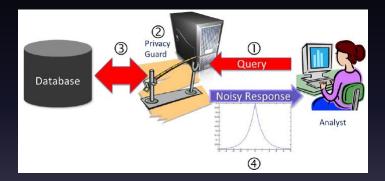
## Differential Privacy in the Streaming Model

### Jalaj Upadhyay

Pennsylvania State University

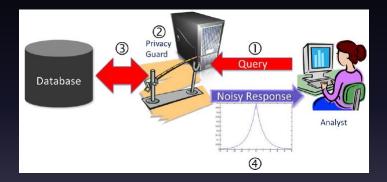
January 07, 2016

### Differential Privacy: The Framework



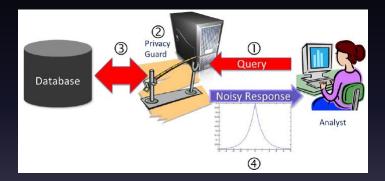
#### Analyst wishes to get some task done on the Database

### Differential Privacy: The Framework



Privacy guard provides privacy of individuals in the Database

### Differential Privacy: The Framework



#### The privacy guard performs the task on the Database

### Differential Privacy: The Mathematical Formulation

The idea is that absence or presence of an individual entry should not change the output "by much"

The idea is that absence or presence of an individual entry should not change the output "by much"

**Definition.** A randomized algorithm,  $\mathfrak{M}$ , gives  $(\varepsilon, \delta)$ -differential privacy if, for all "neighboring data," **D** and  $\widetilde{\mathbf{D}}$ , and for all  $S \subseteq \operatorname{Range}(\mathfrak{M})$ ,  $\Pr\left[\mathfrak{M}(\mathbf{D}) \in S\right] \leq \exp(\varepsilon)\Pr\left[\mathfrak{M}(\widetilde{\mathbf{D}}) \in S\right] + \delta$  The idea is that absence or presence of an individual entry should not change the output "by much"

**Definition.** A randomized algorithm,  $\mathfrak{M}$ , gives  $(\varepsilon, \delta)$ -differential privacy if, for all "neighboring data," **D** and  $\widetilde{\mathbf{D}}$ , and for all  $S \subseteq \operatorname{Range}(\mathfrak{M})$ ,  $\Pr\left[\mathfrak{M}(\mathbf{D}) \in S\right] \leq \exp(\varepsilon)\Pr\left[\mathfrak{M}(\widetilde{\mathbf{D}}) \in S\right] + \delta$ 

We restrict how the privacy guard can access the database

### Privacy Guard



### Private Matrix



### Privacy Guard

Private Matrix



- Operates on the stream
- Update the data structure

### Privacy Guard

Private Matrix



Operates on the stream

• Update the data structure



### Privacy Guard



Operates on the stream

Update the data structure





An analyst comes along



request to do a task

An analyst comes along



An analyst comes along

### request to do a task







request to do a task

performs the task



An analyst comes along





cannot figure out individual information



cannot figure out individual information

Privacy goal achieved

Following are the extra parameters

- 1 number of passes over the matrix
- 2 space requirement of the data structures
- 3 time required to update the data structures

Following are the extra parameters

- 1 number of passes over the matrix
- 2 space requirement of the data structures
- 3 time required to update the data structures

Following are the extra parameters

- 1 number of passes over the matrix
- 2 space requirement of the data structures
- 3 time required to update the data structures

Non-private Setting

### Non-private Setting

#### Data-structure is a sketch generated using random matrix

### Non-private Setting

#### Data-structure is a sketch generated using random matrix

 $\Downarrow$ 

#### Efficient one-pass streaming algorithms

**Private Setting** 

### **Private Setting**

### Special distribution of random matrices

### **Private Setting**

### Special distribution of random matrices

+

Sketch generated using a random matrix picked from this distribution

### **Private Setting**

### Special distribution of random matrices

+

Sketch generated using a random matrix picked from this distribution

 $\Downarrow$ 

Differentially private one-pass streaming algorithms

### **Private Setting**

### Special distribution of random matrices

+

Sketch generated using a random matrix picked from this distribution

 $\Downarrow$ 

Differentially private one-pass streaming algorithms

Streaming Private Sketch Generator (PSG<sub>1</sub>)

Pick a random Gaussian matrix  $\Phi$  Multiply  $\Phi$  to the streamed column

Streaming Private Sketch Generator (PSG<sub>1</sub>)

Pick a random Gaussian matrix  $\Phi$ Multiply  $\Phi$  to the streamed column

Theorem. If the singular values of the streamed matrix to  $PSG_1$  algorithm are at least  $\sigma_1 := \left(4\sqrt{r\log(2/\delta)}\log(r/\delta)\right)/\varepsilon$ , then  $PSG_1$  preserves  $(\varepsilon, \delta)$ -differential privacy

Streaming Private Sketch Generator (PSG<sub>1</sub>)

Pick a random Gaussian matrix  $\Phi$ Multiply  $\Phi$  to the streamed column

Theorem. If the singular values of the streamed matrix to  $\mathsf{PSG}_1$  algorithm are at least  $\sigma_1 := \left(4\sqrt{r\log(2/\delta)}\log(r/\delta)\right)/\varepsilon$ , then  $\mathsf{PSG}_1$  preserves  $(\varepsilon, \delta)$ -differential privacy

Similar result was shown by [BBDS12] for non-streaming algorithms

Streaming Private Sketch Generator (PSG<sub>2</sub>)

Pick a random Gaussian matrix  $\Phi$ Multiply  $\Phi^{T}\Phi$  to the streamed column

Theorem. If the singular values of the streamed matrix to the PSG<sub>2</sub> algorithm are at least  $\sigma_2 := (4r \log(r/\delta)) / \varepsilon$ , then PSG<sub>2</sub> preserves  $(\varepsilon, \delta)$ -differential privacy.

### • Get a stream in the form of column vector

- Get a stream in the form of column vector
- Perturb the vector to lift the singular values

- Get a stream in the form of column vector
- Perturb the vector to lift the singular values
- $\bullet$  Feed it to  $\mathsf{PSG}_1$  or  $\mathsf{PSG}_2$

- Get a stream in the form of column vector
- Perturb the vector to lift the singular values
- $\bullet$  Feed it to  $\mathsf{PSG}_1$  or  $\mathsf{PSG}_2$
- Perform any post-processing

### Another Candidate for $\Phi$ : Update-time Efficiency

1 Pick 
$$\{\mathbf{g}_1, \cdots, \mathbf{g}_n\} \sim \mathcal{N}(0, 1)^n$$

2 Divide it into r equal blocks of vectors  $\Phi_1, \cdots, \Phi_r$ .

$$\mathbf{P}:=egin{pmatrix} \mathbf{\Phi}_1 & \mathbf{0}^{n/r} & \cdots & \mathbf{0}^{n/r} \ \mathbf{0}^{n/r} & \mathbf{\Phi}_2 & \cdots & \mathbf{0}^{n/r} \ dots & \ddots & \ddots & dots \ \mathbf{0}^{n/r} & \cdots & \mathbf{0}^{n/r} & \mathbf{\Phi}_r \end{pmatrix}$$

Compute  $\Phi = \sqrt{\frac{1}{r}} \mathbf{P} \Pi \mathbf{W}$ , where  $\mathbf{W}$  is a randomized Hadamard matrix and  $\Pi$  is a permutation matrix

Thank you for your attention