eld of view, and screen resolution).The bounding sphere radius is added to the computed distances to account forPerformer's measuring of the distance to the sphere center (rather than the closestpoint on the sphere).The rendering of the levels of detail in this system involves minimal overhead.When a frame is rendered, the viewing distance for each object is computed andthis distance is compared to the list of switching distances to determine which levelof detail to render.The application allows the user to set a 2D error tolerance, which is used toscale the switching distances. When the error tolerance is set to 1.0, the 3D errorfor the rendered levels of detail will project to no more than a single pixel on thescreen. Setting it to 2.0 allows two pixels of error, etc. This screen-space surfacedeviation amounts to the number of pixels the objects' silhouettes may be o� froma rendering of the original level of detail.8. ResultsWe have applied our simpli�cation algorithm to several distinct objects: a bunnyrabbit, a wrinkled torus, a lion, a Ford Bronco, a dragon, a Buddha statue, and anarmadillo, composed of a total of 393 parts (each simpli�ed independently). Table 2shows the total input complexity of each of these objects as well as the time neededto generate a progressive mesh representation. All simpli�cations were performed20



Model Parts Orig. Triangles CPU Time (Min:Sec)Bunny 1 69,451 1:56Torus 1 79,202 2:44Lion 49 86,844 1:56Bronco 339 74,308 1:29Dragon 1 871,306 18:37Buddha 1 1,087,474 23:56Armadillo 1 1,999,404 42:27Table 2: Simpli�cations performed. CPU time indicates time to generate a progres-sive mesh of edge collapses until no more simpli�cation is possible.
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individually colored in the wire-frame rendering to indicate which of its levels ofdetail is currently being rendered.8.1. Applications of the Projection AlgorithmWe have also applied the technique of �nding a one-to-one planar projectionto the simpli�cation envelopes algorithm9. The simpli�cation envelopes methodrequires the calculation of a vertex normal at each vertex that may be used as adirection to o�set the vertex. The criterion for being able to move a vertex withoutcreating a local self-intersection is the same as the criterion for being able to projectto a plane. The algorithm presented by Cohen, Varshney, et al.9 used a heuristicbased on averaging the face normals.By applying the projection algorithm based on linear programming (presentedin Section 4.1) to the computation of the o�set directions, we were able to performmore drastic simpli�cations. The simpli�cation envelopes method could previouslyonly reduce the bunny model to about 500 triangles, without resulting in any self-intersections. Using the new approach, the algorithm can reduce the bunny to 129triangles, with no local self-intersections. Because we found valid o�set directionswhere previous heuristics failed, the envelopes were displaced more, allowing moreroom for simpli�cation between the envelopes.8.2. Video DemonstrationWe have produced a video demonstrating the capabilities of the algorithm andsmooth switching between di�erent levels-of-details for di�erent models (IJCGAdoes not publish a video proceedings, but the video appears as 11. It shows thespeed-up in the frame rate for eight circling Bronco models (about a factor of six)with almost no degradation in image quality (the error tolerance was 6 pixels ofdeviation in screen space). The video also highlights the performance on simplifyingtextured models, showing smooth switching between levels of detail. The texturecoordinates were computed using the algorithm in Section 6.9. Comparison to Previous WorkWhile concrete comparisons are di�cult to make without careful implementa-tions of all the related approaches readily available, we compare some of the featuresof our algorithm with those of a few others. The e�cient and complete algorithmsfor computing the planar projection and placing the generated vertex after edgecollapse should improve the performance of many earlier algorithms that use vertexremovals or edge collapses.We have directly compared our implementation with that of the simpli�cationenvelopes approach9. We generated levels of detail of the Stanford bunny model(70,000 triangles) using the simpli�cation envelopes method, then generated levelsof detail with the same number of triangles using the successive mapping approach.Visually, the models were comparable. The error bounds for the simpli�cationenvelopes method were smaller by about a factor of two for a given number of22
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triangles, because the error bounds for the two methods measure di�erent things.Simpli�cation envelopes only bounds the surface deviation in the direction normalto the original surface, while the mapping approach prevents the surface from slidingaround as well. Also, simpli�cation envelopes created local creases in the bunnies,resulting in some shading artifacts. The successive mapping approach discouragessuch creases by its use of planar projections. At the same time, the performanceof the simpli�cation envelopes approach (in terms complexity vs. error) has beenimproved by our new projection algorithm.Hoppe's progressive mesh28 implementation is more complete than ours in itshandling of colors, textures, and discontinuities. However, this technique providesno guaranteed error bounds, so there is no simple way to automatically chooseswitching distances that guarantee some visual quality.The multi-resolution analysis approach to simpli�cation14;16;35 does, in fact,provide strict error bounds as well as a mapping between surfaces. However, therequirements of its subdivision topology and the coarse granularity of its simpli�-cation operation do not provide the local control of the edge collapse. The earlierapproaches14;16 do not deal well with sharp edges. Hoppe28 had previously com-pared his progressive meshes with the multi-resolution analysis meshes. For a givennumber of triangles, his progressive meshes provide much higher visual quality.However, recent advances35 have improved the quality of the multi-resolution anal-ysis meshes by allowing the speci�cation of constraints (e.g. along sharp edges).Like our algorithm, their approach uses a sequence of local planar mappings tocompute error bounds during a simpli�cation process. They use a conformal map-ping to the plane rather than a projection as employed by our algorithm. Theirconformal map always exists and optimizes the preservation of angles and areas.Gu�eziec's tolerance volume approach21;22 also uses edge collapses with localerror bounds. Whereas the boxes used by the successive mapping approach aremaintained in a global object space, Gu�eziec's error volume is de�ned using spherescentered at the simpli�ed vertices. One possible disadvantage of this approach isthat the error volume may grow as the simpli�ed surface 
uctuates closer to andfarther away from the original surface. This is due to the fact that the newerspheres must always contain the older spheres. The boxes used by our successivemapping approach are not centered on the surface and do not grow as a result ofsuch 
uctuations. However, his approach has the advantage that the locations ofthe new vertices are truly optimized in 3D rather than in 1D. This could result intighter bounds, but this cannot be determined without a side-by-side comparison ofresults. Also, the tolerance volume approach does not generate mappings betweenthe surfaces for use with other attributes. It may be possible to incorporate amapping procedure into this approach, but it would probably not be an inherentpart of the optimization procedure. Thus some of the optimized vertices may nothave bijective mappings.We have made several signi�cant improvements over the simpli�cation algorithmpresented by Bajaj and Schikore2;44. First, we have replaced their projection heuris-tic with a robust algorithm for �nding a valid direction of projection. Second, we25



have generalized their approach to handle more complex operations, such as theedge collapse. Finally, we have presented an error propagation algorithm whichcorrectly bounds the error in the surface deviation. Their approach representederror as in�nite slabs surrounding each triangle. Because there is no informationabout the extent of these slabs, it is impossible to correctly propagate the errorfrom a slab with one orientation to a new slab with a di�erent orientation.10. Future WorkThere are several apparent areas for future work. These involve improvementsin running time, space requirements, tightness of error bounds, generality, andappearance-preservation.As described in Section 7.1, there is great potential for speed improvementsusing cost estimation in place of many of the guaranteed cost computations. If theestimates are often close to the true costs, it should be possible to keep the errorgrowth down while providing signi�cant speed improvements along with guaranteederror bounds on the �nal results.We have focused on vertex placements that are more general than most currentedge collapse algorithms. However, these general-position vertices have greaterstorage requirements than more restricted placements, such as the end- or mid-points of an edge. It may be useful to use the general position vertices only whenthey produce su�ciently smaller error bounds than any of the restricted positions.There are cases where the projection onto a plane produces mappings with un-necessarily large error. We only optimize surface position in the direction orthogonalto the plane of projection. It would be useful to generate and optimize mappingsdirectly in 3D to produce better simpli�cations, with tighter error bounds. Suchmappings would also be capable of measuring simpli�cation error for edge neigh-borhoods that have no one-to-one projection to the plane. However, it seems thatan approach which optimizes mappings on the surface may be signi�cantly slowerthan our current approach.Our system currently handles non-manifold topologies by breaking them intoindependent surfaces, which does not maintain connectivity between the compo-nents. In our appearance-preserving system8, however, we simplify a network ofconnected patches by enforcing connectivity constraints on the patch boundaries.Handling non-manifold regions in this way, preserving their connectivity, shouldprovide higher visual �delity for large screen-space tolerances. This sort of gen-erality in input models is desirable for dealing with real-word data, such as thoseproduced by CAD applications.Finally, the true preservation of appearance with signi�cant reduction in modelcomplexity is one of the major goals of simpli�cation. We have pursued this goalwith an approach employing texture and normal maps to store the material colorand surface curvature properties of the input model8. This is the �rst work toprovide guaranteed bounds on the �nal, shaded appearance of simpli�ed objects.However, it may also be desirable to preserve these important appearance attributesin a per-vertex representation. Thus we need better measures of how changes in26
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(a) (c)(b)Figure A.1: Polygons in the plane. (a) A simple polygon (with an empty kernel).(b) A star-shaped polygon with its kernel shaded. (c) A non-simple polygon withits kernel shaded.ACM Conf. on Computational Geometry, pages 211{215, Berkeley, California, 1990.48. D. C. Taylor and W. A. Barrett. An algorithm for continuous resolution polygonal-izations of a discrete surface. In Proc. Graphics Interface '94, pages 33{42, Ban�,Canada, May 1994.49. G. Turk. Re-tiling polygonal surfaces. In Proc. of ACM Siggraph, pages 55{64,1992.50. A. Varshney. Hierarchical Geometric Approximations. PhD thesis, University of N.Carolina, 1994.51. J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based ren-dering for polygonal models. IEEE Transactions on Visualization and ComputerGraphics, 3(2):171{183, June 1997.52. Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simpli�cation forpolygonal models. In IEEE Visualization '96. IEEE, October 1996. ISBN 0-89791-864-9.Appendix A: Projection TheoremsThe simpli�cation algorithm we have presented depends on our ability to e�-ciently compute orthogonal projections which provide one-to-one mappings betweensmall portions of triangle meshes. With this in mind, we now present the mathe-matical properties of the mapping used in designing the projection algorithm.De�nition A.1 A simple polygon is a planar polygon in which edges only intersectat their two endpoints (vertices) and each vertex is adjacent to exactly two edges(see Figure A.1(a)).De�nition A.2 The kernel of a simple polygon is the intersection of the inward-facing half-spaces bounded by its edges (see Figure A.1(b)). For a non-simple poly-gon (see Figure A.1(c)), the kernel is the intersection of a consistently-oriented setof half-spaces bounded by its edges (i.e. if we traverse the edges in a topologicalorder, the half-spaces must be either all to our right or all to our left).De�nition A.3 A star-shaped polygon is a simple polygon with a non-empty kernel(see Figure A.1(b)).By construction, any point in the kernel of a star-shaped polygon has an unob-structed line of sight to the polygon's entire boundary.De�nition A.4 A complete vertex neighborhood, Nv, is a set of triangles whichforms a complete cycle around a vertex, v.30
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(a) (b)Figure A.2: Projections of a vertex neighborhood, visualized in polar coordinates.(a) No angular intervals overlap, so the boundary is star-shaped, and the projectionis a one-to-one mapping. (b) Several angular intervals overlap, so the boundary isnot star-shaped, and the projection is not one-to-one.The triangles of Nv are ordered: 40;41; :::;4n�1;40. Each pair of consecutivetriangles in this ordering, (4i;4i+1), is adjacent, sharing a single edge, ei; one ofthe vertices of ei is v.De�nition A.5 The angle space of an orthogonal projection of a complete vertexneighborhood, Nv, is the �-coordinate space, [0; 2�], constructed by converting theprojected neighborhood to polar coordinates, (r; �), with v at the origin (see Fig-ure A.2(a))).De�nition A.6 The angular interval covered by the orthogonal projection of tri-angle, 4i, from a complete vertex neighborhood, Nv, is the interval [�i; �(i+1)modn],where �i is the theta-coordinate of edge ei.De�nition A.7 The angle space of an orthogonal projection of a complete vertexneighborhood is multiply-covered if each angle, � 2 [0; 2�], is covered by the projec-tions of at least two triangles from Nv. It is k-covered if each angle is covered theprojections of exactly k such triangles. A k-covered angle space is exactly multiply-covered if k > 1.Lemma A.1 The orthogonal projection of a complete vertex neighborhood, Nv,onto the plane, P, provides a one-to-one mapping between Nv and a polygonalsubset of P i� the angular intervals of the projected triangles of Nv do not overlap.Proof. Consider the projection of Nv in polar coordinates, with v at the origin,and e0 at � = 0 (see Figure A.2). Each triangle, 4i, spans an angular interval in�, bounded by ei on one side and e(i+1)modn on the other. If the intervals of thetriangles do not overlap , then the triangles cannot overlap, and the projection mustbe one-to-one. If the intervals do overlap, the triangles themselves must overlap(near the origin, which they both contain), and the projection cannot be one-to-one(see Figure A.2(b)). 2Corollary A.1 The orthogonal projection of a complete vertex neighborhood, Nv,onto the plane, P, provides a one-to-one mapping between Nv and a polygonal subsetof P i� the angle space of the projection of Nv is 1-covered.Proof. LemmaA.1 shows that for a one-to-one mapping, the angle space cannotbe multiply-covered. Because the triangles of Nv form a complete cycle around v,31
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At a fold, the two triangles adjacent to the folded edge have opposite orientationin the plane, while at a non-folded edge, they have the same orientation. If all thetriangle normals lie within the same hemisphere, either less than or greater than90o from the direction of projection, all the projected triangles will be consistentlyoriented, implying that none of the edges are folded.If the normals do not all lie in one of these two hemispheres, the projectedtriangles may be divided into three groups according to their orientations in theplane (one group is for degenerate projections). Because the triangle mesh is fullyconnected, there must exist some edge which is adjacent to two triangles fromdi�erent groups; this edge is a fold (or degenerate fold). 2Lemma A.4 The orthogonal projection of Nv onto P provides a one-to-one map-ping i� the projection is fold-free and its angle space is not exactly multiply-covered.Proof. Again, consider the projection of Nv in polar coordinates. When a foldoccurs, the angular intervals of these triangles overlap. Thus a projection with a folddoes not provide a one-to-one mapping. On the other hand, if the projection is fold-free, every edge around v has its triangles laid out to either side. Because the �naltriangle of Nv connects to the initial triangle, this fold-free projection provides a k-covering of the angle space. If k = 1, the projection provides a one-to-one-mapping(from Corollary A.1). If k > 1, the projection is exactly multiply-covered, implyingthat angular intervals overlap, and the projection does not provide a one-to-onemapping. 2Lemma A.5 The orthogonal projection of Nv onto P provides a one-to-one map-ping i� the projected triangles are consistently oriented and the angle-space of theprojection is not exactly multiply-covered.Proof. We must show that the consistent orientation criterion is equivalent tothe fold-free criterion of Lemma A.4. The projection of each of the edges, e0:::en, iseither a fold or not a fold. The two triangles adjacent to each non-folded edge areconsistently oriented, while those adjacent to each folded edge are inconsistentlyoriented (or degenerate). If none of the edges are folded, all adjacent pairs oftriangles are consistently oriented, implying that all of Nv is consistently oriented.If any of the edges are folded, Nv is not consistently oriented. 2Theorem A.1 The following statements about the orthogonal projection of a com-plete vertex neighborhood, Nv, onto the plane, P, are equivalent:� The projection provides a one-to-one mapping between Nv and a polygonalsubset of P.� The angular intervals of the projected triangles of Nv do not overlap.� The angle space of the projection of Nv is 1-covered.� The projection of Nv's boundary forms a star-shaped polygon in P, with thevertex, v, in its kernel.� The normals of the triangles of Nv all lie within the same hemisphere aboutthe line of projection and the angle space of the projection is not exactlymultiply-covered.� The projection of Nv is fold-free and its angle space is not exactly multiply-covered.� The projected triangles of Nv are consistently oriented in P and the anglespace of the projection is not exactly multiply-covered.33
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projection of Ne is one-to-one. If the two polygons do overlap, the projection is notone-to-one, because multiple points on Ne are projecting to the same point in P.Given that the projections of Nv1 and Nv2 are fold-free, the only way for the twopolygons to overlap is for their boundaries to intersect. This intersection impliesthat the projection of Ne is a non-simple polygon.So we have shown that if the projections of Nv1 and Nv2 provide one-to-onemappings with polygons in P and the projection of Ne's boundary is a simplepolygon in P, then the projection provides a one-to-one mapping between Ne andthis simple polygon in P. Also, if the projection covers a non-simple polygon, therecan be no one-to-one mapping. 2Theorem A.2 The orthogonal projection of Ne onto P provides a one-to-one map-ping between Ne and a polygonal subset of P i� the projection of Ne is fold-free, theprojections of the neighborhoods of its vertices, v1 and v2, are not exactly multiplycovered, and the projection of its boundary is a simple polygon in P.Proof. Given LemmaA.7, we only need to show that the projections of Nv1 andNv2 provide one-to-one mappings i� the projection of Ne is fold-free, and the projec-tions of Nv1 and Nv2 are not exactly multiply-covered. This is a direct consequenceof Lemmas A.6 and A.4. 2De�nition A.10 An edge collapse operation applied to edge e, with vertices v1and v2, merges v1 and v2 into a single, generated vertex, vgen. In the process, anytriangles adjacent to e become degenerate and are deleted.Lemma A.8 Given an edge, e, which is collapsed to a vertex, vgen, an orthogonalprojection of Ne is a simple polygon i� the same orthogonal projection of Nvgen isa simple polygon.Proof. The collapse of e to vgen does not a�ect the vertices on the boundary ofNe, so Ne and Nvgen have the same boundary. Thus the projection of the boundaryof Ne is simple i� the projection of the boundary of Nvgen is simple. 2Lemma A.9 A planar polygon with a non-empty kernel is simple i� it is star-shaped.Proof. A star-shaped polygon is de�ned as a simple polygon with a non-emptykernel. Thus if a polygon with a non-empty kernel is simple, it is star-shapedby de�nition. If a polygon with a non-empty kernel is not simple, it cannot bestar-shaped. 2Lemma A.10 Given an edge, e, which is collapsed to a vertex, vgen inside thekernel of e, an orthogonal projection of Ne is simple i� the same projection ofNvgen is star-shaped.Proof. Recall from Lemma A.8 that Ne and Nvgen have the same projectedboundary. We have been given that this projected boundary is a planar polygonwith a non-empty kernel. From Lemma A.9, we know that this polygon is simplei� it is star-shaped. Thus the projection of the boundary of Ne is a simple polygoni� the projection of the boundary of Nvgen is a star-shaped polygon. 2Theorem A.3 Given an edge, e, which is collapsed to a vertex, vgen in the kernelof e, an orthogonal projection of Ne onto P provides a one-to-one mapping betweenNe and a polygonal subset of P i� the projection of Ne is fold-free and the projectedtriangles of Nvgen are consistently oriented and do not multiply-cover the anglespace. 35
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oating point tolerance). For Nvgen , we check not only thesum of the angular spans, but also the orientations of the projected triangles. Ifthe spans sum to 2� and the orientations are consistent, Nvgen has a one-to-onemapping, and its boundary is star-shaped. These are all simple, O(n) tests, with36



small constant factors. They guarantee that we have a one-to-one mapping betweenNe and the plane, and also between Nvgen and the plane; this also provides a one-to-one mapping between Ne and Nvgen.All the steps of the preceding algorithm run in O(n) time (though we will later�nd O(n2) edge-edge intersections, which we will use in the error calculation and3D vertex placement). This algorithm for performing an edge-collapse in the planeis described in more detail in Section 4.
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