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Outsourcing Computations

We no longer need to do our own computations: we can outsource them !



Outsourcing Computations

Service

Client

Q A Why

• Client (verifier) has computationally limited access to the data.
• Server (prover) reads data and has all-powerful access.
• Server must convince client that provided answer is correct.
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Proofs of proximity [RVW,GR]
- sublinear TIME verifier
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Streaming IPs [CTY,others]
- STREAMING verifier
- sublinear communication



SIP: A Model For Streaming Verification

Prover Verifier

101100111000...

Prover and verifier read the stream
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SIP: A Model For Streaming Verification

Prover Verifier

Local 
Store

Prover and verifier interact to determine the answer



Inputs

Stream of updates τ of the form τj = (i ,∆i ,j )

• i ∈ [u]

• ∆ ∈ {+1,−1}
Updates can be assembled into a vector

a = (a1, a2, . . . , au)

where ai = ∑j ∆i ,j



Measuring cost

Space:
We would like the verifier to use a working space that is sublinear in the input
domain size:

s = o(u)

Communication:
Total communication between the prover and verifier should also be sublinear
in u:

c = o(u)

Rounds:
Ideally, total rounds of communication should be small:

r should be O(log u) or even O(1).

We will describe the cost of a protocol by the pair (s, c)
Correctness:
Protocol is randomized:

• If answer is correct, then there exists a proof that convinces verifier with
certainty.

• If answer is wrong, then no proof convinces verifier with probability more
than 1/3



Prior Work

• Annotated streams [CCM,CCMY,CTM]: Prover helps verifier as stream
goes along

• Streaming interactive proofs [CTY]: Introduce the idea of streaming
interactive proofs

• Constant-round SIPs [CCMTV] for near neighbors, classification, and
median finding, as well as complexity characterization.

• Constant- and log n round SIPs for clustering, shape fitting and
eigenvector verification [DTV]



Graph Streams

Graph G = (V ,E ), |V | = u, |E | = m is presented as:

Insert-only stream of edges e ∈ E

dynamic stream of updates (e,∆),∆ ∈ {+1,−1}.
Can’t do anything with o(u) space !

Semi-streaming model: allow space Ω(u) but o(m).

• Connectivity easy in insert-only stream.
• Connectivity easy in dynamic streams (via linear sketches)
• Matchings hard to approximate in dynamic streams

• Cannot get better than a constant factor approximation using Õ(u) space
[K]

• Linear sketches require Ω(u2−o(1)) space for constant factor approximation
[AKLY]

• If we allow one round of communication (P → V), then space ×
communication is Ω(u2) for exact matching [T]



Our Results

Matchings (all flavors): O(log u, ρ + log u) protocols in log n rounds (ρ is
the certificate size). Rounds can be reduced to constant if
certificate is large enough.

TSP O(log n, n log n) protocol for verifying 1.5+ ε approximation to
TSP (open whether semi-streaming algorithm can do better
than 2 even for insert-only streams).

Triangle Counting O(log n, log n) in log n rounds (exact).

Connectivity, Bipartiteness, MST (log n, n log n) protocols.

In all cases, we linearize the graph (via matrix or tensor operations) and do
(low-degree) algebraic testing on the resulting vectors.



Some Tools



Sum Check

Lemma (S-Z D-L)

If p 6= q are degree-d polynomials, then

Pr
r∈RF

[p(r) = q(r)] ≤ d

|F|

Fix a function h : Z→ Z. Set F (a) = ∑i∈[u] h(ai )

Problem (SumCheck)

Verify a claim that F (a) = K

Problem formulated in context of interactive proofs.
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Lemma (S-Z D-L)

If p 6= q are degree-d polynomials, then

Pr
r∈RF

[p(r) = q(r)] ≤ d

|F|

Fix a function h : Z→ Z. Set F (a) = ∑i∈[u] h(ai )

Problem (SumCheck)

Verify a claim that F (a) = K

Problem formulated in context of interactive proofs.

Theorem (CTY)

Fix a finite field F. There is a log u-round SIP for SumCheck with cost (log u,
deg(h) log u), where deg(h) is the degree of a relaxation of h to F.

Note that by interpolation, any function h over a domain of size m can be
written as a polynomial of degree m. Costs are expressed as the number of
words of F needed.



Implications

• If h(x) = x2, we get F2 estimation: ∑i a
2
i

• If h(x) = 1 for x > 0 and 0 otherwise, we get F0: number of nonzero
entries of a.

• We can verify F0,F2,Fk ,Fmax exactly using log n space with a streaming
verifier.
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2
i

• If h(x) = 1 for x > 0 and 0 otherwise, we get F0: number of nonzero
entries of a.

• We can verify F0,F2,Fk ,Fmax exactly using log n space with a streaming
verifier.

By comparison with streaming:
• Ω(n) space lower bound for an exact streaming algorithm.
• Cannot even approximate Fk , k ≥ 3 in o(n1−2/k ) space streaming.



A Key Subroutine

Let M = maxiai . Fix k ∈ [M ].

F−1
k (a) = |{ai | ai = k}|

F−1
k (a) is the number of elements with frequency k.

Theorem (Finv)

There is a SIP to verify a claim that F−1(a) = K that has cost (log n,M log n)
and takes log n rounds.

Let hk (i) = 1 if i = k and is zero otherwise. Then

F−1
k (a) = ∑

i

hk (ai )

and h has degree at most M by interpolation.



Bipartite Maximum Cardinality Matchings

Problem
Given a bipartite graph G = (A∪ B,E ), find a set of edges M ⊂ E so that

• each vertex of A∪ B is adjacent to at most one edge of M
• |M | is maximized.

Prover has to do two things
• Present a candidate matching
• Convince the verifier that this is optimal

Theorem (König)

In a bipartite graph, size of maximum cardinality matching equal size of
minimum vertex cover.

Protocol:
1 V preprocesses the input stream

2 P sends V a matching, and convinces V that it is indeed a matching.

3 P sends V a vertex cover, and convinces V that it is indeed a vertex cover.
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A matching M has two properties:

1 M ⊂ E

2 Each vertex touches M at most once.

Checking that M ⊂ E
Vector a has one entry for each edge.

1 P and V agree on a canonical ordering of all edges

2 V processes input stream for F−1
−1 query.

3 P sends back claimed matching M in increasing order. V checks that there
are no duplicate edges and decrements a for each edge in M.

4 V verifies that F−1
−1 (a) = 0.

• If M ⊂ E , P passes the test.
• If M 6⊂ E , then for e ∈ M \ E , ae = −1 and so F−1

−1 (a) 6= 0. If M has
duplicate entries to inflate the alleged matching, then it will be detected.



Certifying a matching II: M is a matching

Theorem (Multiset Equality, CMT)

Suppose we have streaming updates to two vectors a, a′ ∈ Zu such that
maxi ai ,maxi a′i ≤ M. Let t = max(M, u). Then there is a streaming algorithm
using log t space that outputs 1 if a = a′ and outputs 1 with probability 1/t2 if
a 6= a′.
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Theorem (Multiset Equality, CMT)

Suppose we have streaming updates to two vectors a, a′ ∈ Zu such that
maxi ai ,maxi a′i ≤ M. Let t = max(M, u). Then there is a streaming algorithm
using log t space that outputs 1 if a = a′ and outputs 1 with probability 1/t2 if
a 6= a′.

Now to check if M is a matching:

1 V uses M to construct a stream of updates to the vertices of G .

2 V asks P to replay the vertices of M in a canonical order.

3 V verifies that these two sets are identical using Multiset Equality

Canonical ordering of vertices is needed so that prover cannot cheat by not
sending a matching.



Certifying a matching III: Vertex Cover

A set S ⊂ V is a vertex cover if each edge e ∈ E is adjacent to some vertex of
S .
Vector a has one entry for each edge in E .

1 V processes data stream for F−1
1 query

2 P sends a stream of vertices in S as claimed vertex cover.

3 For each vertex v ∈ S , V simulates the stream of updates (v ,w ,−1) for
all w ∈ V .

4 V verifies at end of stream that F−1
1 (a) = 0.

If any edge is left uncovered, then its original count is 1 and this is never
decremented.



Complexity of Protocol

Subgraph Check (log n, |M |+ log n) via Finv

Matching Check (log n, |M |+ log n) via MultiSetEquality

Vertex Cover Check (log n, |M |+ log n) via Finv

• Note that in all invocations of Finv the range of values of ai is small.
• Overall protocol takes log n rounds.



Verifying matchings in weighted nonbipartite graphs

• Let wij be the weight of an edge e = {i , j}.
• Fix (dual) variables yv and zU , where U is odd-size subset of V

Theorem (Cunningham-Marsh, LP-duality)

For every integral edge weights {wij}, and choices of y , z such that for all i , j

yi + yj + ∑
odd U,i ,j∈U

zU ≥ wij

we have that
c∗ ≤∑

v
yv + ∑

odd U

zUb
1
2
|U |c

And this bound is tight for a laminar family {U | zU > 0}

• In a laminar family of sets any pair of sets are either disjoint or are nested.
• Therefore a laminar family over a universe of size u is of size at most u.



A few more technical notes

• We can reduce the number of verification rounds to c = O(1) if we allow
communication to increase to n1/c

• Protocols ignore verifier time: this can also be reduced by increasing the
space slightly.



Overview Of Results

Sum check

MSE Finv Subset

Verify Matching

Matchings (all 
variants)

Connectivity MST

Approx TSP

Triangles



Conclusions

• Graphs are hard to process in a stream: but with a little help, we can solve
many graph problems with limited space.

• We don’t understand the full power of SIPs: lower bounds (for constant
rounds) are linked to known hard classes like AM.

• There are three canonical hard problems for streaming problems: INDEX,
DISJOINTNESS and Boolean Hidden (hyper)Matching. All are easy for
SIPs.

• What are candidate hard problems for the SIP model in log n rounds ?
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Thank You !
suresh@cs.utah.edu

http://www.cs.utah.edu/∼suresh
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