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Differential Privacy: The Framework

Analyst wishes to get some task done on the Database
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Differential Privacy: The Mathematical Formulation

The idea is that absence or presence of an individual entry
should not change the output “by much"

Definition. A randomized algorithm, M, gives
(ε, δ)-differential privacy if, for all “neighboring data," D
and D̃, and for all S ⊆ Range(M),
Pr [M(D) ∈ S] ≤ exp(ε)Pr

[
M(D̃) ∈ S

]
+ δ

We restrict how the privacy guard can access the database
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Differentially Private Streaming Model of Computation

Privacy Guard Private Matrix

8 1 6
3 5 7
4 9 2
5 3 7
6 2 1
2 6 7
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• Operates on the stream

• Update the data structure
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• Update the data structure

4 3 4
6 2 8
1 8 9


4 /12



Differentially Private Streaming Model of Computation

An analyst comes
along
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Differentially Private Streaming Model of Computation

An analyst comes
along

request to do a task
−−−−−−−−−−−−−−−−−→

performs the task
←−−−−−−−−−−−−−−−

• uses4 3 4
6 2 8
1 8 9
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Differentially Private Streaming Model of Computation

cannot figure out
individual

information
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Differentially Private Streaming Model of Computation

cannot figure out
individual

information

Privacy goal
achieved
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Differentially Private Streaming Model of Computation

Following are the extra parameters
1 number of passes over the matrix
2 space requirement of the data structures
3 time required to update the data structures
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The Main Idea

Non-private Setting

Data-structure is a sketch generated using random matrix

⇓

Efficient one-pass streaming algorithms
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The Main Idea

Private Setting

Special distribution of random matrices

+

Sketch generated using a random matrix picked from this
distribution

⇓

Differentially private one-pass streaming algorithms
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First Approach

Streaming Private Sketch Generator (PSG1)

Pick a random Gaussian matrix Φ
Multiply Φ to the streamed column

Theorem. If the singular values of the streamed matrix
to PSG1 algorithm are at least

σ1 :=
(
4
√
r log(2/δ) log(r/δ)

)
/ε, then PSG1 preserves

(ε, δ)-differential privacy

Similar result was shown by [BBDS12] for non-streaming
algorithms
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First Approach

Streaming Private Sketch Generator (PSG2)

Pick a random Gaussian matrix Φ
Multiply ΦTΦ to the streamed column

Theorem. If the singular values of the streamed matrix
to the PSG2 algorithm are at least

σ2 := (4r log(r/δ)) /ε, then PSG2 preserves
(ε, δ)-differential privacy.
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A Meta Algorithm

• Get a stream in the form of column vector

• Perturb the vector to lift the singular values

• Feed it to PSG1 or PSG2

• Perform any post-processing
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Another Candidate for Φ: Update-time Efficiency

1 Pick {g1, · · · ,gn} ∼ N (0, 1)n

2 Divide it into r equal blocks of vectors Φ1, · · · ,Φr.

P :=


Φ1 0n/r · · · 0n/r

0n/r Φ2 · · · 0n/r

...
. . . . . .

...
0n/r · · · 0n/r Φr


Compute Φ =

√
1
rPΠW, where W is a randomized Hadamard

matrix and Π is a permutation matrix
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Thank you for your attention
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