
Streaming verification of graph problems

Suresh Venkatasubramanian
The University of Utah

Joint work with Amirali Abdullah, Samira Daruki and Chitradeep Dutta Roy

Outsourcing Computations

We no longer need to do our own computations: we can outsource them !

Outsourcing Computations

Service

Client

Q A Why

• Client (verifier) has computationally limited access to the data.
• Server (prover) reads data and has all-powerful access.
• Server must convince client that provided answer is correct.

Prior Work

IPs for Muggles [GKR,KRR,others]
- weaker verifiers and provers
- cryptographic assumptions
- verifier TIME key bottleneck

Prior Work

IPs for Muggles [GKR,KRR,others]
- weaker verifiers and provers
- cryptographic assumptions
- verifier TIME key bottleneck

Rational IPs [AM,CMS,others]
- Prover is rational, not adversarial
- design a "payment" scheme to
convince prover that honesty is
optimal

Prior Work

IPs for Muggles [GKR,KRR,others]
- weaker verifiers and provers
- cryptographic assumptions
- verifier TIME key bottleneck

Rational IPs [AM,CMS,others]
- Prover is rational, not adversarial
- design a "payment" scheme to
convince prover that honesty is
optimal

Proofs of proximity [RVW,GR]
- sublinear TIME verifier
- sublinear communication

Prior Work

IPs for Muggles [GKR,KRR,others]
- weaker verifiers and provers
- cryptographic assumptions
- verifier TIME key bottleneck

Rational IPs [AM,CMS,others]
- Prover is rational, not adversarial
- design a "payment" scheme to
convince prover that honesty is
optimal

Proofs of proximity [RVW,GR]
- sublinear TIME verifier
- sublinear communication

Streaming IPs [CTY,others]
- STREAMING verifier
- sublinear communication

SIP: A Model For Streaming Verification

Prover Verifier

101100111000...

Prover and verifier read the stream

SIP: A Model For Streaming Verification

Prover Verifier

Local
store

Verifier stores a small amount of information

SIP: A Model For Streaming Verification

Prover Verifier

Local
Store

Prover and verifier interact to determine the answer

Inputs

Stream of updates τ of the form τj = (i ,∆i ,j)

• i ∈ [u]

• ∆ ∈ {+1,−1}
Updates can be assembled into a vector

a = (a1, a2, . . . , au)

where ai = ∑j ∆i ,j

Measuring cost

Space:
We would like the verifier to use a working space that is sublinear in the input
domain size:

s = o(u)

Communication:
Total communication between the prover and verifier should also be sublinear
in u:

c = o(u)

Rounds:
Ideally, total rounds of communication should be small:

r should be O(log u) or even O(1).

We will describe the cost of a protocol by the pair (s, c)
Correctness:
Protocol is randomized:

• If answer is correct, then there exists a proof that convinces verifier with
certainty.

• If answer is wrong, then no proof convinces verifier with probability more
than 1/3

Prior Work

• Annotated streams [CCM,CCMY,CTM]: Prover helps verifier as stream
goes along

• Streaming interactive proofs [CTY]: Introduce the idea of streaming
interactive proofs

• Constant-round SIPs [CCMTV] for near neighbors, classification, and
median finding, as well as complexity characterization.

• Constant- and log n round SIPs for clustering, shape fitting and
eigenvector verification [DTV]

Graph Streams

Graph G = (V ,E), |V | = u, |E | = m is presented as:

Insert-only stream of edges e ∈ E

dynamic stream of updates (e,∆),∆ ∈ {+1,−1}.
Can’t do anything with o(u) space !

Semi-streaming model: allow space Ω(u) but o(m).

• Connectivity easy in insert-only stream.
• Connectivity easy in dynamic streams (via linear sketches)
• Matchings hard to approximate in dynamic streams

• Cannot get better than a constant factor approximation using Õ(u) space
[K]

• Linear sketches require Ω(u2−o(1)) space for constant factor approximation
[AKLY]

• If we allow one round of communication (P → V), then space ×
communication is Ω(u2) for exact matching [T]

Our Results

Matchings (all flavors): O(log u, ρ + log u) protocols in log n rounds (ρ is
the certificate size). Rounds can be reduced to constant if
certificate is large enough.

TSP O(log n, n log n) protocol for verifying 1.5+ ε approximation to
TSP (open whether semi-streaming algorithm can do better
than 2 even for insert-only streams).

Triangle Counting O(log n, log n) in log n rounds (exact).

Connectivity, Bipartiteness, MST (log n, n log n) protocols.

In all cases, we linearize the graph (via matrix or tensor operations) and do
(low-degree) algebraic testing on the resulting vectors.

Some Tools

Sum Check

Lemma (S-Z D-L)

If p 6= q are degree-d polynomials, then

Pr
r∈RF

[p(r) = q(r)] ≤ d

|F|

Fix a function h : Z→ Z. Set F (a) = ∑i∈[u] h(ai)

Problem (SumCheck)

Verify a claim that F (a) = K

Problem formulated in context of interactive proofs.

Sum Check

Lemma (S-Z D-L)

If p 6= q are degree-d polynomials, then

Pr
r∈RF

[p(r) = q(r)] ≤ d

|F|

Fix a function h : Z→ Z. Set F (a) = ∑i∈[u] h(ai)

Problem (SumCheck)

Verify a claim that F (a) = K

Problem formulated in context of interactive proofs.

Theorem (CTY)

Fix a finite field F. There is a log u-round SIP for SumCheck with cost (log u,
deg(h) log u), where deg(h) is the degree of a relaxation of h to F.

Note that by interpolation, any function h over a domain of size m can be
written as a polynomial of degree m. Costs are expressed as the number of
words of F needed.

Implications

• If h(x) = x2, we get F2 estimation: ∑i a
2
i

• If h(x) = 1 for x > 0 and 0 otherwise, we get F0: number of nonzero
entries of a.

• We can verify F0,F2,Fk ,Fmax exactly using log n space with a streaming
verifier.

Implications

• If h(x) = x2, we get F2 estimation: ∑i a
2
i

• If h(x) = 1 for x > 0 and 0 otherwise, we get F0: number of nonzero
entries of a.

• We can verify F0,F2,Fk ,Fmax exactly using log n space with a streaming
verifier.

By comparison with streaming:
• Ω(n) space lower bound for an exact streaming algorithm.
• Cannot even approximate Fk , k ≥ 3 in o(n1−2/k) space streaming.

A Key Subroutine

Let M = maxiai . Fix k ∈ [M].

F−1
k (a) = |{ai | ai = k}|

F−1
k (a) is the number of elements with frequency k.

Theorem (Finv)

There is a SIP to verify a claim that F−1(a) = K that has cost (log n,M log n)
and takes log n rounds.

Let hk (i) = 1 if i = k and is zero otherwise. Then

F−1
k (a) = ∑

i

hk (ai)

and h has degree at most M by interpolation.

Bipartite Maximum Cardinality Matchings

Problem
Given a bipartite graph G = (A∪ B,E), find a set of edges M ⊂ E so that

• each vertex of A∪ B is adjacent to at most one edge of M
• |M | is maximized.

Prover has to do two things
• Present a candidate matching
• Convince the verifier that this is optimal

Theorem (König)

In a bipartite graph, size of maximum cardinality matching equal size of
minimum vertex cover.

Protocol:
1 V preprocesses the input stream

2 P sends V a matching, and convinces V that it is indeed a matching.

3 P sends V a vertex cover, and convinces V that it is indeed a vertex cover.

Certifying a Matching I: Subgraph check

A matching M has two properties:

1 M ⊂ E

2 Each vertex touches M at most once.

Certifying a Matching I: Subgraph check

A matching M has two properties:

1 M ⊂ E

2 Each vertex touches M at most once.

Checking that M ⊂ E
Vector a has one entry for each edge.

1 P and V agree on a canonical ordering of all edges

2 V processes input stream for F−1
−1 query.

3 P sends back claimed matching M in increasing order. V checks that there
are no duplicate edges and decrements a for each edge in M.

4 V verifies that F−1
−1 (a) = 0.

Certifying a Matching I: Subgraph check

A matching M has two properties:

1 M ⊂ E

2 Each vertex touches M at most once.

Checking that M ⊂ E
Vector a has one entry for each edge.

1 P and V agree on a canonical ordering of all edges

2 V processes input stream for F−1
−1 query.

3 P sends back claimed matching M in increasing order. V checks that there
are no duplicate edges and decrements a for each edge in M.

4 V verifies that F−1
−1 (a) = 0.

• If M ⊂ E , P passes the test.
• If M 6⊂ E , then for e ∈ M \ E , ae = −1 and so F−1

−1 (a) 6= 0. If M has
duplicate entries to inflate the alleged matching, then it will be detected.

Certifying a matching II: M is a matching

Theorem (Multiset Equality, CMT)

Suppose we have streaming updates to two vectors a, a′ ∈ Zu such that
maxi ai ,maxi a′i ≤ M. Let t = max(M, u). Then there is a streaming algorithm
using log t space that outputs 1 if a = a′ and outputs 1 with probability 1/t2 if
a 6= a′.

Certifying a matching II: M is a matching

Theorem (Multiset Equality, CMT)

Suppose we have streaming updates to two vectors a, a′ ∈ Zu such that
maxi ai ,maxi a′i ≤ M. Let t = max(M, u). Then there is a streaming algorithm
using log t space that outputs 1 if a = a′ and outputs 1 with probability 1/t2 if
a 6= a′.

Now to check if M is a matching:

1 V uses M to construct a stream of updates to the vertices of G .

2 V asks P to replay the vertices of M in a canonical order.

3 V verifies that these two sets are identical using Multiset Equality

Canonical ordering of vertices is needed so that prover cannot cheat by not
sending a matching.

Certifying a matching III: Vertex Cover

A set S ⊂ V is a vertex cover if each edge e ∈ E is adjacent to some vertex of
S .
Vector a has one entry for each edge in E .

1 V processes data stream for F−1
1 query

2 P sends a stream of vertices in S as claimed vertex cover.

3 For each vertex v ∈ S , V simulates the stream of updates (v ,w ,−1) for
all w ∈ V .

4 V verifies at end of stream that F−1
1 (a) = 0.

If any edge is left uncovered, then its original count is 1 and this is never
decremented.

Complexity of Protocol

Subgraph Check (log n, |M |+ log n) via Finv

Matching Check (log n, |M |+ log n) via MultiSetEquality

Vertex Cover Check (log n, |M |+ log n) via Finv

• Note that in all invocations of Finv the range of values of ai is small.
• Overall protocol takes log n rounds.

Verifying matchings in weighted nonbipartite graphs

• Let wij be the weight of an edge e = {i , j}.
• Fix (dual) variables yv and zU , where U is odd-size subset of V

Theorem (Cunningham-Marsh, LP-duality)

For every integral edge weights {wij}, and choices of y , z such that for all i , j

yi + yj + ∑
odd U,i ,j∈U

zU ≥ wij

we have that
c∗ ≤∑

v
yv + ∑

odd U

zUb
1
2
|U |c

And this bound is tight for a laminar family {U | zU > 0}

• In a laminar family of sets any pair of sets are either disjoint or are nested.
• Therefore a laminar family over a universe of size u is of size at most u.

A few more technical notes

• We can reduce the number of verification rounds to c = O(1) if we allow
communication to increase to n1/c

• Protocols ignore verifier time: this can also be reduced by increasing the
space slightly.

Overview Of Results

Sum check

MSE Finv Subset

Verify Matching

Matchings (all
variants)

Connectivity MST

Approx TSP

Triangles

Conclusions

• Graphs are hard to process in a stream: but with a little help, we can solve
many graph problems with limited space.

• We don’t understand the full power of SIPs: lower bounds (for constant
rounds) are linked to known hard classes like AM.

• There are three canonical hard problems for streaming problems: INDEX,
DISJOINTNESS and Boolean Hidden (hyper)Matching. All are easy for
SIPs.

• What are candidate hard problems for the SIP model in log n rounds ?

Conclusions

• Graphs are hard to process in a stream: but with a little help, we can solve
many graph problems with limited space.

• We don’t understand the full power of SIPs: lower bounds (for constant
rounds) are linked to known hard classes like AM.

• There are three canonical hard problems for streaming problems: INDEX,
DISJOINTNESS and Boolean Hidden (hyper)Matching. All are easy for
SIPs.

• What are candidate hard problems for the SIP model in log n rounds ?

Thank You !
suresh@cs.utah.edu

http://www.cs.utah.edu/∼suresh

	From Streaming to Verification
	Graph Streaming
	Main Results
	Sum Check
	Computing F-1
	Matchings

