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The “big data” models

The streaming model (Alon, Matias and Szegedy 1996)

– high-speed online data
– limited storage

RAM

CPU
The k-site model

– data is distributedly stored
– limited network bandwidth

· · ·S1 S2 S3 Sk

C
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k-site model

k sites and 1 coordinator.

– each site has a 2-way communication channel with the coordinator.

– each site Si has a piece of data xi . The coordinator has ∅.

Task: compute f (x1, . . . , xk) together via communication.

– The coordinator reports the answer.

– computation is divided into rounds.

Goal: minimize both

• total #bits of comm. (o(Input); best polylog(Input))

• and #rounds (O(1) or polylog(Input)).

· · ·S1 S2 S3 Sk

C
one round

x1 x2 x3 xk

∅
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k-site model

k sites and 1 coordinator.

– each site has a 2-way communication channel with the coordinator.

– each site Si has a piece of data xi . The coordinator has ∅.

Task: compute f (x1, . . . , xk) together via communication.

– The coordinator reports the answer.

– computation is divided into rounds.

Goal: minimize both

• total #bits of comm. (o(Input); best polylog(Input))

• and #rounds (O(1) or polylog(Input)).

· · ·S1 S2 S3 Sk

C
one round

x1 x2 x3 xk

∅

– no constraint on
#bits can be sent or
received by each site
at each round.
(usually balanced)
– do not count local
computation
(usually linear)
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k-site model (cont.)

Abstraction

The BSP model.

Input

Map
Shuffle

Reduce

Output

The MapReduce model.

Communication → time, energy, bandwidth, . . .

Also network
monitoring, sensor
networks, etc.
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k-site model (cont.)

Abstraction

The BSP model.

Input

Map
Shuffle

Reduce

Output

The MapReduce model.

Communication → time, energy, bandwidth, . . .

Also network
monitoring, sensor
networks, etc.
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We will start with the k-site
model, and will mention the
streaming model at the end
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Sketching

· · ·S1 S2 S3 Sk

C

· · ·local
sketch

global sketch =
merge{local sketches}

Q: How many distinct elements
(F0) in the union of the k bags?
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Linear sketching

Random linear mapping M : Rn → Rk where k � n.

=M

x

Mx

The data. e.g.,
a frequency vector

linear mapping sketching vector

g(Mx) ≈ f (x)
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Random linear mapping M : Rn → Rk where k � n.

=M
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The data. e.g.,
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linear mapping sketching vector

g(Mx) ≈ f (x)

Perfect for distributed and streaming computation
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Linear sketching

Random linear mapping M : Rn → Rk where k � n.

=M

x

Mx

The data. e.g.,
a frequency vector

linear mapping sketching vector

g(Mx) ≈ f (x)

Simple and useful: used in many statistical/graph/algebraic
problems in streaming, compressive sensing, . . .

Perfect for distributed and streaming computation
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But what if the data is noisy?

Real world distributed datasets are often noisy!

· · ·S1 S2 S3 Sk

C

Joseph Smith,
800 Mountain
Av springfield

Joe Smith,
800 Mount
Av Springfield

Joseph Smith,
800 Mt. Road
Springfield

Joe Smith,
800 Mt. Road
Springfield
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But what if the data is noisy?

Real world distributed datasets are often noisy!
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Joseph Smith,
800 Mountain
Av springfield

Joe Smith,
800 Mount
Av Springfield

Joseph Smith,
800 Mt. Road
Springfield

Joe Smith,
800 Mt. Road
Springfield

We (have to) consider similar items as
one element. Then how to compute F0?
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But what if the data is noisy?

Real world distributed datasets are often noisy!

· · ·S1 S2 S3 Sk

C

Joseph Smith,
800 Mountain
Av springfield

Joe Smith,
800 Mount
Av Springfield

Joseph Smith,
800 Mt. Road
Springfield

Joe Smith,
800 Mt. Road
Springfield

We (have to) consider similar items as
one element. Then how to compute F0?

Cannot use linear sketches :(
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Noisy data is universal

Music, Images, ...
After compressions, resize,
reformat, etc.
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Noisy data is universal

Music, Images, ...
After compressions, resize,
reformat, etc.

“sublinear algorithm workshop 2016”

“JHU sublinear algorithm”

“sublinear John Hopkins”

Queries of the same meaning sent to Google
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Related to Entity Resolution

Related to Entity Resolution: Identify and link/group

different manifestations of the same real world object.

Very important in data cleaning / integration. Have been

studied for 40 years in DB, also in AI, NT.

Centralized, detect items representing the same entity,
merge/output all distinct entities.

E.g. [Gill& Goldacre’03, Koudas et al.’06, Elmagarmid et al.’07, Herzog et
al.’07, Dong& Naumann’09, Willinger et al.’09, Christen’12] for
introductions, and [Getoor and Machanavajjhala’12] for a toturial.
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Related to Entity Resolution

Related to Entity Resolution: Identify and link/group

different manifestations of the same real world object.

Very important in data cleaning / integration. Have been

studied for 40 years in DB, also in AI, NT.

Centralized, detect items representing the same entity,
merge/output all distinct entities.

In the big data models, we want
communication/space-efficient algorithms (o(input size));
cannot afford a comprehensive de-duplication.

E.g. [Gill& Goldacre’03, Koudas et al.’06, Elmagarmid et al.’07, Herzog et
al.’07, Dong& Naumann’09, Willinger et al.’09, Christen’12] for
introductions, and [Getoor and Machanavajjhala’12] for a toturial.
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Our problems and goal

Problem: how to perform in the k-site model
robust statistical estimation comm. efficiently?

· · ·S1 S2 S3 Sk

C

Assume all parties are provided with an oracle (e.g., a distance
function and a threshold) determining whether two items u, v
rep. the same entity (denoted by u ∼ v) or not

We will design a framework so that users can plug-in any
“distance function” at run time.
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Our problems and goal

Problem: how to perform in the k-site model
robust statistical estimation comm. efficiently?

· · ·S1 S2 S3 Sk

C

Goal: minimize communication & #rounds

Assume all parties are provided with an oracle (e.g., a distance
function and a threshold) determining whether two items u, v
rep. the same entity (denoted by u ∼ v) or not

We will design a framework so that users can plug-in any
“distance function” at run time.
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Remarks

Remark 1. We do not specify the distance function in our
algorithms, for two reasons:

(1) Allows our algorithms to work with any distance functions.

(2) Sometimes it is very hard to assume that similarities between
items can be expressed by a well-known distance function:

“AT&T Corporation” is closer to “IBM Corporation” than

“AT&T Corp” under the edit distance!
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Remarks

Remark 1. We do not specify the distance function in our
algorithms, for two reasons:

(1) Allows our algorithms to work with any distance functions.

(2) Sometimes it is very hard to assume that similarities between
items can be expressed by a well-known distance function:

“AT&T Corporation” is closer to “IBM Corporation” than

“AT&T Corp” under the edit distance!

Remark 2. We assume transitivity: if u ∼ v , v ∼ w then
u ∼ w . In other words, the noise is “well-shaped”.

One may come up with the following problematic situation:
we have a ∼ b, b ∼ c , . . . , y ∼ z , however, a 6∼ z .

For many specific metic spaces, our algorithms still work if
the number of “outliers” is small.
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Remarks (cont.)

Remark 3. Clustering will help?

Answer: NO. #clusters can be linear.
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Remarks (cont.)

Remark 3. Clustering will help?

Answer: NO. #clusters can be linear.

Remark 4. Does there exist a magic hash function that
(1) map (only) items in same group into same bucket

and
(2) can be described succinctly?

Answer: NO

For specific metrics, tools such as LSHs may help
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A few notations

• We have k sites (machines), each holding a multiset of items Si .

• Let multiset S =
⋃

i∈[k] Si , let m = |S |.
• Under the transitivity assumption, S can be partitioned into a

set of groups G = {G1, . . . ,Gn}. Each group Gi represents a
distinct universe element.

• Õ(·) hides poly log(m/ε) factors.

· · ·S1 S2 S3 Sk

C
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Our results

noisy data noise-free data

(comm.) items rounds bits

F0 Õ(min{k/ε3, k2/ε2}) Õ(1) Ω(k/ε2) [WZ12,WZ14]

L0-sampling Õ(k) Õ(1) Ω(k)

Fp (p ≥ 1) Õ((kp−1 + k3)/ε3) O(1) Ω(kp−1/ε2) [WZ12]

(φ, ε)-HH Õ(min{k/ε, 1/ε2}) O(1) Ω(min{
√

k
ε
, 1
ε2 }) [HYZ12,WZ12]

Entropy Õ(k/ε2) O(1) Ω(k/ε2) [WZ12]

1. p-th frequency moment Fp(S) =
∑

i∈[n] |Gi |p.

We consider F0 and Fp (p ≥ 1), and allow a (1 + ε)-approximation.

2. L0-sampling on S : return a group Gi (or an arbitrary item in Gi )
uniformly at random from G.

3. (φ, ε)-heavy-hitter of S (0 < ε ≤ φ ≤ 1) (definition omitted)

4. Empirical entropy: Entropy(S) =
∑

i∈[n]
|Gi |
m

log m
|Gi |

.

We allow a (1 + ε)-approximation.
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Take-home message:

In the distributed setting, we can
handle well-shaped noise in several
statistical estimations almost for free
in terms of communication
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Rest of the talk: Algorithms for F0

· · ·S1 S2 S3 Sk

C

· · ·

Q: How many distinct
elements/groups in the
union of the k bags?

Important in:
traffic monitoring,
query optimization,
...

Want (1 + ε)-approximation
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1. Simple-Sampling

2. Advanced-Sampling

Simple.
Õ(k2/ε2) comm. 2 rounds.

A bit more complicated.
Õ(k/ε3) comm. Õ(1) rounds

Better than Õ(k2/ε2) bits in the sense that
(1) we want to scale on k
(2) used in the algo for `0-sampling with ε = Θ(1)
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Simple-Sampling

1. Let m = |S | =
∑

i∈[k] |Si |.

2. For j = 1, . . . , η = Θ(k/ε2)

(a) jointly sample a random item uj ∈ S ;
Let Guj be the group containing uj .

(b) jointly compute
∣∣Guj

∣∣, and set Xj = 1/
∣∣Guj

∣∣.
3. Output m

η

∑
j∈[k] Xj .

Theorem

Simple-Sampling gives a (1 + ε)-approximation of F0 with probability
2/3 using Õ(k2/ε2) bits and 2 rounds.

Algorithm Simple-Sampling

· · ·S1 S2 S3 Sk

C

(assuming local de-duplication is done at each site)
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Main idea: reduce the variance of Xj in Simple-Sampling

– If we can partition all groups in G into classes
G0, . . . ,Glog k such that G` = {G ∈ G | |G | ∈ (2`−1, 2`]},
and run Algo Simple-Sampling on each class individually, we
can shave a factor of k in the number of samples Xj needed
( η : k/ε2 → 1/ε2).

Advanced-Sampling
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Main idea: reduce the variance of Xj in Simple-Sampling

– If we can partition all groups in G into classes
G0, . . . ,Glog k such that G` = {G ∈ G | |G | ∈ (2`−1, 2`]},
and run Algo Simple-Sampling on each class individually, we
can shave a factor of k in the number of samples Xj needed
( η : k/ε2 → 1/ε2).

– However, we cannot afford to partition the groups
into classes in the distributed setting.

Advanced-Sampling
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Main idea: reduce the variance of Xj in Simple-Sampling

– If we can partition all groups in G into classes
G0, . . . ,Glog k such that G` = {G ∈ G | |G | ∈ (2`−1, 2`]},
and run Algo Simple-Sampling on each class individually, we
can shave a factor of k in the number of samples Xj needed
( η : k/ε2 → 1/ε2).

– However, we cannot afford to partition the groups
into classes in the distributed setting.

Our techniques:

local hierarchical partition

Advanced-Sampling

+ distributed rejection sampling
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Advanced-Sampling (cont.)

Our techniques:

Levels

log k
log k−1

1

Site 1

Local hierarchical partition: at site i about |Si | /2` at level `.

Site 2 Site k



21-2

Advanced-Sampling (cont.)

Our techniques:

Have inconsistency, u ∼ v but u, v are sampled at different levels at
different sites.

Levels

log k
log k−1

1

Site 1

e1, e2, . . . , ek ∈ G

Local hierarchical partition: at site i about |Si | /2` at level `.

e1

e2

ek

Site 2 Site k
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Advanced-Sampling (cont.)

Our techniques:

Have inconsistency, u ∼ v but u, v are sampled at different levels at
different sites.

Levels

log k
log k−1

1

Site 1

e1, e2, . . . , ek ∈ G

Local hierarchical partition: at site i about |Si | /2` at level `.

e1

e2

ek

level(G) = maxi level(ei )

Site 2 Site k
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Advanced-Sampling (cont.)

Our techniques:

Have inconsistency, u ∼ v but u, v are sampled at different levels at
different sites.

Levels

log k
log k−1

1

Site 1

e1, e2, . . . , ek ∈ G

Local hierarchical partition: at site i about |Si | /2` at level `.

e1

e2

ek

level(G) = maxi level(ei )

Note: level(G) 6= class(G)
but close :)

Site 2 Site k
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Advanced-Sampling (cont.)

Our techniques:

Have inconsistency, u ∼ v but u, v are sampled at different levels at
different sites.

Levels

log k
log k−1

1

Site 1

e1, e2, . . . , ek ∈ G

Local hierarchical partition: at site i about |Si | /2` at level `.

e1

e2

ek

level(G) = maxi level(ei )

+ Distributed rejection sampling: resolve the inconsistency

The k sites jointly sample items as before, but only for those items e
with level(e) = level(Ge) (how?), compute 1/w(Ge) as Xj

Note: level(G) 6= class(G)
but close :)

Site 2 Site k
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Advanced-Sampling (cont.)

Our techniques:

Have inconsistency, u ∼ v but u, v are sampled at different levels at
different sites.

Levels

log k
log k−1

1

Site 1

e1, e2, . . . , ek ∈ G

Local hierarchical partition: at site i about |Si | /2` at level `.

e1

e2

ek

level(G) = maxi level(ei )

+ Distributed rejection sampling: resolve the inconsistency

The k sites jointly sample items as before, but only for those items e
with level(e) = level(Ge) (how?), compute 1/w(Ge) as Xj

Repeat until we get Õ(1/ε2) Xj ’s for each level of groups, and then
run the estimation of Simple-Sampling for each level.

Note: level(G) 6= class(G)
but close :)

Site 2 Site k
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Other problems

1. L0-sampling: Õ(k) communication and Õ(1) rounds.

– Use the algorithm for F0 as a subroutine

2. p-th frequency moment: Õ((kp−1 + k3)/ε3) comm. and Õ(1) rounds.

– Adapt an algo by Kannan, Vempala and Woodruff. (COLT 2014)

3. (φ, ε)-heavy-hitter: Õ(min{k/ε, 1/ε2}) comm. and O(1) rounds.

– Easy

4. Empirical entropy: Õ(k/ε2) comm. and O(1) rounds.

– Adapt an algo by Chakrabarti, Cormode and McGregor (SODA 2007)
in streaming
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Now a bit on the streaming model

RAM

CPU
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The streaming model

Q: Can we adapt the algorithms for the k-site model
to the streaming model?

– the simple-sampling needs to revisit the data
(2 rounds)

– the advanced-sampling needs more rounds

Not sure if we can do it for general metric spaces.

Can do for some specific metric spaces. For example,
for O(1)-Euclidean space and well-shaped datasets,
there exists a streaming algo using space Õ(1/ε2)
(Chen, Z., 2016).
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• Problem: compute the number of robust distinct
elements (F0) in the streaming model

Given a threshold α, partition items in the input set S
to a minimum set of groups G = {G1, . . . ,Gn} so that
∀p, q ∈ Gi , d(p, q) ≤ α.

• Data: 4, 000, 000 images from ImageNet, converted
into points in the Euclidean space

• Computing environment: a desktop PC with 8GB
of RAM and a 4-core 3.40GHz Intel i7 CPU

Experiments (streaming model)
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Experiments (known α)
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Baseline

(greedy algo.)

Θ(n) space

Sketch

(our algo.)

Õ(1/ε2) space

CellCount:
(streaming
algo. for
comparison)

Õ(1/ε2) space

Experiments (unknown α)

Dataset: I500k100x5d
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Open problems

• A number of bounds can possibly be improved. For example:

– Can we get the optimal upper bound Õ(k/ε2) for F0?

– Can we remove the k3 factor in the communication cost for Fp?

k-site model
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Open problems

• A number of bounds can possibly be improved. For example:

– Can we get the optimal upper bound Õ(k/ε2) for F0?

– Can we remove the k3 factor in the communication cost for Fp?

• Can we obtain efficient algorithms for Lp-sampling?

k-site model
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Open problems

• A number of bounds can possibly be improved. For example:

– Can we get the optimal upper bound Õ(k/ε2) for F0?

– Can we remove the k3 factor in the communication cost for Fp?

• Can we obtain efficient algorithms for Lp-sampling?

k-site model

• Lower bounds?
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Open problems

• A number of bounds can possibly be improved. For example:

– Can we get the optimal upper bound Õ(k/ε2) for F0?

– Can we remove the k3 factor in the communication cost for Fp?

• Can we obtain efficient algorithms for Lp-sampling?

Streaming model

• Algorithms for general metrics?

(Now we can only do for some specific metrics use LSHs)

k-site model

• Lower bounds?
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Thank you!
Questions?

– Communication-Efficient Computation on Distributed Noisy Datasets
Zhang, SPAA 2015

– Streaming Algorithms for Robust Distinct Elements
Chen and Zhang, SIGMOD 2016


