Visualization of Time-Varying Curvilinear Grids Using a 3D Warp Texture

Yuan Chen, Jonathan Cohen, Subodh Kumar

Johns Hopkins University, Department of Computer Science
NEB 224, 3400 North Charles Street, Baltimore, MD 21209, USA
Email: {cheny, cohen, subodh}@cs. jhu.edu

Look up
warp texture

3D Warp
Texture

Look up
gcalar texture

Draw

SULIOPUY SUTATR A -9UI T,

=
§

Scalar
Texture v

~

Figure 1: Fragment algorithm for rendering a time-varying curvilinear grid using a 3D warp texture.

Abstract

We present a novel scheme to interactively visual-
ize time-varying scalar fields defined on a curvilin-
ear grid. We create a 3D warp texture that maps
points in R? into the grid coordinate system. At ren-
dering time, the warping function is reconstructed
at each fragment using tri-linear interpolation, and
provides the 3D texture coordinates required to look
up a scalar field value stored in a separate scalar
texture. In essence, this approach reduces the prob-
lem of rendering a curvilinear grid to the problem of
rendering a regular grid with one additional texture
lookup.

Because the curvilinear grid data typically lies on
a regular grid in its native space, the scalar data is
easily stored in a 3D texture without the need for
explicit resampling. For many time-varying data
sets, the warping function itself is constant over
time, so only the 3D scalar texture needs to be re-
loaded with each time step. Thus this factorization

of the problem minimizes the bandwidth require-
ments for time-varying playback. We demonstrate
the approach on several data sets, achieving interac-
tive performance with low approximation error.

1 Introduction

A curvilinear (structured) grid is topologically
a uniform, Cartesian grid, but is geometrically
warped into R®, a Euclidean space. For example,
curvilinear grids specify a warped position for each
data point and assume some interpolation function
for locations between the data points. Curvilinear
grids are convenient for applications such as com-
putational fluid dynamics because they provide a
regular grid space for the simulation while provid-
ing an adaptive sampling of the domain space. In
Eulerian simulations, the mapping of the grid into
the domain space is fixed over time, whereas in
Lagrangian simulations, that mapping may change
over time. Both styles of simulation are widely used

VMYV 2005

Erlangen, Germany, November 16-18, 2005

in practice.

As with regular and unstructured grids (tetrahe-
dral meshes), curvilinear grids may be rendered us-
ing customized ray tracing [4] and cell projection
techniques [11, 8]. In fact, it is even quite com-
mon to tetrahedralize the grid cells and render as an
unstructured grid. This is exemplified by the fact
that many papers describing unstructured grid ren-
dering actually use test data that originated as struc-
tured grids (such as NASA’s blunt fin and delta wing
models). This approach has the benefit of leverag-
ing advances in the rendering of this more general
mesh structure [10] and may produce high quality
images using cell projection. However, even the
very fastest tetrahedral mesh rendering algorithm
we are aware of currently achieves a maximum ren-
dering throughput of 1.8 million tetrahedra per sec-
ond [1]. For the largest data set we report here,
containing roughly 2.3 million cells (or 11.5 mil-
lion tetrahedra) we would thus expect a maximum
performance of 6 seconds per frame, which is not
interactive. Such an approach suffers from an in-
ability to leverage information about the curvilinear
grid’s simple topological structure.

A typical, higher-performance approach to ren-
dering curvilinear grids involves resampling the
scalar data into a regular grid, either at a fixed res-
olution or hierarchically [6]. Such resampling ad-
mits fast, hardware-accelerated rendering via 3D
textures, using either slicing and blending tech-
niques [12] or hardware raycasting [5]. However,
resampling the scalar data at each time step not only
dramatically increases the total data size, but also
potentially introduces unnecessary resampling arti-
facts. The choice of resampling resolution deter-
mines both the quality of each time step and the data
transfer size for loading each time step to the graph-
ics hardware.

In contrast to this direct resampling, we propose
a novel approach that still combines regular sam-
pling with 3D texture-based volume rendering, but
with an important difference — we do not resample
the scalar field except at the pixel level. By us-
ing one level of texture indirection, we effectively
leverage pre-computed point location queries from
Euclidean space into the grid space. For Eulerian
simulation data, this warp texture does not change
over time, and thus is easily cached in texture mem-
ory on the graphics hardware. At rendering time,
we can now load the scalar data for each time step

in its original grid-space sampling pattern as a 3D
texture, avoiding the additional bandwidth required
to maintain high quality rendering for direct resam-
pling approaches.
Our approach has a number of desirable features:
e Applies to a general class of curvilinear grids,
without any requirement for an analytical and
invertible function from grid space to Eu-
clidean space.
Does not require run-time sorting of cells.
Leverages the topological structure of the
curvilinear grid.
Converts the problem of rendering curvilinear
grids to the problem of rendering regular grids
with one level of indirection.
Enables storage of scalar data at the original
sampling rate on the graphics card and avoids
resampling of scalar data until pixel shading
time.

2 Algorithm

As mentioned above, our approach leverages the
regular topological structure of the grid to provide
a natural mapping to graphics hardware. We real-
ize that the structured data in fact lies on a recti-
linear lattice in some warped space, just not in R®
(see Figure 2a for a 2D example). Let us denote
this space by the triple (s,¢,7). The scalar value
is sampled on a lattice: at regular intervals in s, ¢,
and r. Indeed, a structured grid is often specified
by a three dimensional array of scalar values along
with an unwarping function, or a table, that specifies
the R location of each lattice point. Thus the time
varying scalar data itself may be directly stored as
a 3D texture in that warped space — call it the grid
scalar texture S. Of course, this texture is not reg-
ular in R® and thus may not be directly rendered as
textured slices. Instead, we use a regular R® grid to
sample the inverse of the structured grid’s unwarp-
ing function. The resulting warping texture, W, ef-
fectively serves as a voxel-based parameterization
of R®. Now we can find the scalar value at any
point in R®, denoted by (u, v, w), by first looking
up the warp texture (s,t,7) = W(u,v,w) to find
its 3D warped coordinate, and then looking up the
scalar value from the grid texture: S(s, ¢, 7).

This indirect texturing approach has some inher-
ent advantages over a standard resampling algo-
rithm. First, for Eulerian grids, which have a con-

stant warping function over all time steps, we create
a single warping texture, W, to describe the param-
eterization of space, and re-use it for all the time-
varying scalar values. Second, the scalar data itself
remains as compact as in its original form, and thus
requires minimal bandwidth to load to texture mem-
ory and a minimal footprint to store there. Third,
the warping texture sometimes requires less resolu-
tion to maintain good quality rendering than does
the direct resampling of the scalar texture. This
is due to the fact that warping functions are of-
ten largely smooth and well-approximated by the
tri-linear interpolation performed on the hardware.
The scalar values themselves tend to have higher
frequency content and many discontinuities. Fur-
thermore, by avoiding directly resampling the scalar
field, we eliminate one resampling of this data, de-
laying its resampling to the stage of rendering in-
dividual pixels. Any error induced by sampling the
warping function has the effect of distorting the data
in space rather than changing the actual scalar val-
ues portrayed. Such a change in the nature of error
has been previously deemed effective in the domain
of polygon mesh simplification [2]. As a result our
technique is effective not only to reduce the data
size for time-varying scalar fields, but also for static
scalar fields.

Crawford et al.’s recent work on visualization of
Gyrokinetic data [3] also takes the approach of stor-
ing the scalar data in a 3D texture domain and warp-
ing it back into Euclidean space at run-time. How-
ever, their algorithm is rather specific to the render-
ing of twisted torroidal domains. It involves both
resampling of the scalar data and the use of a known
analytical function for the torroidal warp. Our warp
texture approach does not involve such resampling
and does not require an analytical representation for
the warp function.

Our work is foreshadowed by the work of Rezk-
Salama et al. [9], which was tuned to operate on
an earlier generation of graphics hardware. They
deform a uniform grid of points from a base posi-
tion (our grid coordinate system) into a deformed
space (our Euclidean domain), and approximate the
inverse transformation of this deformation by negat-
ing the translation vectors. Rendering is performed
using object-aligned slicing, where a triangle mesh
with deformed texture coordinates is rendered for
each slice. A number of extensions are proposed
at a very high level for future hardware capabili-

S g ¥

Figure 2: (a) An 8x4 curvilinear grid is shown over
the regular gridlines of R®. Black samples are
centers of interior voxels, white samples those of
boundary voxels, and unmarked samples those of
exterior voxels. (b) Three cases of boundary match-
ing (in 2D). The white boundary voxels are com-
puted using extrapolation so as to match the warp-
ing function at the grey points along the structured
grid boundary.

ties, including the use of indirection with 3D tex-
tures to specify the warp function. Our work pro-
vides all the important and non-trivial details of this
suggested approach as well as an implementation
applied to the rendering of curvilinear grids. We
develop algorithms for better generation of the in-
verted deformation, handling of the boundary con-
ditions, measuring approximation error, etc.

3 Warp Texture Generation

The essential data component for our rendering al-
gorithm is the warp texture, W, a voxel-based ap-
proximation to the inverse of the curvilinear grid’s
unwarping function, W;. Thus, each value in the
warp texture describes a mapping back into the grid
(scalar) texture domain and may be applied as tex-
ture coordinates to look up interpolated values from
the original scalar data.

The generation of the warp texture is primarily
a sampling process. The warp texture is defined
to cover the bounding box of the curvilinear grid
unwarped into the R* domain. (We also refer to
the cells of a regular rectilinear R® grid as voxels.)
Given some R grid resolution, a voxel may be clas-
sified as interior, boundary, or exterior, according to
its relationship with the warped cells of the struc-
tured grid, as shown in Figure 2a.

3.1 Sampling Interior Voxels

To compute the values of W at the centers of the
interior voxels, we perform a point location query
of each voxel sample (its center) within the cells
of the structured grid. Such a query should report
which cell, if any, contains the sample location, and
where the sample is within that cell (i.e., its (s, ¢,7)
coordinate). If there is such a cell, then the voxel is
an interior voxel, and the matching grid coordinates
are stored at that voxel (such as the black samples
in Figure 2a).

In case the unwarp function is analytically speci-
fied and invertible, one can compute the warp func-
tion at each voxel center. In the more general case,
however, when only the value of the unwarp func-
tion is provided at a set of given points in the grid
space, we reconstruct the function from these sam-
ples first. This reconstruction is defined as a simple
tri-linear interpolation to match hardware tri-linear
filtering.

To answer the point location query, in our im-
plementation, we tetrahedralize the structured grid.
We locate the voxel center in the tetrahedron con-
taining it (if one exists) and then use the barycentric
coordinates within that tetrahedron to compute the
mapping to grid space.’

We later use hardware tri-linear texture filtering
to compute the warp function for each fragment. It
is worth noting that with the prescient knowledge
of this subsequent tri-linear interpolation, we might
alternatively compute the voxel center sample val-
ues more intelligently to reduce the difference be-
tween the interpolant and the inverse function ev-
erywhere in between samples. However, this sub-
stantially complicates the procedure.

A variety of methods are applicable to speed up
the sequence of point location queries. In order to
exploit coherence, we perform the queries within
the outermost grid cells first, and then walk from
voxel to voxel, following stabbing lines through the
tetrahedra. Spatial data structures such as octrees
and k-D trees are also good candidates for this ac-
celeration.

!This tetrahedralization for point-location should not be con-
fused with algorithms that permanently tetrahedralize a structured
grid as a means of performing the entire rendering process.

3.2 Extrapolating Boundary Voxels

By sampling the interior voxels, we have effectively
bound their centers to their accurate positions in the
grid space. This, in turn, implies that each grid sam-
ple, (s,t,7), is bound to some point W™ (s,t,)
in R®, where W1 is close to Wfl. However, it is
especially important to ensure that the boundaries
of the structured grid, which do not generally pass
through the centers of voxels, are accurately ren-
dered. We take special care at the grid boundaries.
In particular, we also locate all the boundary vox-
els as well as reproduce a set of samples on the grid
boundary precisely. Recall that a boundary voxel is
one that is adjacent to an interior voxel but is not
itself an interior voxel (using the convention that a
voxel has 26 adjacent voxels in 3D).

We associate each boundary voxel with a lattice
point on the grid boundary, as shown in Figure 2b.
We choose the grid boundary point to be the inter-
section of the grid boundary with a line connecting
the boundary voxel with one of its interior neigh-
bors. Whenever possible, this line is parallel to
one of the coordinate axes, but we use a diago-
nal line when no axis-aligned neighbor pairing is
available.> For each of these intersection computa-
tions, we trace the line from the interior voxel to the
boundary voxel, walking from tetrahedron to tetra-
hedron until the structured grid boundary intersec-
tion is found. In cases where more than one possible
neighbor pairing is available, we select one arbitrar-
ily.

Given an interior voxel, a boundary voxel, and a
boundary intersection, we apply a simple extrapola-
tion to determine the warp texture value to store at
the boundary voxel.

As a result of this extrapolation, the warp tex-
ture now contains texture coordinates both inside
and outside the valid grid domain. The texture co-
ordinates outside the valid domain are used to al-
low us to interpolate right up to the structured grid
boundary. When we come to a pixel whose inter-
polated value in the warp texture lookup lies out-
side the valid grid domain, we map that fragment to
transparent black. As a result, the grid does not con-
tribute color to any fragment outside the grid bound-

ary.

21f the corners and edges of the grid domain map to sharp fea-
tures in the Euclidean space, it may be advantageous to force some
of the matched grid boundary points to lie along these sharp fea-
tures.

10

@0 ¥

Figure 3: (a) It is possible for a voxel to be both
above and below the curvilinear grid (mapped into
R?), resulting in the appearance of an extraneous
grid. (b) The colors indicate how fragments within
those regions are classified. White: forced to be
transparent by stencil = 0. Light grey: elimi-
nated due to warp values outside [0, 1]. Dark grey:
boundary fragments with warp values in [0, 1] and
stencil > 0. Black: interior points with warp val-
ues in [0, 1] and stencil = 1.

3.3 Stenciling Exterior Voxels

We refer to voxels that are not adjacent to an interior
voxel as exterior voxels. The entire neighborhood
around these exterior voxels should always be ren-
dered as transparent black. One might like to assign
to these voxels warp values outside the valid grid
domain so that they too may be mapped to transpar-
ent black. However, this is not generally possible,
depending on how the grid warps in R®. For ex-
ample, see Figure 3a. The warp function takes s
component values greater than 1 as we proceed be-
yond the s = 1 boundary, as shown by the arrow.
At the same time, s takes values less than 0 beyond
the s = 0 boundary. This necessarily causes adja-
cent voxels, like A and B to get warp values greater
than 1 and less than 0, respectively. Thus the inter-
polated values of s for points between A and B fall
into the range [0, 1], mapping them to points inside
the structured grid.

To avoid this problem, we supplement the warp-
ing texture with a 3D binary stencil texture. This
stencil texture is set to 1 at all interior voxels and
0 at all boundary and exterior voxels. At render-
ing time, we test the linearly interpolated value of
this stencil texture, and set the pixel’s output color
to transparent black if the stencil texture evaluates
to exactly O (as depicted in Figure 3b). This effec-
tively eliminates the rendering of all exterior voxel
neighborhoods, and thus we do not need to care

what value is stored in the actual warp texture for
exterior voxels. The extraneous grid may yet appear
within a voxel if opposite boundaries pass through
the same voxel. We generally avoid this by choos-
ing a sufficient voxel resolution such that opposite
boundaries are separated into separate voxels (see
Section 5.3 for handling of cases where this is not
possible).

This stenciling approach bears some resemblance
to our prior work [6]. However, we are operating
here in a different domain that requires a very dif-
ferent procedure. In the prior work, the scalar data
is being resampled, and the regions just outside the
boundary are padded with copies of the boundary
scalar data, then clipped away by the stencil tex-
ture. Here we are operating on a warp texture by
extrapolating the warping function to position the
grid boundary in the correct location.

4 Error Computation

Apart from numerical errors, the main source of er-
ror in our technique is the approximate reconstruc-
tion of the warp-function from the samples at voxel
centers. In order to measure this error, we com-
pute the difference of the interpolant from the actual
warp function at each point of R®. For a point, p,
in Euclidean space, we evaluate the warping texture
at W (pe) using tri-linear interpolation of neigh-
boring voxel centers to compute its corresponding
point, pg, in grid space. Now we use the original
inverse warp function provided with the curvilinear
grid to map p, to its correct location, p., in Eu-
clidean space. We measure the error as |p. — pL|,
a distance of displacement in R>. This is effec-
tively the distance from where we are rendering a
particular scalar value to where that scalar value
ought to appear. If desired, this object-space dis-
tance may also be conservatively projected at run-
time into screen space to indicate the warping er-
ror in pixel-sized units that account for perspective
foreshortening.

It is worth noting that we have chosen to measure
the error in the warp function itself. A more direct
approach may be to measure the error in the result-
ing scalar values, if they are known in advance. This
is helpful primarily if the scalar values are gener-
ally R3-coherent — in other words, grid coordinates
close in R® have similar scalar values. Similarly,
one could measure the color error resulting from

application of the transfer function to the incorrect
scalar value. However, such error measures seem
less informative to us than our measurement of ge-
ometric distortion in the warping function.

5 Subtleties

The use of one level of indirection in our texture-
based volume rendering algorithm gives rise to sev-
eral more subtle issues that are worth discussing in
more detail. These are issues related to the limited
precision of the warp texture, to the polygonal slices
used for rendering, and to degenerate grid specifica-
tions.

5.1 Precision Issues

When we specify texture coordinates to the graph-
ics driver in the typical way, by binding them to in-
dividual vertices, we can send the data in a variety
of formats. They ultimately arrive in floating point
registers in the fragment processing unit, so we can
potentially take advantage of the full floating point
precision. In practice, the number of mantissa bits is
a good estimate of the useful precision of a floating
point texture coordinate, due to the limited range of
interest, so we essentially have access to 24 bits.

However, when we specify texture coordinates as
elements of an actual texture, as we do with our
warp texture, our precision is limited by the sup-
ported internal texture formats. For example, if
we wish to store the warp texture in a single 3D
texture on our current hardware (NVIDIA GeForce
6800), we can choose from a four-channel texture
with either 8 bits integer precision per channel or 16
bits floating point precision per channel.® The four
channels may be used to store the three texture coor-
dinate dimensions plus the stencil texture. The 8 bit
option is rather small. 16 bits floating point some-
what better, although it is difficult to make good
use of the exponent bits. The use of multiple tex-
tures (and thus multiple texture lookups), allows us
to use integer texture formats with 16 bits per chan-
nel, which currently gives us the best quality, at the
expense of more texture lookups. We can expect in-
creased support for the 32-bit floating point texture
formats in future graphics hardware, so this prob-
lem will likely go away soon.

332-bit floating point textures do not yet support trilinear inter-
polation.

5.2 Slicing Distance

Another interesting issue which arises in our setting
is the choice of a distance to use between polyg-
onal slices during rendering. In a standard voxel
grid, all the scalar samples are equally spaced, so
it is straightforward to choose a reasonable spacing
of planes to incorporate all the data. In our case,
however, the scalar data is still non-uniformly dis-
tributed in R®. This makes choosing an inter-plane
distance a tougher problem. One useful approach
is to vary the inter-plane distance according to the
portion of the space being sliced (i.e. the distance
between successive pairs of planes varies). Our cur-
rent approach is to incorporate progressive refine-
ment as well as user-controlled refinement, which
works reasonably well in an interactive system. Us-
ing our warp texture formulation in a hardware-
accelerated ray caster may provide increased oppor-
tunities for adaptive step sizes.

5.3 Grid Degeneracies

In some cases, the warping of the grid into Eu-
clidean space as specified by the original grid data
may contain degeneracies. For example, the grid
shown in Figure 3 could close into a toroidal con-
figuration. In this case, there is no way to keep the
boundaries separate during rendering. Such a de-
generacy occurs, for example, in the NASA Oxygen
Post data set. In this case, it is generally possible to
split the original grid into multiple grids such that
no single grid has a degenerate configuration. We
then sort these grids with respect to each other at
render time and render them in sorted order. This
approach may also be used to handle curvilinear
grids with multiple zones. The actual implemen-
tation of this is ongoing work for us.

6 Implementation And Results

We have implemented the warp texture genera-
tion algorithm as well as the rendering algorithm
on a Windows PC equipped with 2.8 GHz Intel
Xeon CPU, 2 GB RAM, AGP 8X bus, and an
NVIDIA Geforce 6800 GT with 256 MB VRAM.
3D texture-based volume rendering is performed
with viewport-aligned slicing. A custom fragment
program uses the R> location as an index into the
warp and stencil texture. The results of the warp
texture lookups are scaled and biased, then used

to perform the scalar texture lookup. The scalar
texture, which has been quantized to one byte per
scalar, is then used to index a final transfer function
texture, which maps the scalar value to RGBA ac-
cording to a user-specified transfer function. The
transfer functions may be mapped linearly or loga-
rithmically across the scalar range, and the user may
explicitly update the quantization to reflect the cur-
rent range of interest.

The preprocessing time for generating the warp
texture was less than 20 minutes for the highest res-
olution warp textures and much less for the lower
resolution ones. We have not yet devoted significant
effort to optimizing this stage because the time is
trivial compared to the time to generate the simula-
tion data (e.g., 50 hours times 288 CPUs, or 14,400
CPU hours, to generate the KDPhrd data set), and
can be performed in parallel with the actual simula-
tion computation if desired.

Figure 4 presents some data for several test mod-
els. The BluntFin and Tapered Cylinder (Figure 6)
are well known data distributed by NASA. KDPhrd
(Figure 7 is a simulation of turbulent gas around a
black hole.

We see that even small resolutions for the warp
texture provide reasonable accuracy. The mean er-
ror remains rather small with respect to the warp
texture voxel size.

We timed the run-time performance of our warp
texture volumes using a window size of 640x480,
with the object just filling that window and rotating.
We use glTexSubImage3D() to load the next
time step’s scalar data before rendering each frame.
For consistency, we use 800 slices for all these tim-
ing tests. Because we are generally fragment bound,
the frame rate generally varies with the number of
fragments. We currently perform two two-channel,
16-bit integer texture lookups* to fetch the warp
and stencil textures before looking up the scalar and
transfer function in two additional lookups. The
number of unnecessary fragments is directly related
to the percentage of empty volume in the object’s
bounding box (these fragments may be killed be-
fore actually looking up the scalar data and transfer
function). Due to our warp texture approach, which
keeps the scalar texture size small, the texture load-
ing is not a bottleneck. Should the simulation grid
size exceed the bus bandwidth for some application,

“Driver and hardware advances should soon reduce this to a
single lookup.

it may be more appropriate to employ a scalar field
compression based on vector quantization of each
voxel over some number of time steps [7].

We also present a set of visual quality compar-
isons in Figure 5. The two images rendered using
warp textures exhibit warping error as well as some
ringing artifacts at the boundary of the spherical
cut-out at the core of the original domain. The im-
ages rendered using direct resampling exhibit scalar
data errors that become color errors. We believe
the warping error is preferable — its size shrinks
with the distance of the viewer to the images, as
you can see by stepping back from your paper or
computer monitor. The resampling error remains
objectionable even as it becomes smaller on your
retina. Note that the goal of this comparison is
not to compare warp resolution to direct resampling
resolution. Recall that the warp texture resides in
texture memory throughout visualization, with only
the original scalar resolution loaded for each time
step (e.g., 192x192x64), whereas the direct resam-
pling method requires the resampled resolution to
be loaded at each time step.

7 Conclusions and Future Work

We have presented and demonstrated a new 3D
texture-based algorithm for visualization of time-
varying curvilinear grids. By factoring a static
warping function out from the time-varying scalar
data, we essentially convert the problem of render-
ing curvilinear grids to the problem of rendering
regular grids with an additional level of indirection.
The use of a precomputed 3D warp texture serves as
an accelerated point location query from Euclidean
space into grid space. Our approach eliminates the
need to resample the scalar data for each time step
and maintains a relatively low space requirement for
storing and transmitting the data.

We are currently developing methods for assign-
ing adaptive warp texture resolution across the Eu-
clidean domain to reduce error in a localized fash-
ion and also for dealing with more degenerate and
multizone data sets. Although we have demon-
strated the use of our warp texture in the context of
slice-based volume rendering of curvilinear grids, it
should be useful in other contexts as well, such as
ray casting of curvilinear grids, particle and stream-
line tracing through curvilinear grids, etc.

Model Grid resolution | Bounding box size Time Warp resolution | Mean error | Std. deviation Frame rate
steps

KDPhrd | 192x192x64 117.2x 119 x 231.8 | 2000 128x128x256 .002389 % | .0006710 % 31.7
256x128x256 1002341 % | .0006433 % 25.5
256x256x256 .002247 % | .0006955 % 21.0

BluntFin | 40x32x32 22.87x8.59x5.9 1 64x64x64 .02095 % 01853 % 75.2
128x128x128 .008506 % | .01062 % 74.1
256x128x128 .006773 % | .01103 % 62.5

Cylinder | 64x64x32 49.5x49.5x32.28 400 128x128x64 101938 % 2106 % 353
128x128x128 .01893 % 102106 % 352
256x256x128 .01502 % .005253 % 25.1

Figure 4: Statistics for several data sets. Grid resolution is the number of data points in the curvilinear grid.
Time steps is the number of scalar data values available per grid point. Warp resolution is the resolution of
the created warp texture. Mean error and standard deviation are measured as a percentage of the bounding
box diagonal (i.e., error/diagonal*100). Frame rates are for time-varying data, using 640x480 window
resolution and 800 slices.

8 Acknowledgments

We would like to thank Julian Krolik and John Haw-
ley for providing the astronomical data which moti-
vates this work and also NASA for the blunt fin and
tapered cylinder data. This work was supported in
part by NSF ITR Grant AST-0313031.

References

(1]

(2]

(3]

(4]

(3]

(6]

S. Callahan, M. Ikits, J. Comba, and C. Silva.
Hardware-assisted visibility sorting for un-
structured volume rendering. IEEE Transac-
tions on Visualization and Computer Graph-
ics, 11(3):285-295, 2005.

J Cohen, M Olano, and D Manocha.
Appearance-preserving simplification. In
Michael Cohen, editor, SIGGRAPH 98, An-
nual Conference Series, pages 115-122, Or-
lando, FL, 1998. Addison Wesley.

D Crawford, K Ma, M Huang, S Klasky,
and S Ethier. Visualizing gyrokinetic simula-
tions. In IEEE Visualization 2004, pages 59—
66, 2004.

L Hong and A Kaufman. Accelerated ray-
casting for curvilinear volumes. In /EEE Vi-
sualization "98., pages 247-254, 1998.

J. Kruger and R. Westermann. Acceleration
techniques for gpu-based volume rendering.
In IEEE Visualization 2003, pages 287-292,
2003.

J. Leven, J. Corso, J. Cohen, and S. Ku-
mar. Interactive visualization of unstruc-

(7]

(8]

9

—

[10]

(1]

(12]

tured grids using hierarchical 3d textures. In
IEEE/SIGGRAPH Symposium and Volume Vi-
sualization and Graphics 2002, pages 37-44,
2002.

E. Lum, K. Ma, and J. Clyne. Texture hard-
ware assisted rendering of time-varying vol-
ume data. [EEE Visualization 2001, pages
255-262 and 562, 2001.

N. Max, P. Williams, and C. Silva. Cell pro-
jection of meshes with non-planar faces. In
Data Visualization: The State of the Art, pages
157-168. Kluwer, 2003.

C. Rezk-Salama, M. Scheuering, G. Soza, and
G. Greiner. Fast volumetric deformation on
general purpose hardware. In 2001 ACM SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware, pages 17-21, 2001.

S. Roettger, S. Guthe, A. Schieber, and T. Ertl.
Convexification of unstructured grids. In Pro-
ceedings of Workshop on Vision, Modeling,
and Visualization 2004, pages 283-292, 2004.
A. Van Gelder. Rapid exploration of curvi-
linear grids using direct volume rendering. In
IEEE Visualization °93, pages 70-77, 1993.
R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering appli-
cations. In SIGGRAPH 98, pages 169-177,
1998.

Figure 5: KDPhrd astronomical simulation data with density values logarithmically mapped to hue. (a)
White square indicates zoom-in region for b through e, which is the site of the most densely space grid
samples. (b) Warp texture resolution 256x256x256. (c) Warp texture resolution 128x128x128. (d) Direct
resampling at resolution 256x256x256. (e) Direct resampling at resolution 128x128x128. The error for
warp-based renderings is visible as geometric distortions, as opposed to the color errors present in direct
resamplings.

~

Figure 6: Rendering of the NASA BluntFin with a 128x128x256 warp texture and Tapered Cylinder with a
256x256x128 warp texture.

Figure 7: Several time steps in a temporal sequence from the KDPhrd astronomical simulation data. The
scalar field represents the Poynting flux.

