
An Intrusion Tolerant Architecture and
Protocol for Substation Protection

Daniel Qian

A project report submitted to the Johns Hopkins University
in conformity with the requirements for the degree

of Master of Science in Engineering

Advisor: Yair Amir

August 2021

Acknowledgements

First of all, I would like to thank my advisor Yair Amir, who was a constant presence throughout

my time at Johns Hopkins. He was my professor for Intermediate Programming, my very first

computer science class at Hopkins, as well as Software For Resilient Communities, where I had my

first experience working with intrusion tolerant systems. Later, I also took Distributed Systems and

Advanced Distributed Systems with him and worked as a Course Assistant for some of his classes.

Outside of Hopkins, I was fortunate enough to work with him one summer at his startup, LTN

Global Communications Inc., on some other interesting problems involving real time networking

protocols over cellular networks. However, I would especially like to thank Yair for his general

mentorship; he inspired me to believe in my own ability to make an impact.

I would like to thank Sahiti Bommareddy, who I have worked with for the past year and a half and

who made numerous contributions to this work. She is a model collaborator, always available to

meet and sometimes even picking up tasks I could not get to. I would also like to thank her for

taking care of and upgrading the lab equipment, which I know she spent many hours on.

I would like to thank the other members of the DSN Lab, both past and present, especially Amy

Babay, Emily Wagner, John Schultz, Brian Wheatman, and Jerry Chen. The DSN Lab community

has always been super welcoming, whether that meant mentoring me on projects, having productive

discussions in lab meetings, or giving me advice based on their own experience.

Finally, I would like to thank my family. My parents, Jie and Ying, brought me into this world

and raised me, and have always given me unconditional love and support. My older brother Justin

has always been my role model, and my younger brothers Gavin and Oliver always bring me joy.

This work was supported in part by the Department of Energy / Pacific Northwest National Labo-

ratory grant PNNL-SA-163885. Its contents are solely the responsibility of the authors and do not

represent the official view of DoE or PNNL.

1

Contents

1 Abstract 3

2 Introduction 4
2.1 IEC 61850 Substation Architecture . 6
2.2 IEC 61850 Message Types . 7
2.3 Intrusion Tolerant Architecture . 8
2.4 Spines Details . 9

3 System Model 11
3.1 Threshold Cryptography . 11
3.2 Failure Model, Network Model and Other Assumptions 11
3.3 Other Definitions . 12

4 Protocol Description 13
4.1 Key Concepts . 13
4.2 States . 14
4.3 Events . 16
4.4 TM State Machine . 16
4.5 Time Synchronization Issues . 18
4.6 Protocol Specification . 19
4.7 TM Startup . 24

5 Analysis 25

6 Performance Evaluation 27
6.1 Setup . 27
6.2 Benchmark Scenario . 27

7 Conclusion 31

References 32

2

Abstract

While more recent works on intrusion tolerant replication for power grid SCADA systems have fo-

cused on wide area control centers, there has also been recent interest in applying similar techniques

to individual electrical substations. However, the substation environment is fundamentally differ-

ent from the wide area network, in both requirements and properties. For example, the IEC 61850

standard for substations requires a 4 millisecond latency for operations by high voltage protective

relays. For BFT-based algorithms, meeting this requirement under all conditions, including in the

presence of sophisticated attacks, is a steep challenge. More importantly, the state of the system

depends entirely on the most recent operation, which means that the total ordering provided by

such protocols is unnecessary. Therefore, we propose a new architecture and accompanying Byzan-

tine protocol. The architecture consists of 2f + k + 1 replicated relays, where f is the maximum

number of simultaneous Byzantine faults allowed, and k is the maximum number of relays under-

going proactive recovery. This is less than the 3f + 2k + 1 replicas that a traditional BFT protocol

would need, which implies significant cost savings and makes our architecture much more feasible

for deployment. Then, the protocol guarantees that if the relays behave similarly (because they

observe the same physical reality), the system will issue events correctly and in a timely manner.

Our implementation of this protocol was tested both with and without the presence of Byzantine

failures, and in all cases was able to deliver messages faster than the 4 ms requirement.

3

Introduction

Critical infrastructure, such as power grids, is generally controlled by Supervisory Control And

Data Acquisition (SCADA) systems, which allow operators to monitor and manipulate parts of

the system remotely. However, as these systems move away from traditional, air-gapped networks

and increasingly use existing IP infrastructure, they become more vulnerable to cyberattacks and

intrusion from the outside world. Recent events have shown that this vulnerability can be exploited

to cause disruptions and even physical damage to critical infrastructure [8].

One approach to solving these issues is presented in Spire [4]. Spire is designed for the wide area

context, specifically regional power grids that have a control center and units in the field that need

to communicate. Network attacks are addressed by using the Spines overlay messaging framework

[3], which comes with an intrusion tolerant mode that provides authentication and enforces fairness

[9]. For system level attacks, the Prime Byzantine replication engine [2] is used so that attackers

would need to compromise multiple machines in order to affect the system.

One important note about replication is that in practice, the replicas should not be completely

identical. Otherwise, an exploit that works on one replica could be repeated to compromise the

other replicas in the same way, and attackers could easily gain access to a critical number of machines

(i.e. more than f machines at once, where f is the number of assumed Byzantine machines). Spire

proposes a number of ways to diversify replicas that are also applicable to our protocol, such as

using compilers with built-in randomness.

Finally, the idea of proactive recovery, or periodically rebooting the replicas from a clean state

with fresh randomness, is proposed to increase the long term resilience of the system. Essentially,

even if an attacker is able to gain access to a replica, the replica would eventually be rebooted

from read-only memory in order to flush out the attacker from that replica. Then, because fresh

randomness is used to diversify the replica, the attacker cannot use the same exploit to access the

machine. These proactive recoveries should be frequent enough that attackers should not be able

to compromise more than f machines at once. We accommodate for this idea of proactive recovery

in our protocol as well.

4

However, instead of entire power grids, our focus is on adding resilience to individual electrical

substations. Substations are an essential part of power grids that help transmit and distribute

electricity. As expected though, the same vulnerabilities that exist in wide area SCADA systems

may also exist at the local level of SCADA for substations. For example, Intelligent Electrical

Devices (IEDs), essentially electrical equipment with a general purpose processor, could be an

attractive target for attackers. This is because they perform a variety of important functions,

including gathering sensor data, issuing automated commands, and communicating with higher

level control systems. Therefore, these IEDs would benefit from the same kind of techniques that

Spire uses to address both network and system level attacks.

The substation environment is different than wide area SCADA environment though, and it comes

with its own challenges. First of all, IEDs are not generic computers; they are expensive, specialized

hardware, and an excessive number of replicated IEDs would make deployment infeasible. Further-

more, the IEC 61850 standard [6, 7], which defines both the architecture and communications

of substation systems, has a strict timing constraints for critical messages. For BFT-based algo-

rithms, meeting these timing constraints under all conditions (including in the presence of resource

consumption or other sophisticated attacks) is a steep challenge.

One operation with such a timing requirement is that of high voltage protective relays. They are

a particular type of IED that run algorithms based on measurements of current, voltage, etc. to

detect electrical faults. If a fault is detected, they protect the physical equipment of the substation

by tripping a circuit breaker. Then, when the fault is cleared, they can automatically close the

circuit breaker. It is clear why protecting these relays is important; unnecessary trips or failure

to close the circuit breakers could result in loss of power for customers. Even worse, failure to

trip and closing at the wrong time could result in physical damage to the equipment or injury

to operators. These signals to trip and close would be carried by an IEC 61850 Generic Object

Oriented Substation Events (GOOSE) message and are required to be delivered from the relay to

the breaker within 4 ms1[5, 6].

Our work is designed specifically for these protective relays, but also serves as a proof of concept

for similar systems that may have less strict requirements. We use the aforementioned Spines for

intrusion tolerant networking, and we accommodate for proactive recovery. In order to protect

against intrusions of the relays, we also replicate them. However, instead of a traditional BFT

(Byzantine replication) protocol, we use a novel protocol to coordinate them, which is the main

contribution of the work.

At a high level, the protocol uses Threshold Cryptography [11] to ensure that compromised relays

cannot unilaterally issue trip or close commands. Specifically, if f is the number of compro-

mised/Byzantine relays, then the Threshold Cryptography scheme requires f + 1 signatures to

1This 4 ms requirement comes from the fact that a trip should occur within a quarter cycle of the power. Since
in the US power runs at 60 Hz, a quarter cycle is 1/60/4 ≈ 4.167 ms.

5

ensure at least one correct relay agrees. If we account for k relays undergoing proactive recovery,

then a total of 2f + k + 1 relays are needed, since we need to ensure that f + 1 correct relays are

available and actively participating. Note that any BFT protocol normally requires 3f + 2k + 1

replicas under the same definitions of f and k. Since relays are expensive, this implies significant

cost savings and makes the work much more feasible for deployment. In addition, the threshold

cryptography requires less rounds of communication and therefore meets the timing requirements

of IEC 61850.

The details of the protocol, including why BFT is not needed and how the Threshold Cryptography

works, are described in later sections.

2.1 IEC 61850 Substation Architecture

To give context for our intrusion tolerant architecture, we first examine in detail how a substation

would be organized under IEC 61850. [6, 7].

Figure 2.1: Architecture of a substation, with multiple IEDs

Following are details about the relevant components in Figure 2.1.

• Networks: The substation communication is split into two high speed Ethernet networks.

The Process Bus connects the IEDs (protective relays in our case) with the various devices

that interact with the physical equipment. The Station Bus is used to connect the IEDs to

each other, and to higher level control.

• Sensors/Merging Units: Traditionally, sensors in the substation would directly connect

to IEDs. However, the IEC 61850 standard instead uses Merging Units (MU). These MUs

gather data from the sensors, convert the analog measurements to digital ones, and publish

6

them on the Process Bus using Sampled Value (SV) messages, which are also defined in the

61850 protocol.

• Relays/IEDs: The Relays are the decision makers. They take the SV messages from the

sensors and apply algorithms over them to detect electrical faults. When such a fault occurs,

they issue a GOOSE message over the Process Bus commanding the breaker to trip. Similarly,

they also use the measurements from the SV messages to decide when to issue close commands

through GOOSE.

• Circuit Breakers: Also connected to the Process Bus are the Circuit Breakers (CB) that

would receive GOOSE messages from the relays and physically act on the system.

To summarize how a trip would occur, Sampled Value messages containing measurements are

published on the Process Bus and received by a relay. If the relay detects a fault using these

measurements, then a GOOSE message is issued over the Process Bus to a circuit breaker. The

circuit breaker would then trip.

In addition to the components just described, the upper section of Figure 2.1 shows an HMI

(Human Machine Interface) and an RTU (Remote Terminal Unit) connected to the Station Bus,

along with the IEDs. These communicate with each other using another IEC 61850 protocol called

Manufacturing Message Specification (MMS). The Station bus is also connected to the internet to

facilitate communication between the substation and the control center.

Finally, one important detail not reflected in Figure 2.1 is that substations require some sort of time

synchronization [10], such as NTP, IRIG-B timecodes or Precision Time Protocol (PTP). Because

this synchronization is necessary for the substation anyways, our protocol also utilizes it. Note

that while the time synchronization method may be a potential vector for an attacker to disrupt

the substation, preventing such attacks is not within the scope of this work.

2.2 IEC 61850 Message Types

Following are additional details about the message types passed between parts of the substations

as defined in IEC 61850.

• Manufacturing Message Specification (MMS): These messages are used in the substa-

tion context to carry information from higher level control or between IEDs. They are based

on TCP/IP. However, as stated before, our protocol does not interact with them.

• Sampled Value (SV): SV Messages are sent by the MUs and carry measurement data, such

as voltages and currents, from Merging Units to IEDs/Relays. These messages are published

on a fixed interval, for example 80 times per power cycle, and are subscribed to by the IEDs.

7

These messages are sent using Ethernet multicast, and thus are restricted to Local Area

Networks (i.e. the Process Bus).

• Generic Object Oriented Substation Events (GOOSE): GOOSE is used to publish

events in the substation, such as the relay deciding to trip or close. Similar to SV messages,

GOOSE is also a Layer 2 protocol that uses Ethernet multicast. When new data needs

to be published, a message is sent with this new data and a new “state number”. Then,

it is retransmitted multiple times with the same data and state number. The period of

retransmission is short at first, but grows until it reaches a configured period, usually on the

order of 1 second, and then continues to retransmit at that frequency. When a new event

occurs, the state number is incremented, and the same retransmission sequence is started.

Finally, as discussed before, the IEC 61850 standard also requires that GOOSE messages be

delivered within 4 ms.

2.3 Intrusion Tolerant Architecture

The following section describes our intrusion tolerant architecture, which is shown in Figure 2.2.

Note that while the previous figure (Figure 2.1) of a typical IEC 61850 architecture had multiple

IEDs with different purposes, each labeled IED in this diagram is a replica. In other words, the

replicas shown are logically equivalent to a single Relay in Figure 2.1. Furthermore, we only show

one MU and one CB, as our single logical relay works with them.

Figure 2.2: Intrusion Tolerant Architecture for a single IED with multiple replicas, f = 1 and k = 1

There are a number of new components. The outputs of each Relay, rather than being directly

connected to the Process Bus, are instead connected to a separate machine. This machine contains

two components, a Relay Proxy and a Trip Master (TM). Since the TM is the more important

component, we will refer to this machine as the TM Machine. We will also refer to the TM Machine

and Relay together as a Replica, since for the purpose of our Byzantine protocol, they are a single

8

unit. Similarly, the Circuit Breaker is no longer connected to the Process Bus, and is instead

connected to a separate machine, the Destination Proxy. Finally, two Spines networks are used to

connect these new machines. The purpose of each of these is described below.

• Relay Proxy: The Relay Proxy simply receives and parses all GOOSE messages sent by

the relay it is connected to, and then it passes the needed information to the TM. The Proxy

also reads the state numbers and ignores any retransmitted messages of the GOOSE protocol.

The main advantage of using such a Proxy is that Relays do not need to be modified for the

protocol, and they can run in the same way as in a normal substation.

• Trip Master (TM): The Trip Master performs the Threshold Cryptography based protocol

on the output of the Relay Proxy. The details of the protocol are described in Section 4.

However, one important note is that using Threshold Cryptography requires that during

configuration, a trusted party would have to distribute signing keys to each TM.

• Destination Proxy: The Destination Proxy serves a similar purpose to the Relay Proxy in

that it handles the protocols used by the Circuit Breaker (i.e. translating the message sent

over Spines from the TM back into GOOSE). However, it also has the additional responsibility

of verifying the signature from the Threshold Cryptography scheme. Since the purpose of the

machine is rather simple, it should theoretically be more secure than the other components.

• Networks: Finally, the last new components are the Spines networks. Instead of sending

GOOSE messages directly on the Process Bus using Ethernet Multicast, the TMs and Des-

tination Proxy are connected through one of the Spines overlays, which is called the Spines

Dissemination Network. In our proposed architecture, this is a separate physical switch from

the Process Bus, so the Process Bus would only carry the SV messages.

There is also a second Spines overlay network: the Spines Coordination Network. This network

connects the TMs and is used to exchange messages, for example those containing partial

signatures, during the protocol. This would also be its own separate physical switch.

Finally, though it is not directly relevant to our protocol, at the top of Figure 2.2, the HMI and

RTU are still connected to the station bus. However, we propose that instead of connecting to the

IEDs through the station bus, the RTU would also use the Spines Dissemination Network. Then,

the TM machine could forward the MMS messages to the IEDs. This would add the Intrusion

Tolerant Properties of Spines to the communication between the RTU and the IEDs.

2.4 Spines Details

As discussed, the reason we use Spines is for its Intrusion Tolerant networking mode. To provide

more context, there are two Spines nodes (in reality processes) on all of the TM machines. One is

9

for the Dissemination Network, and the other for the Coordination Network. In addition, there is

a Spines node for just the Dissemination Network on the Destination Proxy. Each of these nodes

is connected to all other nodes on the same network; in other words each network is a complete

graph from the Spines perspective. Spines is designed as an Overlay Network and sending along

each edge is reliable.

Intrusion Tolerant Networking mode also ensures that each edge is authenticated, which is the first

important property that we use. On startup, the nodes use Diffie-Hellman Key Exchange with

every other node to setup a Secret Key, which is then used for HMACs. This ensures that even

if an attacker has access to other machines in the substation, they would need to compromise one

of the TM machines and its keys to send messages that would be accepted by other Spines nodes.

We can therefore trust Spines to inform us of the identity of the senders.

The second important property of Spines is the enforcement of fairness. Essentially, each Spines

node allocates resources for receiving messages according to max-min fairness. Therefore, a com-

promised node cannot deplete another node’s resources (at the Spines level) by sending messages

excessively.

More specifically, Spines defines two types of messaging semantics: Priority and Reliable messaging,

each with their own type of enforced fairness. In our implementation, we use Priority messaging.

However, we claim that because our network graph is complete, these two semantics only have

minor practical differences. In fact, the fairness enforced by either is equivalent. Priority messaging

enforces fairness per source, while Reliable messaging enforces fairness per flow (see [9] for more

details). But all possible flows for a destination in such a network graph is the same as all the

sources. The main difference is how the two semantics behave when resources are limited. In

Priority messaging, upon receiving a message that would fill the buffer for the message’s source,

the oldest, lowest priority message from that source would be dropped. Reliable messaging obviously

should not drop messages, so it will instead refuse to accept new messages when the buffer for the

message’s flow is full. However, due to the nature of our protocol, we do not expect correct nodes

to ever send enough messages to fill these buffers, so this is not a practical difference.

Note that intrusion tolerant mode of Spines also has other features such as multi-path routing, but

those are more relevant to wide area networks, where Spines nodes are used to forward messages

to each other as part of an Overlay Network over existing IP infrastructure.

10

System Model

The following section provides definitions and assumptions used for our protocol description and

analysis.

3.1 Threshold Cryptography

As stated before, the TMs make use of a threshold signature scheme. At a high level, a (t, n)-

threshold signature scheme creates a public key and a signing key, just like a normal signature

scheme. However, the signing key is split among n parties, and t of these are needed to create a

signature.

Most threshold signature schemes (including the one used in this protocol) use a two step process to

create these signatures. First each party can create partial signatures/shares on a message. We will

denote this as 〈. . .〉σi where . . . is the content of the message and i is the index of the party. Then

if any distinct set of at least t of these shares exist on the same message, then they can be combined

to form the threshold signature, which we simply denote as 〈...〉σ . Note that this combination can

fail if one of the shares is invalid.

Finally, this threshold signature can be verified. For a given the threshold signature, the public

key, and the message itself, the verify function will return true if the signature is valid, and false

otherwise. Note that this is no different than verifying a normal signature, and in fact in the scheme

we use [11], the verification process is the same as a normal RSA signature verification.

It is assumed that the security of the Threshold Cryptography is sound, i.e. it is computationally

hard to forge a valid signature over a valid message without a set of t shares.

3.2 Failure Model, Network Model and Other Assumptions

As stated before, the protocol tolerates up to f Byzantine and k unavailable replicas. This applies

to both the Relay itself, and the TM Machine attached to it. By a Byzantine fault, we mean that

the attacker can execute arbitrary actions on compromised replicas, including coordinating with

11

other compromised replicas. However, the one exception is that they cannot break the cryptography

of any correct replicas, without access to their secret keys.

We assume that the time synchronization will not be compromised. This is justifiable because it

could be protected by some other system. We also assume that the time synchronization will be

accurate to at least 1 ms, that is the clocks of any two machines will not diverge by more than 1

ms. This is well within the accuracy of protocols such as PTP, which in fact synchronize clocks on

the order of microseconds.

We also assume that the communication between the Merging Units and Relays over the Process

Bus cannot be interfered with and that the relays therefore receive the same SV messages. This

is a reasonable assumption to make, given that the Process Bus could be protected by configuring

the switch to only allow incoming packets from the MUs. Note that this also implies that correct

relays will see the same input.

Another assumption that we make about correct relays is that they function logically with respect

to trips and closes. Specifically, we assume that a correct relay will only issue a trip if power is

flowing, i.e. if the breaker is already closed. Likewise a correct relay will only issue a close if there

is no power flowing, i.e. if the breaker has been tripped.

Finally, to clarify the network model, it is clear that no protocol can ensure the timeliness re-

quirement of 4 ms in a fully asynchronous network setting. In fact, our protocol requires a stable

network that delivers messages within 1 ms. However, we believe this is justifiable, given that the

protocol runs over a Local Area Network.

3.3 Other Definitions

First, let us define n as the total number of replicas and enumerate them 1 . . . n. n = 2f + k + 1

where f and k are defined as before. We use a (f + 1, n)-threshold signature scheme, with the n

shares of the signing key distributed among the n replicas during setup.

We also need to define the two actions of the protective relays: trip and close. Our protocol uses

these to describe the statuses of the protective Relays and the Circuit Breaker. Intuitively, when

the relays change their status from one to another, our TM protocol needs to issue a Threshold

Signed message to the Destination Proxy.

12

Protocol Description

So far, the TM coordination protocol has been described abstractly; it allows multiple relays to

generate a final signature for a trip or close message. Now, we define the state machine which

specifies exactly how TMs behaves when they receive a message.

4.1 Key Concepts

Before getting into the formal specification, it is important to understand the concepts behind the

design of the state machine.

4.1.1 Discretized Timestamps

Let us consider how combining shares into a Threshold Signature is actually done. Say a large

enough set of correct relays that need to sign a message for the breaker exists. If the entire message

just consists of a flag for trip or close, then in the future an adversary could replay such a message

to change the system unilaterally.

A number of solutions to this were considered, including sequence numbers, nonces, etc. However,

with all of these solutions, this extra field in the message would have to be agreed upon by all the

TMs, requiring an extra round of communication before the partial signatures are exchanged.

This brings us to our solution of discretized timestamps (DTS), which is based on the time synchro-

nization already present in the system. Essentially, the messages also contain a timestamp of when

they are generated. However, instead of an exact timestamp, we “discretize” them, or round them

to a regular interval. Then, when the TMs send partial signatures to each other, if the TMs are

synchronized, they should also have generated a message with the same exact DTS. Therefore, only

one round of communication between the machines is needed to sign the message. To make this

process faster and more reliable, each TM initially sends 2 shares upon a status change, one with a

rounded down DTS and one with the next DTS. Then if the threshold signature is not generated,

the TMs continue to send the next DTS when that time is reached, until they can collect enough

messages with the same DTS.

13

How do we choose the interval to round every DTS to? The minimum is the sum of the maximum

network time synchronization error and network delay. This is because otherwise, a TM could send

the two shares as described, but if they are maximally delayed until they reach another TM, and

if that TM is maximally ahead, those shares would look too old. So under our assumptions, the

DTS must be at least 2 ms, which is in fact the interval which is used in our implementation. On

the other hand, a large DTS means that two operations that are close in time to each other may

initially share the same DTS, so then the second operation would need to wait for the next DTS.

4.1.2 Role of the Destination Proxy

The Destination Proxy (connected to the circuit breaker) is a single point of failure, and so it is

meant to be as simple as possible to prevent vulnerabilities. However, we must involve it minimally

in the protocol to acknowledge that the threshold signed messages are received.

If we were to rely on the TMs to keep track of which threshold signed messages are sent (e.g. by

having them multicast the signed message to the other TMs), then we run into the situation where

a compromised TM could send the signed message only to the Destination Proxy and not the other

TMs. Though this could be solved by ensuring that there is a quorum for each trip or close (like

BFT), this would also mean an extra round of communication.

Note that the proxy is designed so it can undergo proactive recovery as well, i.e. shut down and

restart from a clean state with minimal interruptions. Furthermore, multiple proxies can be used

to ensure if that one is unavailable, the other could still be used.

4.1.3 Startup Protocol

In order to facilitate proactive recovery, we need TMs to have the ability to be shutdown and restart

as a clean, newly diversified instance. This means that they would not have any knowledge of their

prior state. Therefore, in order to join the protocol, we have them query for the status of the CB

and wait for their relay to also issue a status. Because this procedure is independent of the other

TM replicas, each TM can simply run the startup protocol separately to start the system from

scratch.

4.2 States

The state machine defines a set of three templates for each status of trip and close. Note that if

there was more than two possible statuses, these templates could be generalized.

Given x is either trip or close:

• Done x: The relay has issued an x status, which the TMs generated a threshold signature

for and the Destination Proxy received.

14

• Attempt x: The relay has issued an x status, but the Destination Proxy is not up to date

with it. Therefore the TMs are currently attempting to generate a threshold signed message.

• Wait x: The relay did not issue an x command, but the other TMs have generated a threshold

signature that the Destination Proxy received. This indicates the Relay is either down, or

behind in issuing the x command.

The flow between states in the normal case is straightforward. If the TM is currently at Done x,

and receives a new status y from the relay, it will go to Attempt y. When a signed message is

created or the proxy acknowledges a signed message from another TM, then the TM can go from

Attempt y to Done y. If instead a TM receives an acknowledgement for an x status from the

proxy, but its relay has not issued an x status yet, the TM goes to Wait x. If the relay then issues

the x status late the TM can go to Done x.

More formally, each TM keeps track of the following information: the status of the relay and the

(discretized) timestamp at which the status last changed, and the status of the breaker and another

timestamp indicating the time of the last status change. Note that this second timestamp will

update both when a TM sends a threshold signed message and when it receives an acknowledgement

from the proxy.

We denote the relay status and timestamp as a object r. We define the breaker status and timestamp

as an object b. Each of these has a status (trip or close) and dts field that we refer to using dot

notation (e.g. r.status).

The state machine’s states are then defined over the possible values of r, b, as follows:

1. Done TRIP: (r.status, b.status) = (trip,trip)

2. Done CLOSE: (r.status, b.status) = (close,close)

3. Attempt TRIP: (r.status, b.status) = (trip,close) and r.dts ≥ b.dts.

4. Attempt CLOSE: (r.status, b.status) = (close,trip) and r.dts ≥ b.dts

5. Wait TRIP: (r.status, b.status) = (close,trip) and r.dts < b.dts

6. Wait CLOSE: (r.status, b.status) = (trip,close) and r.dts < b.dts

These states cover all possible values of r, b.

15

4.3 Events

Following are all the possible events that can occur for a TM.

Event Notes

Local Relay TRIP From the relay, indicating a status change

Local Relay CLOSE

TRIP Share From any TM, including self

CLOSE Share

TRIP Share Timeout Timeouts for resending shares

CLOSE Share Timeout

Signed TRIP Ack From Dest. Proxy, with signature and timestamp

Signed CLOSE Ack

Signed CLOSE Timeout Timeouts to resend Signed messages to Dest. Proxy

Signed TRIP Timeout

4.4 TM State Machine

The TM state machine, excluding the startup protocol, is shown in Figure 4.1.

For each event, the TM looks at how the event changes r or b, including the timestamp, and

moves to the appropriate state. For example, a Local Relay TRIP means r.status and r.dts would

change. If the TM was in Done CLOSE before the Local Relay TRIP, then (r.status, b.status) =

(trip,close) and r.dts ≥ b.dts, so the TM moves to Attempt TRIP.

However, one detail that the State Diagram does not capture is what the TMs send. Specifically,

in the Attempt x states, the TM periodically sends x Share messages to try and gather enough

shares for a threshold signed message. In the Done x states, the TM will send the final threshold

signed message to the proxy until it gets an acknowledgment.

The dashed arrows (from Done x back to Attempt x) represent that these transitions are unlikely

to be used in a real version of the protocol. However, they are necessary in order to keep the state

of the TM consistent with the status and timestamp of the relay and breaker. The scenario in

which the dashed arrows are taken requires a set of events to occur in a specific order and in rapid

succession. Say TMs 1, 2, 3 (with f = 1, k = 1) are currently in Attempt CLOSE. Then TMs 1

and 2 combine shares and move to Done CLOSE. If then a Local Relay TRIP occurs immediately

on Relay 3, before the Signed CLOSE Ack from the proxy arrives, then TM 3 will first go back to

Done TRIP. However, when the Signed CLOSE Ack from the proxy arrives, its timestamp will

be before the Local Relay TRIP, and so would take the dashed arrow to Attempt TRIP.

16

Figure 4.1: State Diagram Describing TM Protocol

17

4.5 Time Synchronization Issues

The reliance on comparing timestamps to decide on transitions can be an issue. For example, the

timestamp on a Signed CLOSE Ack is from the Destination Proxy, whereas the timestamp on a

Local Relay TRIP is from the TM machine. So, in the above scenario where the dashed transitions

are taken, the timestamp of the Signed CLOSE Ack could be greater than the timestamp of the

Local Relay TRIP, even though it really (i.e. with respect to a global time) happened before,

as illustrated in Figure 4.2. Then, the TM erroneously would go to Wait CLOSE instead of

Attempt TRIP.

Figure 4.2: Timeline of events that appear out of order, due to time synchronization inaccuracies.

The black bars represent how far off from a theoretical global time the clocks of the various machines

could be.

The simplest solution to this would be to artificially wait an interval of time before any operation,

equal to the maximum difference in clocks (1 ms in our case). This would ensure that each operation

(e.g. the two shown in the Figure 4.2) would be sequential, no matter which machine’s clock is

used for the timestamp. However, it would also make the latency greater by 1 ms in all cases.

Alternatively, we can make the assumption that trip and close operations cannot occur within

1 ms of each other and so there is no need for waiting. This is actually reasonable, given that the

relays need to collect measurements to make decisions. However, the better compromise we have

found is to assume that a close cannot occur within 1 ms of a trip, but that a trip can occur

within 1 ms of a close. This is due to the physical nature of each operation: close operations

18

are manually triggered by operators or automatically done after a period of time. Then, we only

need to wait to process close operations, which are less urgent. Specifically, when the Destination

Proxy records the timestamp for a Signed CLOSE Ack, it then waits 1 ms before actually sending a

command to the CB. Therefore, since the trip on the relay must happen after the breaker physically

closes, then the timestamp of the Local Relay TRIP that any of the TMs receive will be after the

timestamp of the Signed CLOSE Ack.

4.6 Protocol Specification

Following is the exact specification for the protocol, including the startup procedures and the

Destination Proxy.

4.6.1 TM Specification

First, we define the verification of messages implicitly:

1. Each sender is authenticated by Spines, so a relay must present the correct ID corresponding

with its Spines node or its message will be dropped.

2. TRIP/CLOSE Share and Signed TRIP/CLOSE Ack messages are discarded if their times-

tamp is older than b.time.

3. Similarly, Local Relay TRIP/CLOSE messages are discarded if their timestamp is older than

r.time.

For combining shares, each TM keeps track of all shares it receives with DTS equal to the last DTS

it sent, as well as the next DTS. Then, we define a helper function:

Algorithm 1 Helper Function to Combine Shares

1: function Try Combine(x)
2: Let dts0 = the DTS of the last x Share sent by this TM
3: for dts = dts0 to (dts0 + 1) do
4: if there are ≥ f + 1 shares of type x for dts then
5: Combine shares and create Signed x message msg = 〈x, dts〉σ
6: return True if successful, False Otherwise
7: end if
8: end for
9: return False

10: end function

Then, let us define how the TM processes events in the normal case for each state. Note that we

only specify Done TRIP, Attempt TRIP, and Wait TRIP. However, the behavior of the TM

19

in the other 3 states is analogous. Again, each event is verified using the implicit verification as

described above. Also, we will use the term multicast to refer to sending a message to all TMs,

including the sender itself, and i to refer to the index of the TM.

20

Algorithm 2 Specification for Processing Events in Each State

1: function Done TRIP Process(event)
2: switch event.type
3: case Local Relay TRIP :
4: Update r.dts := event.dts
5: return
6:

7: case Local Relay CLOSE :
8: Set r.status := close and r.dts := event.dts
9: Multicast Close Share(i, 〈close, r.dts〉σi)

10: Multicast Close Share(i, 〈close, r.dts + 1〉σi
)

11: Cancel Signed TRIP Ack Timeout, if exists
12: Start CLOSE Share Timeout for next DTS
13: State change to Attempt CLOSE
14: return
15:

16: case TRIP Share:
17: case CLOSE Share:
18: return
19:

20: case TRIP Share Timeout :
21: case CLOSE Share Timeout :
22: Not Possible
23: return
24:

25: case Signed TRIP Ack :
26: Update b.dts := event.dts
27: Cancel Signed TRIP Ack Timeout, if exists
28: return
29:

30: case Signed CLOSE Ack :
31: Cancel Signed TRIP Ack Timeout, if exists
32: Set b.status := close and b.dts := event.dts
33: if r.dts < b.dts then
34: State change to Wait CLOSE
35: else
36: State change to Attempt TRIP
37: end if
38: return
39:

40: case Signed TRIP Ack Timeout :
41: Resend msg, the threshold signed message from Try Combine
42: Start Signed TRIP Ack Timeout
43: return
44:

45: case Signed CLOSE Ack Timeout :
46: Not Possible
47: end function

21

48: function Attempt TRIP Process(event)
49: switch event.type
50: case Local Relay TRIP :
51: Update r.dts := event.dts
52: return
53:

54: case Local Relay CLOSE :
55: Set r.status := close and r.dts := event.dts
56: Cancel TRIP Share Timeout
57: State change to Done CLOSE
58: return
59:

60: case TRIP Share:
61: Store share based on (event.sender, event.dts)
62: if Try Combine(trip) then
63: Cancel TRIP Share Timeout
64: Start Signed TRIP Ack Timeout
65: Send msg to proxy (where msg is generated by Try Combine)
66: Set b.state := trip and b.dts := msg.dts
67: State Change to Done TRIP
68: end if
69: return
70:

71: case CLOSE Share:
72: return
73:

74: case TRIP Share Timeout :
75: Let dts be the DTS of the current timestamp.
76: Multicast Close Share(i, 〈close, dts〉σi)
77: Start TRIP Share Timeout for next DTS
78: return
79:

80: case CLOSE Share Timeout :
81: Not Possible
82:

83: case Signed TRIP Ack :
84: Cancel TRIP Share Timeout
85: Set b.status := trip and b.dts := event.dts
86: State change to TRIPPED
87: return
88:

89: case Signed CLOSE Ack :
90: if r.dts < event.dts then
91: Cancel TRIP Share Timeout
92: Set b.status := close and b.dts := event.dts
93: State change to Wait CLOSE
94: end if
95: return
96:

97: case Signed TRIP Ack Timeout :

98: case Signed CLOSE Ack Timeout :
99: Not Possible
100: end function

22

101: function Wait TRIP Process(event)
102: switch event.type
103: case Local Relay TRIP :
104: Set r.state := TRIP and r.dts := event.dts
105: State change to Done TRIP
106: return
107:

108: case Local Relay CLOSE :
109: Set r.status := close and r.dts := event.dts
110: Multicast Close Share(i, 〈close, r.dts〉σi)
111: Multicast Close Share(i, 〈close, r.dts + 1〉σi)
112: Start CLOSE Share Timeout for next DTS
113: State change to Attempt CLOSE
114: return
115:

116: case TRIP Share:
117: case CLOSE Share:
118: return
119:

120: case TRIP Share Timeout :
121: case CLOSE Share Timeout :
122: Not Possible
123:

124: case Signed TRIP Ack :
125: Update b.dts := event.dts
126: return
127:

128: case Signed CLOSE Ack :
129: Set r.status := close and r.dts := event.dts
130: State change to Done CLOSE
131: return
132:

133: case Signed TRIP Ack Timeout :

134: case Signed CLOSE Ack Timeout :
135: Not Possible
136: end function

23

4.6.2 Destination Proxy

Now, we specify the Destination Proxy. We similarly define an object b that keeps track of the

status of the breaker, with fields b.status ∈ {trip,close} and b.dts. On startup, the proxy queries

the physical circuit breaker for its status, and sets b.status accordingly (to trip or close), as well

as b.dts to the discretized version of its current time. The following pseudocode specifies the rest

of the proxies behavior, when receiving messages from TMs.

Algorithm 3 Specification for Destination Proxy Behavior Upon Receiving Message

1: Let msg be the received message from Spines
2: if msg.type = Recovery Query then
3: Send (b.status, b.dts) to msg.sender
4: else if msg.type = Signed CLOSE and b.status = trip then
5: Set b.status = close and b.dts = dts now()
6: Sleep 1 ms (to prevent time synchronization issues)
7: Issue close command to breaker and wait for response
8: Multicast Signed CLOSE Ack to all TMs
9: else if msg.type = Signed TRIP and b.status = close then

10: Set b.status = trip and b.dts = dts now()
11: Issue trip command to breaker and wait for response
12: Multicast Signed TRIP Ack to all TMs
13: end if

4.7 TM Startup

Finally, we specify the behavior of a TM on startup. This is straightforward, so we simply provide

the following informal description:

While the TM has not received updates from the Relay or the Destination Proxy

• Periodically query the Destination Proxy with Recovery Query messages.

• Upon receiving a Local Relay TRIP or Local Relay CLOSE, update r

• Upon receiving a response to the Recovery Query, or a Signed TRIP Ack or Signed CLOSE
Ack, update b accordingly.

• Ignore other events

Then when the TM has received messages from both its Relay and the Destination Proxy, and so

has values for r, b, it will go to the appropriate state based on the values of r and b. For example

if (r.status, b.status) = (trip,close) and r.dts ≥ b.dts, then the TM will go to Attempt TRIP.

24

Analysis

We claim that our protocol satisfies the following properties:

Property 1 (Safety). The set of Byzantine replicas cannot unilaterally change the system. More

formally, at least one correct relay needs to have changed its status to trip since the last time the

CB changed to close in order for the Destination Proxy to issue a trip to the circuit breaker (or

vice versa).

Proof. We prove this in two steps. First, it follows directly from our assumptions about the thresh-

old cryptography that a single TM cannot forge a threshold signature without a shares from at

least f + 1 TMs. Since there are at most f Byzantine replicas, we can conclude that a share from

a correct replica is needed to create a Signed x message that causes the circuit breaker to

Then, we know that correct TMs only send shares in the Attempt x state. Without loss of

generality, let us examine Attempt TRIP. It follows from our state machine design that a correct

TM will only enter into Attempt TRIP if the Relay issues a trip command after the circuit

breaker has closed. Therefore our protocol will always provide Safety.

Property 2 (Timeliness). Under stable network conditions and assumptions about the speed of

computation, a Signed x will be delivered to the CB within 4 ms of when the last correct relay

changes its status to x.

First, to clarify what this definition means, let us assume without loss of generality that the system

needs to trip, and therefore all the correct relays will issue a trip. However, when these trips occur

could potentially vary. We measure the difference between when the CB receives a trip from the

Destination Proxy and the latest time of all the correct relay trips. This definition is justifiable,

because if it was just the last correct relay in a normal substation, the requirement would be the

same.

The reason we use the latest correct relay is that this covers cases where Byzantine relays participate

25

in the protocol. Note that this means that a trip could be delivered even before the last correct

relay issues a trip (and likewise for close).

Proof. Let us assume that the computation time for the TMs (i.e. processing and signing messages)

is consistent across machines for the same tasks, and in total takes at most 2 ms. We also use the

assumption that the network is synchronous and will deliver messages within 1 ms. When the last

correct TM receives a Local Relay TRIP or Local Relay CLOSE, it sends its shares to the other

TMs. Because it is the last correct TM, we can assume that all the other TMs also sent their

shares. So within 1 ms of the last correct relay sending shares, at least one correct relay will have

received f + 1 shares. Then it should take at most another 1 ms to send to the proxy. Therefore,

the total latency time should be less than 4 ms.

26

Performance Evaluation

6.1 Setup

Our implementation is written in C and developed and run on CentOS 8 machines. The test bed

is shown in Figure 6.1 and consists of four TM machines (f = 1, k = 1). These machines are setup

as described in Section 2.3 with the Relay Proxy, TM process, and Spines coordination (shown in

purple) and dissemination (shown in blue) networks.

However, instead of an actual substation, we introduce some components that emulate the behavior

of the MU and Relay. Specifically, a process that can send GOOSE messages according the standard

runs on each TM machine alongside the Relay Proxy and TM. This process, which we call the

Publisher (Pub), uses the loopback interface to send to the Relay Proxy on the same machine.

Then, we use a separate machine that doubles as a sample value emulator and the Destination

Proxy. The sample value emulator sends a normal IP multicast message to the Publisher on each

TM machine, which tells the Publisher to send a trip or close. The Destination Proxy, on

the other hand, is mostly the same as specified. The one modification is that the two processes

communicate in order to measure the end-to-end latency, i.e. the time it takes for a command to

leave the SV emulator until a corresponding command reaches the Destination Proxy. In order

to test for delays or discrepancies in the relays, the SV emulator can also command a Publisher

to wait a certain amount of time before issuing a trip. Then, to test for Byzantine failures, we

modified a copy of the implementation to implement various attacks.

The Publisher is written using libiec61850 [12], an open source implementation of the various IEC

61850 communication protocols. This library is also used by the Relay Proxy to parse GOOSE

messages from the Publisher.

6.2 Benchmark Scenario

Following are the various scenarios that we measured end-to-end latency for.

27

Figure 6.1: Diagram showing the lab test bed

Case 1: Normal Operation

In the first scenario, all the four replicas are working correctly. The SV emulator alternates sending

trip and close commands as fast as possible, sending the next command immediately after the

previous one is resolved. This was run for 1 million operations, and achieved a minimum latency

of 1.71 ms, average latency of 2.14 ms and maximum of 3.32 ms. The histogram of the measured

latencies is in Figure 6.2.

Figure 6.2: Latency histogram for one million operations, with normal operation

28

Case 2: One Proactive Recovery

In this scenario one replica is down for proactive recovery, so there are only three participating

relays, all of which are correct. The SV emulator sends the same alternating operations as Case 1,

but for 10,000 operations instead. The minimum/average/maximum latencies are 1.85/2.22/3.20

ms respectively. The histogram of the measured latencies is Figure 6.3.

As expected, the distribution is slightly shifted to the right, but without an increase to the maxi-

mum. Since there are less relays, there is a decreased probability of process scheduling and network

timings lining up to provide a smaller latency, but the worst case is about the same.

Figure 6.3: Latency histogram for 10,000 operations with one replica down for proactive recovery

Case 3: One Byzantine Fault

Our final test case is for a Byzantine fault. We designate one faulty replica, which sends incorrect

shares, for example sending a trip instead of a close when a close is issued. It also attempts

to consume the resources of other replicas with a Denial of Service attack by rapidly sending them

messages that need to be processed, such as invalid shares or messages.

Under these conditions, we do the same test as the the Proactive Recovery case, with ten thousand

alternating operations. The minimum/average/maximum latencies are 1.88/2.25/3.22 ms respec-

tively. The histogram of the latencies are in Figure 6.4.

Despite the actions of the faulty replica, the 4 ms requirement for the GOOSE messages is not

broken. However, the distribution does show a larger tail, indicating that the attacks by the

29

Byzantine replica had some effect. The fairness enforced by Spines likely prevented any stronger

effects.

Figure 6.4: Histogram showing action times with one Byzantine replica

30

Conclusion

We have developed a Byzantine architecture and protocol for adding resiliency to high voltage

protection schemes within electrical substations. Our design uses ideas from previous works on

intrusion tolerant systems, such as proactive recovery, and additionally is adapted to the unique

environment and strict constraints of the substation. Specifically, the protocol forgoes traditional

Byzantine replication and instead uses threshold cryptography and discretized timestamps to coor-

dinate replicas. This method not only uses less replicas than a traditional BFT, but also requires

just one round of communication.

Our implementation of this protocol was successful in tests; maintaining timeliness (i.e. latency

within the 4 ms requirement of IEC 61850) even in the presence of an attacker. An implementation

of our architecture and protocol is part of a forthcoming release of the open source Spire system

[1].

31

Bibliography

[1] Yair Amir, Trevor Aron, Tom Tantillo, and Amy Babay. Spire: Intrusion-Tolerant SCADA

for the Power Grid. url: http://www.dsn.jhu.edu/spire/ (visited on 08/01/2021).

[2] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. “Prime: Byzantine Replication

under Attack”. In: IEEE Transactions on Dependable and Secure Computing 8.4 (2011),

pp. 564–577. doi: 10.1109/TDSC.2010.70.

[3] Yair Amir, Claudiu Danilov, John Schultz, Daniel Obenshain, Thomas Tantillo, and Amy

Babay. The Spines Overlay Messaging System. url: http://www.spines.org/ (visited on

08/02/2021).

[4] Amy Babay, Thomas Tantillo, Trevor Aron, Marco Platania, and Yair Amir. “Network-

Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid”. In: 2018 48th Annual IEEE/

IFIP International Conference on Dependable Systems and Networks (DSN). 2018, pp. 255–

266. doi: 10.1109/DSN.2018.00036.

[5] Pacific Northwest National Laboratory. One Quarter Cycle Trip Requirement. Personal Com-

munication. 2020.

[6] Yingyi Liang and Roy Campbell. “Understanding and Simulating the IEC 61850 Standard”.

In: (May 2008).

[7] R.E. Mackiewicz. “Overview of IEC 61850 and Benefits”. In: 2006 IEEE PES Power Systems

Conference and Exposition. 2006, pp. 623–630. doi: 10.1109/PSCE.2006.296392.

[8] A. Nicholson, S. Webber, S. Dyer, T. Patel, and H. Janicke. “SCADA security in the light of

Cyber-Warfare”. In: Computers and Security 31.4 (2012), pp. 418–436. issn: 0167-4048. doi:

https://doi.org/10.1016/j.cose.2012.02.009. url: https://www.sciencedirect.

com/science/article/pii/S0167404812000429.

[9] Daniel Obenshain, Thomas Tantillo, Amy Babay, John Schultz, Andrew Newell, Md. Edadul

Hoque, Yair Amir, and Cristina Nita-Rotaru. “Practical Intrusion-Tolerant Networks”. In:

32

http://www.dsn.jhu.edu/spire/
https://doi.org/10.1109/TDSC.2010.70
http://www.spines.org/
https://doi.org/10.1109/DSN.2018.00036
https://doi.org/10.1109/PSCE.2006.296392
https://doi.org/https://doi.org/10.1016/j.cose.2012.02.009
https://www.sciencedirect.com/science/article/pii/S0167404812000429
https://www.sciencedirect.com/science/article/pii/S0167404812000429

2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS). 2016,

pp. 45–56. doi: 10.1109/ICDCS.2016.99.

[10] C.R. Ozansoy, Aladin Zayegh, and Akhtar Kalam. “Time synchronisation in a IEC 61850

based substation automation system”. In: Jan. 2009.

[11] Victor Shoup. “Practical Threshold Signatures”. In: Advances in Cryptology — EURO-

CRYPT 2000. Ed. by Bart Preneel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,

pp. 207–220. isbn: 978-3-540-45539-4.

[12] Michael Zillgith. libIEC61850. Mar. 2020. url: https://libiec61850.com/libiec61850/

about/.

33

https://doi.org/10.1109/ICDCS.2016.99
https://libiec61850.com/libiec61850/about/
https://libiec61850.com/libiec61850/about/

	Abstract
	Introduction
	IEC 61850 Substation Architecture
	IEC 61850 Message Types
	Intrusion Tolerant Architecture
	Spines Details

	System Model
	Threshold Cryptography
	Failure Model, Network Model and Other Assumptions
	Other Definitions

	Protocol Description
	Key Concepts
	States
	Events
	TM State Machine
	Time Synchronization Issues
	Protocol Specification
	TM Startup

	Analysis
	Performance Evaluation
	Setup
	Benchmark Scenario

	Conclusion
	References

